JPS58181738A - Manufacture of base material for optical fiber of low oh content - Google Patents
Manufacture of base material for optical fiber of low oh contentInfo
- Publication number
- JPS58181738A JPS58181738A JP6247582A JP6247582A JPS58181738A JP S58181738 A JPS58181738 A JP S58181738A JP 6247582 A JP6247582 A JP 6247582A JP 6247582 A JP6247582 A JP 6247582A JP S58181738 A JPS58181738 A JP S58181738A
- Authority
- JP
- Japan
- Prior art keywords
- gaseous
- base material
- optical fiber
- starting material
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、光フアイバ用母材のm造方泳において、特に
OH基による損失増加を最小限に抑制し九低OH光ファ
イバ用母材のll!造方法に関する:)
従来、光フアイバ用母材をlll1造する方法として、
化学気相沈虜法(以下MCVD沃と略記する)が一般的
に用いられている0こ07y法は、一端が原料ガス供給
−に接続され、他端が大気中に通じている原料石英管内
に、81Cj4を主成分用原料ガスとし、GeCj 、
PCl及びBBr寺を添加酸化物用原料ガスとして、酸
素尋のキャリアガスに乗せて流通しておき、該石英管の
外−を酸水素バーナーでmsに走査することを−返し、
該石英管の内壁に、化学反応の結果得られた5101層
あるいij neo、、P、0.及びB201等の添加
物を含有するsio、@を堆積、透明ガラス化及び中実
化することにより光フアイバ用母材を製造する方法であ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention is aimed at minimizing the increase in loss due to OH groups in the process of forming optical fiber preforms, and in particular suppressing the increase in loss due to OH groups to a minimum. Regarding manufacturing method:) Conventionally, as a method for manufacturing optical fiber base material,
The chemical vapor deposition method (hereinafter abbreviated as MCVD), which is commonly used, is a raw material quartz tube whose one end is connected to the raw material gas supply and the other end is connected to the atmosphere. In this case, using 81Cj4 as the raw material gas for the main component, GeCj,
PCl and BBr are used as the raw material gas for the additive oxide, and are distributed on a carrier gas of oxygen, and the outside of the quartz tube is scanned every ms with an oxyhydrogen burner.
The inner wall of the quartz tube is coated with a 5101 layer obtained as a result of a chemical reaction or ij neo, , P, 0. This is a method for manufacturing an optical fiber base material by depositing sio,@ containing additives such as 1 and B201, vitrifying it transparently, and solidifying it.
しかしながら、このような従来の方法では、その擬造過
程中に原料その鎗からの酸量の水分の混入が避けられず
、これがガラス母材の光吸収損失の原因となっている。However, in such conventional methods, it is unavoidable that an acidic amount of moisture from the raw material and the spear is mixed in during the imitation process, which causes light absorption loss in the glass base material.
ガラス母材中に含まれる水分はその基本吸収が2.72
μmの11mのところに64)、その高調波が1.39
μm及び195μm(基本吸収波長のそれぞれ1/2及
び1/3の波長)等の波長のところで極めて大きな光吸
収損失を与え、このことが光伝送用繊体としての光ファ
イバを製造するうえで大きな間−となっている。このよ
うに、従来の方法では、光7アイパ内のOH基を除去す
ることが蟻しく、1.39μmの損失増加に換算して2
dB/b程度にすることは#!!&でない。このことは
、t3μm帝を中心とした波長域で波長多重伝送方式t
−爽現しようとする際の致命的な欠陥となる。The basic absorption of water contained in the glass matrix is 2.72.
64) at 11 m of μm, its harmonic is 1.39
Extremely large optical absorption losses occur at wavelengths such as μm and 195 μm (1/2 and 1/3 of the fundamental absorption wavelength, respectively), and this is a major problem in manufacturing optical fibers for optical transmission. It is between. In this way, in the conventional method, it is difficult to remove the OH groups in the optical 7-iper, and the loss increases by 1.39 μm.
