JPS58181728A - Method for recovering uranium from wet process phosphoric acid - Google Patents

Method for recovering uranium from wet process phosphoric acid

Info

Publication number
JPS58181728A
JPS58181728A JP57060431A JP6043182A JPS58181728A JP S58181728 A JPS58181728 A JP S58181728A JP 57060431 A JP57060431 A JP 57060431A JP 6043182 A JP6043182 A JP 6043182A JP S58181728 A JPS58181728 A JP S58181728A
Authority
JP
Japan
Prior art keywords
phosphoric acid
uranium
alkaline earth
hemihydrate
dihydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57060431A
Other languages
Japanese (ja)
Other versions
JPS6055446B2 (en
Inventor
Koji Aono
青野 浩二
Ryuichi Nakamura
隆一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP57060431A priority Critical patent/JPS6055446B2/en
Publication of JPS58181728A publication Critical patent/JPS58181728A/en
Publication of JPS6055446B2 publication Critical patent/JPS6055446B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover uranium inexpensively and simply from wet process phosphoric acid in a high yield by adding an alkaline earth metallic compound to the phosphoric acid, further adding gypsum dihydrate, and capturing uranium in a hemihydration stage. CONSTITUTION:An alkaline earth metallic compound is added to wet process phosphoric acid contg. uranium obtd. by treating phosphate ore so as to adjust the concn. of alkaline earth metallic ions in the phosphoric acid to >=0.1wt%. After further adding gypsum dihydrate, the phosphoric acid is heated and held at above the transition temp. of hemihydrate gypsum to cause transition from the gypsum dihydrate to hemihydrate gypsum and to capture uranium. All of the formed hemihydrate gypsum is separated from the phosphoric acid, dispersed in water, and hydrated to cause transition to gypsum dihydrate and to shift the uranium to the liq. phase. The mother liquor after the hydration is separated, and by adding a precipitant, the uranium is recovered as an insoluble precipitate. Said wet process phosphoric acid may be used after defluorination. The preferred alkaline earth metallic ions are Ca or Mg ions. Gypsum dihydrate separated after transition can be recycled.

Description

【発明の詳細な説明】 本発明はリン鉱石を硫酸、リン酸などの鉱酸で分解して
得られる湿式リン酸から、その中に含有される微量のウ
ランを石コウを媒体として回収する方法に関するもので
ある。
[Detailed Description of the Invention] The present invention is a method for recovering trace amounts of uranium contained in wet phosphoric acid obtained by decomposing phosphate rock with mineral acids such as sulfuric acid and phosphoric acid using gypsum as a medium. It is related to.

天然リン鉱石中には一般に100〜200 ppmのウ
ランが含まれており、これをリン酸と硫酸の混酸で湿式
分解する、いわゆる湿式リン酸の製造工程でその大部分
はリン酸液中に移行する。
Natural phosphate rock generally contains 100 to 200 ppm of uranium, and most of it is transferred to the phosphoric acid solution during the so-called wet phosphoric acid manufacturing process, in which this is wet-decomposed with a mixed acid of phosphoric acid and sulfuric acid. do.

リン酸液中のウランの含有濃度はあまシ高くはないが、
生産されるリン酸液の絶対量が非常に大きいため、湿式
リン酸からウランを回収する試みは従来より行なわれて
いる。
Although the concentration of uranium in the phosphoric acid solution is not very high,
Since the absolute amount of phosphoric acid solution produced is very large, attempts have been made to recover uranium from wet phosphoric acid.

湿式リン酸からのウランの工業的回収法としては溶媒抽
出法、イオン交換法、沈殿法、吸着法等が知られている
。沼媒抽出法は現在、世界的に工業化が進んでいる方法
ではあるが、抽出工程でスラッジが生成するのを防止す
るため処罰処理としてリン酸を精製する必要があり、設
備費が一層高額であり、かつ抽出溶媒が高価なのでその
損失を避けるため煩雑な操作をしなければならないとい
う欠点がある。またイオン交換法ではリン酸の前処理の
必要性のほか、イオン交換カラムに供給すりリン酸液の
濃度は、通り、まだ広く実用化されるに至っていない。
As industrial methods for recovering uranium from wet phosphoric acid, solvent extraction methods, ion exchange methods, precipitation methods, adsorption methods, etc. are known. Although the swamp medium extraction method is currently being industrialized worldwide, it requires purification of phosphoric acid as a punishment to prevent sludge formation during the extraction process, and the equipment costs are higher. However, since the extraction solvent is expensive, complicated operations are required to avoid its loss. Furthermore, in addition to the necessity of pretreatment of phosphoric acid in the ion exchange method, the concentration of the diphosphoric acid solution supplied to the ion exchange column has not yet been widely put to practical use.