Setting it to about dB/b is #! ! & not. This means that the wavelength division multiplexing transmission method t
-This is a fatal flaw when trying to manifest.
本発明の目的は、上記の間融を解決するため光フアイバ
母材の製造時に特定の脱水剤を用い特にOH基による損
失増加を最小限に抑−した低OH光フアイバ用母材の製
造方法を提供することである。The object of the present invention is to solve the above-mentioned problem of melting by using a specific dehydrating agent during production of the optical fiber preform, and to minimize the increase in loss due to OH groups. The goal is to provide the following.
本発明につき概説すれば、本発明のtoak光ファイバ
用母材の製造方法は、ガラス雪内に所望のIA#rII
Ilct有するガラス層を長さ方向に堆積させる光フア
イバ用母材の製造方法において一一化訣索ガスを流通さ
せながら反応、堆積及び透明ガラス化を行うことを特徴
とするものである。To summarize the present invention, the method for manufacturing the toak optical fiber preform of the present invention includes the steps of preparing a desired IA#rII in glass snow.
The present invention is a method for manufacturing an optical fiber base material in which a glass layer containing Ilct is deposited in the longitudinal direction, and is characterized in that reaction, deposition, and transparent vitrification are carried out while flowing a monomer gas.
次式で表すことができる。It can be expressed by the following formula.
クツラド堆積時:
8iCj、 + O,→S1o、 +2C1* (1
)又、コア堆積時:
このようなガフス母材の1111!造に必要な反応と岡
崎に、原料石英管からのOHJ&の拡散あるいは供給原
料ガス及びキャリアガス中に混入してくる水分(l(,
0)がjラス母材の特性を劣化させる。When Kuturad is deposited: 8iCj, + O, → S1o, +2C1* (1
) Also, during core deposition: 1111 of such a gaff base material! In addition to the reactions necessary for the production and Okazaki, the diffusion of OHJ from the raw quartz tube or the moisture (l(,
0) deteriorates the properties of the j lath base material.
これに青し、本発明方法においては、脱水剤として一酸
化巌素ガス(以下COと略記する)を該石英ガラス管内
に流通させるので、原料ガスその他に含まれる水分は次
式
%式%(
の反応により該石英管の外側に運ばれ、その結果として
、該石英管の内置に堆積された8102層あるいはGe
O□を瘉加したsio、m内へのOH基の混入蓋を者し
く減少させることができる。In addition, in the method of the present invention, sulfur monoxide gas (hereinafter abbreviated as CO) is passed through the quartz glass tube as a dehydrating agent, so the moisture contained in the raw material gas and others is reduced by the following formula: % (%) The 8102 layer or Ge is transported to the outside of the quartz tube by the reaction of
By adding O□, the incorporation of OH groups into sio and m can be significantly reduced.
この際のCOの流通量は、原料の線類、反応条件その他
により決定され、特に@定されないが、コア部分の脱水
を完全にする丸め、コア部分の製造過程におけるCoO
流通量はやや一一とすることが望ましい。The flow rate of CO at this time is determined by the lineage of the raw materials, reaction conditions, etc., and is not particularly determined, but it is necessary to round the core part to complete dehydration, and to use CoO in the core part manufacturing process.
It is desirable that the distribution volume be somewhat uniform.
次に、本発明及びその効果を夾施例により脱明するが、
本発明はこれによ〉なんら限定されるものではない0
寮施例
脱水剤としてCOを用い友以外は従来の技術を用いて光
フアイバ用母材をjiIll造し九〇クフツド層の堆積
に当っては、IfA料として20℃の81(’j、tM
Iい、コア層の堆積に当ってはwA料として28℃の8
1Cj4及び15℃のG ec 14を用い、又、両方
の場合共にキャリアガスとして*mのOl、脱水剤とし
て電alOCOt−mい、これらを下表に示す流菖で曲
部する面長管内に込プながらバーナーで加熱し、石英管
内礁にクツラド1111次いでコア層をJllll検さ
せ九次いで中東化を行って纏引き装置にかける丸めの光
フアイバ用母材を作製し友。なお、比較の丸め、COを
流通させずに他は同条件で光フアイバ用母材を作成した
。Next, the present invention and its effects will be clarified by examples.
The present invention is not limited thereto in any way.Example: Using CO as a dehydrating agent, a base material for optical fiber was prepared using conventional techniques, and a 90% dry layer was deposited. 81('j, tM
I, when depositing the core layer, 8℃ at 28℃ was used as a wA material.
Using 1Cj4 and Gec 14 at 15℃, and in both cases, *mOl was used as a carrier gas and electrolyte AlOCOt-m was used as a dehydrating agent. Heat it with a burner while putting it in, and inspect the inner reef of the quartz tube with Cuturad 1111 and the core layer. For comparison, an optical fiber base material was prepared under the same conditions without flowing CO.
これらの条件で作製しtm材から侮られた光ファイバの
損失特性を−ベ友。すなわち、編付図面は、COt用い
た場合と用いない場合において優られた光ファイバの損
失特性を波長(μm)(横軸)と損失(dB/b)(縦
軸)との関係で示し友グフフである。図(2)から明ら
かなように、COを用いない従来法の場合には、特に波
長t3?μll14Cおける損失値が4dB/bでiつ
友のに比べて、COを便用し九巻合には、その損失値が
[1L5dB/−にまで著しく低減しうることか可能で
めった。The loss characteristics of optical fibers fabricated under these conditions, which are inferior to TM materials, are explained below. In other words, the compiled drawings show the excellent loss characteristics of optical fibers with and without COt in the relationship between wavelength (μm) (horizontal axis) and loss (dB/b) (vertical axis). It's gross. As is clear from Figure (2), in the case of the conventional method that does not use CO, the wavelength t3? The loss value in μll14C was 4 dB/b, compared to that of the itsu friend, but it was found that it was possible to significantly reduce the loss value to [1L5 dB/-] by using CO and using nine windings.
以上説明したように、本発明によれば、脱水剤としてC
oを用いることにより、母材中のOH基の皺を低減させ
ることができ、その結果、得られる光ファイバの損失特
性は、1.2μmからt7μmの広い波長域でα5dB
/b以下にすることができる。1
この′R−は大きく、将来の光通信方式として有望視さ
れている畝長多嵐方式t4可能とするものであるAs explained above, according to the present invention, C as a dehydrating agent.
By using o, wrinkles of OH groups in the base material can be reduced, and as a result, the loss characteristics of the resulting optical fiber are α5dB in a wide wavelength range from 1.2μm to t7μm.
/b or less. 1 This 'R- is large and enables the Uecho-Tarashi method t4, which is considered to be a promising future optical communication method.
図面は、COを用いた場合と用いない場合において得ら
れた光ファイバの損失特性を示したグラフである。
特許出顧入 日本電信1を鈷公社
代理人 中 本 大
手続補正書(方式)
昭和57年8月24日
梼許庁長盲 着 杉 和 夫 殿
t◆件O表示 昭和57年特許願第62475号1発
明の名称 低OH党7アイノ(用母材の製造方法本補
正をする者
事件とOII係 畳許出願人
住 所 東京都千代田区内率町1丁目1番6号1
称 (422) 日本電信電話公社代表者 真 藤
恒
西新橋中央ビル602号電話(457)−5467氏
名 弁理士(7850) 中 本 宏翫纏正
命令の8村
昭和57年7月9日(発送日 #i和57年7月27日
)本補正O対象 明細書の全文The drawing is a graph showing the loss characteristics of optical fibers obtained with and without CO. Patent solicitation entered into Nippon Telegraph 1 as an agent for the public corporation Nakamoto Major procedural amendment (method) August 24, 1980 Director of the Licensing Agency blindly arrived Kazuo Sugi Tono t◆Displayed Patent Application No. 62475 No. 1 Name of the invention Low OH Party 7 Aino (Manufacturing method for base material for this amendment) Case and OII Section Tatami license applicant address 1-1-6-1 Uchira-cho, Chiyoda-ku, Tokyo
Name (422) Nippon Telegraph and Telephone Public Corporation Representative Mr. Makoto Tsuneishi Shinbashi Chuo Building 602 Telephone (457)-5467
Name: Patent Attorney (7850) Hirokan Nakamoto 8 Village of July 9, 1980 (Shipping date: July 27, 1981) Subject to this amendment O Full text of the specification
Claims (1)
を長さ方向に堆積させる光フアイバ用母材の製造方法に
おいて、−酸化次系ガスを流通させながら反応、堆積及
び透明ガラス化を行うことを特徴とする低OH光フアイ