沈殿法、吸収法はウラン回収剤が高価であったり、その
損失が問題になる等の理由でこれも更に改善の必要があ
る。
Precipitation and absorption methods require further improvement because the uranium recovery agent is expensive and its loss is a problem.

一方、本発明者らは既にリン鉱石を硫酸で分解する湿式
リン酸製造法において、石ロウ全生成する反応工程で酸
化剤を共存させ溶液中のウランを6価にすることを特徴
とするウラン含有率の高い湿式リン酸の製造法(特開昭
57−27911号)さらに湿式リン酸に半水石ロウお
よび/または半水石ロウを生成する化合物を添加し、全
て半水石ロウに転4化させ、湿式リン酸と半水石ロウを
分離し、分離した半水石ロウを水和し、次いで水利石ロ
ウを分離し、分離液に沈殿剤を加えウランを不溶性沈殿
として回収することを特徴とする、湿式リン酸からウラ
ンを回収する方法(特願昭56−24242号)および
後者発明の工程の改善に係るもので工業的な回収方法(
特願昭56−162077号)t−提案した。
On the other hand, the present inventors have already developed a wet phosphoric acid production method in which phosphate rock is decomposed with sulfuric acid. Method for producing wet phosphoric acid with a high content (Japanese Patent Application Laid-Open No. 57-27911) Furthermore, hemihydrate wax and/or a compound that produces hemihydrate wax is added to the wet phosphoric acid, and all of it is converted to hemihydrate wax. , characterized in that wet phosphoric acid and hemihydrate wax are separated, the separated hemihydrate wax is hydrated, then the aquarium wax is separated, and a precipitant is added to the separated liquid to recover uranium as an insoluble precipitate. A method for recovering uranium from wet phosphoric acid (Japanese Patent Application No. 56-24242) and an industrial recovery method (related to improvement of the process of the latter invention)
(Japanese Patent Application No. 162077/1982) t-proposed.

本発明は湿式リン酸からウランを回収するこ−れらの方
法の工程の改善に係るもので簡単な操作で高い回収率を
得る方法を達成し、完成したものである。すなわち種々
の湿式リン酸製造法で得られたリン酸(以下湿式リン酸
という)あるいは湿式リン酸にSiO□源、アルカリ源
を添加し、湿式リン酸中の弗素をケイ弗酸アルカリとし
て除去した弗素含有量の少ないリン酸(以下脱弗リン酸
という)にアルカリ土類金属化合物を添加した後二水石
コウを添加し、半水石ロウの転移温度以上に保持して半
水石ロウとした後、必要ならば該リン酸中のアルカリ土
類余端イオンに対して少くとも当量の硫酸を添加し、全
ての半水石ロウを分離し、該半水石ロウを水和させた後
これを分離し、分離母液に沈殿剤を加え、ウランを不溶
性沈殿として回収することを特徴とする湿式リン酸ある
いは脱弗リン酸からの工業的なウランの回収方法に関す
る。
The present invention relates to improvements in the steps of these methods for recovering uranium from wet phosphoric acid, and has achieved and completed a method that achieves a high recovery rate with simple operations. That is, a SiO□ source and an alkali source were added to phosphoric acid obtained by various wet phosphoric acid production methods (hereinafter referred to as wet phosphoric acid) or wet phosphoric acid, and fluorine in the wet phosphoric acid was removed as an alkali silicate fluoride. After adding an alkaline earth metal compound to phosphoric acid with a low fluorine content (hereinafter referred to as defluorinated phosphoric acid), adding dihydrate wax and maintaining the temperature above the transition temperature of hemihydrate wax, if necessary, adding at least an equivalent amount of sulfuric acid to the residual alkaline earth ions in the phosphoric acid to separate all the hemihydrate wax, hydrate the hemihydrate wax, and then separate it; This invention relates to an industrial method for recovering uranium from wet phosphoric acid or defluorophosphoric acid, which is characterized by adding a precipitant to the separated mother liquor and recovering uranium as an insoluble precipitate.

このように、本発明の方法はウラン回収工程とリン酸製
造工程とを全く別の工程として切り離したものであるた
め、いかなる方法で製造さ回収することができ、沈殿剤
は安価であり、またその操作も浴媒抽出法と比べ非常に
簡単である。
In this way, the method of the present invention separates the uranium recovery process and the phosphoric acid production process as completely separate processes, so it can be produced and recovered by any method, the precipitant is inexpensive, and The operation is also very simple compared to the bath medium extraction method.

以下本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の実施にあたっては、リン鉱石を億(社)とリン
酸の混酸で分解する湿式リン酸製造法において、石ロウ
を生成する反応工程で酸化剤を共存させ溶液中のウラン
を6価に酸化し、次いで生成石コウ類を9′)離した湿
式リン酸あるいはさらに湿式リン酸中の弗素含有量を低
下させた脱弗リン酸を原料として用いるのが好ましい。
In carrying out the present invention, in the wet phosphoric acid production method in which phosphate rock is decomposed with a mixed acid of 100% and phosphoric acid, an oxidizing agent is coexisted in the reaction step to generate parrot wax, and the uranium in the solution is converted to hexavalent uranium. It is preferable to use wet phosphoric acid which has been oxidized and then released the produced gypsum (9') or defluorinated phosphoric acid which has further reduced the fluorine content in the wet phosphoric acid.

酸化剤としてはKCfi03、NaCQO3、H20□
、KMnQl、HNO3,塩酸、のウランに比べ4価の
ウランが半水石ロウに取シ込まれ易いので金属鉄などの
還元剤の添加、電解還元等の方法により6価のウランを
4価に還元しておくのが望ましい。次に原料リン酸にア
ルカリ土類金属化合物を添加溶解させ、リン酸中のアル
カリ土類金属イオン濃度を上昇せしめる。このアルカリ
土類金属化合物としては特に限定しないが入手容易なO
a化合物としてリン鉱石、CaO1Ca(OH)2、C
aCO2,0aCR2あるいはMg化合物としてMgO
、Mg(OH)2 、 Mg、COs 、MgcI12
等のいずれかを添加溶解せしめればよい。その添加量と
してはリン酸中のアルカリ土類金属イオン濃度を0.1
%以上、上昇させるのが好ましく、上限は特に制約され
ないが通常は5%程度までで、それ以上ではそれ相応の
顕著な効果はないが0.1%以下ではその効果が少ない
。本発明はこのように原料リン酸にアルカリ土類金属化
合物を添加溶解させる簡単な工程を組込むだけで高いウ
ラン回収率が得られることは大きなアルカリ土類金属イ
オンが多く存在するとウランとカルシウムの置換反応が
促進されるためであろうと考えられる。
As an oxidizing agent, KCfi03, NaCQO3, H20□
Compared to uranium such as , KMnQl, HNO3, and hydrochloric acid, tetravalent uranium is easily incorporated into hemihydrate wax, so hexavalent uranium is reduced to tetravalent uranium by adding a reducing agent such as metallic iron or by electrolytic reduction. It is desirable to keep it. Next, an alkaline earth metal compound is added and dissolved in the raw phosphoric acid to increase the alkaline earth metal ion concentration in the phosphoric acid. The alkaline earth metal compound is not particularly limited, but O is easily available.
Phosphate, CaO1Ca(OH)2, C as a compound
aCO2, 0aCR2 or MgO as Mg compound
, Mg(OH)2, Mg, COs, MgcI12
Any one of the following may be added and dissolved. As for the amount added, the alkaline earth metal ion concentration in phosphoric acid is 0.1.
It is preferable to increase the content by % or more, and although the upper limit is not particularly limited, it is usually up to about 5%, and if it is more than that, there is no significant effect, but if it is less than 0.1%, the effect is small. The present invention is able to obtain a high uranium recovery rate simply by incorporating the simple process of adding and dissolving an alkaline earth metal compound to the raw material phosphoric acid.The fact that a high uranium recovery rate can be obtained by simply incorporating the simple process of adding and dissolving an alkaline earth metal compound to the raw material phosphoric acid is due to the fact that when large alkaline earth metal ions are present, uranium and calcium are substituted. This is thought to be because the reaction is accelerated.

次に該リン酸に水利石コウ(二水石コウ)を添加するが
、この二水石コウは半水化工程でウランの捕捉剤として
働くものである。なお、二水石コウは後工程の水利工程
で生成する副生二水石コウの一部を循環使用するのが好
ましいが、他の工程からの二水石コウでも有効である。
Next, hydrite (dihydrate) is added to the phosphoric acid, and this dihydrate acts as a scavenger for uranium in the hemihydration process. Although it is preferable to reuse a part of the by-product dihydrate produced in the subsequent water utilization process, dihydrate produced from other processes is also effective.

その絵加量は一般には半水化工程でのスラリー濃度が5
〜40重量%になるように添加する。
The amount of painting is generally determined by the slurry concentration in the hemihydration process being 5.
Add so that the amount becomes ~40% by weight.