バ用母材の製造方法。(1) In a method for manufacturing an optical fiber base material in which a glass layer having a desired refractive index is deposited in the length direction in a glass tube, reaction, deposition, and transparent vitrification are performed while circulating a secondary oxidation gas. A method for producing a base material for a low OH optical fiber, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6247582A JPS58181738A (en) | 1982-04-16 | 1982-04-16 | Manufacture of base material for optical fiber of low oh content |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6247582A JPS58181738A (en) | 1982-04-16 | 1982-04-16 | Manufacture of base material for optical fiber of low oh content |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58181738A true JPS58181738A (en) | 1983-10-24 |
Family
ID=13201247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6247582A Pending JPS58181738A (en) | 1982-04-16 | 1982-04-16 | Manufacture of base material for optical fiber of low oh content |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58181738A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4792347A (en) * | 1986-09-25 | 1988-12-20 | Corning Glass Works | Method for coating optical waveguide fiber |
EP1693348A1 (en) * | 2005-02-22 | 2006-08-23 | Furukawa Electric North America Inc. (a Delaware Corporation) | Multimode optical fiber and method for manufacturing same |
-
1982
- 1982-04-16 JP JP6247582A patent/JPS58181738A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4792347A (en) * | 1986-09-25 | 1988-12-20 | Corning Glass Works | Method for coating optical waveguide fiber |
EP1693348A1 (en) * | 2005-02-22 | 2006-08-23 | Furukawa Electric North America Inc. (a Delaware Corporation) | Multimode optical fiber and method for manufacturing same |
JP2006232665A (en) * | 2005-02-22 | 2006-09-07 | Furukawa Electric North America Inc | Multimode optical fiber and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900008503B1 (en) | Manufacture of preform for glass fibres | |
US7181116B2 (en) | Fiber optic cable and process for manufacturing | |
JPS6038345B2 (en) | Manufacturing method of glass material for optical transmission | |
KR890001125B1 (en) | Optical fifer | |
KR19990082608A (en) | Raw materials and manufacturing methods for manufacturing germanium doped silica | |
SU1194266A3 (en) | Method of producing semifinished product for drawing optical fibre | |
JPS60260430A (en) | Manufacture of base material for optical fiber containing fluorine in clad part | |
JPS58181738A (en) | Manufacture of base material for optical fiber of low oh content | |
GB2071644A (en) | Radiation Resistant Optical Fibers and a Process for the Production Thereof | |
JPS6022658B2 (en) | Fiber for optical communication | |
KR870001277B1 (en) | Method for making of optical fiber preform | |
JPS6048456B2 (en) | Method for manufacturing base material for optical fiber | |
JPS59199543A (en) | Manufacture of optical fiber preform | |
CN103382084A (en) | Optical fiber preform manufacturing method | |
JPS58217441A (en) | Manufacture of base material for optical fiber | |
JPH0524093B2 (en) | ||
JPS5816161B2 (en) | Optical transmission line and its manufacturing method | |
JPH0818843B2 (en) | Method for manufacturing preform for optical fiber | |
JPS591220B2 (en) | Manufacturing method of optical fiber base material | |
JPH0791081B2 (en) | Method for manufacturing glass base material for single mode fiber | |
JPS6289B2 (en) | ||
JP2831842B2 (en) | Manufacturing method of optical fiber base material | |
JPS6150888B2 (en) | ||
JPS6144821B2 (en) | ||
JPS6042242A (en) | Manufacture of glass for optical fiber |