次の半水化工程ではリン酸と水利石コウのスラリーを二
水石コウが半水石コウに転移する温度に保持する。転移
温度は100〜120℃程度であり、必要ならばオート
クレーブ中で半水化を行わせることができる。生成した
半水石コウは10 ppm 〜5000ppmのウラン
を含有するが、母液中にはアルカリ土類金属イオンが0
.1%以上溶存しているので次の工程として必要ならば
硫56−24242号)と同じである。
In the next hemihydration step, the slurry of phosphoric acid and hydrite is maintained at a temperature at which dihydrate is transformed into hemihydrate. The transition temperature is about 100 to 120°C, and if necessary, half-hydration can be carried out in an autoclave. The produced hemihydrate contains 10 ppm to 5000 ppm of uranium, but the mother liquor contains 0 alkaline earth metal ions.
.. Since 1% or more is dissolved, if necessary as a next step, it is the same as sulfur No. 56-24242).

すなわち、ウランを捕捉した半水石コウは水中で分散水
和させ、半水石コウが二水石コウに転移する過程でウラ
ンを固相から液相側へ吐き出させる。この操作も本発明
では特徴的なものであり、半水石コウからウランを取出
すという処理を簡単な水利操作によって行なうことがで
きるのはウラン回収媒体として石コウを利用している利
点である。水和反応には微量の硫酸あるいは水利促進剤
、酸化剤を添加し、反応を促進させてもよい。反応は常
温で行なわせることができる。水利によって生成した二
水石コウはウランをほとんど含まず、ウランの溶出した
水和母液(以下回収液という)とは機械的に分離へ循環
させ、回収液中のウラン濃度のアップを図ってもよい。
That is, the hemihydrate that has captured uranium is dispersed and hydrated in water, and in the process of transferring the hemihydrate to the dihydrate, uranium is expelled from the solid phase to the liquid phase. This operation is also a feature of the present invention, and the advantage of using gypsum as a uranium recovery medium is that the process of extracting uranium from hemihydrate quartz can be carried out by simple water utilization operations. A trace amount of sulfuric acid, a water utilization promoter, or an oxidizing agent may be added to the hydration reaction to promote the reaction. The reaction can be carried out at room temperature. The dihydrate produced through irrigation contains almost no uranium, and the hydrated mother liquor from which uranium has been eluted (hereinafter referred to as the recovered liquid) may be mechanically recycled for separation to increase the uranium concentration in the recovered liquid. .

以上の工程を経てウランはリン酸液から分離ブれ、最終
的には実質的にリン酸を含まない回収液として溶液状態
で得られる。回収液はウラン(U)として通常数十pp
m〜数千ppmのものが得られるが、該回収液からウラ
ンを取出すに当っては、沈殿法を適用することによって
容易に、かつ経済的に回収できる。沈殿剤としては苛性
ソーダ、アンモニウム化合物等が一般的であるが、その
他2価の鉄塩、有機キレート試薬等が用いられる。回収
ウランの原料であるリン酸液は主製品であるので、製品
としての価値を低下させるような添加物を加えることは
できないが、回収液はもはやリン酸製造工程とは全く分
離されており、上記沈殿剤のほか、凝集剤、吸着剤、フ
ルコート剤、界面活性剤、pH調節剤等の添加物を加え
るなどして任意に液性を調整できるまた分離した水利石
コウの一部は半水化工程に循環使用し、残りはそのまま
排出し、セメント用として使用することもできるので、
工業的に極めて有利なプロセスということができる。
Through the above steps, uranium is separated from the phosphoric acid solution, and finally a recovered solution containing substantially no phosphoric acid is obtained in the form of a solution. The recovered liquid usually contains several tens of ppp of uranium (U).
Although uranium can be obtained in amounts ranging from m to several thousand ppm, uranium can be easily and economically recovered by applying a precipitation method. Caustic soda, ammonium compounds and the like are commonly used as precipitants, but divalent iron salts, organic chelating reagents and the like are also used. Since phosphoric acid liquid, which is the raw material for recovered uranium, is the main product, we cannot add additives that would reduce the value of the product, but the recovered liquid is now completely separated from the phosphoric acid manufacturing process. In addition to the above-mentioned precipitants, the liquid properties can be adjusted arbitrarily by adding additives such as flocculants, adsorbents, full coat agents, surfactants, and pH adjusters. It can be recycled in the chemical process, and the rest can be discharged as is and used for cement.
It can be said that this process is extremely advantageous industrially.

以下実施例により本発明ヲ祝明する。The present invention will be illustrated by the following examples.

実施例1〜5 乙ロリダ産リン鉱石を硫酸分解して得た湿式リン酸(p
2o、濃度=30%、F#度= 1.5%、U濃度−1
00ppm )300 gを攪拌機料きオートクレーブ
に仕込み、87℃とした。リン酸中のウランを4価に還
元するだめの前処理として鉄粉0.2 g f攪拌しな
がら加えた。該前処理を施したリン酸に表−■のアルカ
リ土類金属化合物をそれぞれ添加溶解した。これらのリ
ン酸にそれぞれ水利石ロウ50g(Ul1度= 2 p
pm )を]え、スラリ一温度を110℃に調節し、2
時間場応させた。水和石ロウが全量半水石コウに転移−
したことを確認したのちろ過し、リン酸を得ウラン含有
率ならびに半水化工程のウラン収率を表−■に示した。
Examples 1 to 5 Wet phosphoric acid (p
2o, concentration = 30%, F# degree = 1.5%, U concentration -1
00ppm) was placed in an autoclave equipped with a stirrer and heated to 87°C. As a pretreatment for reducing uranium in phosphoric acid to tetravalence, 0.2 g of iron powder was added with stirring. Each of the alkaline earth metal compounds shown in Table 1 was added and dissolved in the pretreated phosphoric acid. Add 50 g of hydrite wax to each of these phosphoric acids (Ul 1 degree = 2 p
pm)], adjust the slurry temperature to 110°C, and
The time was tailored. The entire amount of hydrated stone wax is transferred to hemihydrate stone wax.
After confirming that this was the case, phosphoric acid was obtained by filtration, and the uranium content and uranium yield in the hemihydration process are shown in Table 1.

表−■ リン鉱石: P2o、 33%、  CaO48,8%
、  U 1100pp続いて該半水石ロウA■のうち
40 g f 50 Illの水で分散水和させた後、
ろ過し、洗浄水と母液をあわせて回収液53m1を得た
。回収液のウラン濃度は551ppm、従って水木口操
作におけるウラン収率は98チであった。さらにpHH
I3ける総合のウラン収率は96%(Q、98X0,9
8X0,999)であった。同様の水和操作を屋■、■
Table - ■ Phosphate rock: P2o, 33%, CaO48.8%
, U 1100pp Then, after dispersing and hydrating 40 g of the hemihydrate wax A with 50 Ill of water,
After filtration, the washing water and mother liquor were combined to obtain 53 ml of recovered liquid. The uranium concentration in the recovered liquid was 551 ppm, and therefore the uranium yield in the Mizukiguchi operation was 98%. Further pHH
The overall uranium yield in I3 is 96% (Q, 98X0,9
8×0,999). Similar hydration operation
.

■、■の半水石ロウについて行なった結果、総合のウラ
ン収率はそれぞれ底■−93%、A■−95%、&■、
■=96%であった。
As a result of conducting the tests on hemihydrate waxes ■ and ■, the overall uranium yields were bottom ■-93%, A■-95%, &■, respectively.
■=96%.

実施例6 湿式リン酸を脱弗したいわゆる脱弗リン酸(PzOs濃
度=30チ、F磯度−0,5俤、Ui11度= too
 ppm ) 300 gについて実施例1〜5と同様
の操作を行なった。攪拌機付きオートクレーブに仕込み
、鉄粉0.2 gを加えて還元処理した。
Example 6 So-called defluorinated phosphoric acid obtained by defluorinating wet phosphoric acid (PzOs concentration = 30 degrees, F degree -0.5 degrees, Ui 11 degrees = too
ppm) 300 g was subjected to the same operations as in Examples 1 to 5. The mixture was placed in an autoclave equipped with a stirrer, and 0.2 g of iron powder was added for reduction treatment.

該リン酸にリン鉱石18.2g添加し溶解させた。18.2 g of phosphate rock was added to the phosphoric acid and dissolved.

次に水和石ロウ50g(U良度= 2 ppm )を加
え、スラリ一温度を110℃に調節し、2時間反応させ
た。水利石ロウが全量半水石コウに転移したことを確認
したのちろ過し、P、0,29.4%、T52 ppm
含有のリン酸325gを得た。半水石ロウケーキは最初
熱水で次いでアセトンで洗浄しせて回収液53m1を得
た。回収液のウラン濃度は552 ppm s従って水
利操作におけるウラン収率は98%であった。さらにp
H4=1の回収欣をアンモニア水でI) H中6まで中
和するとウランを18.5%(Uとして)含むウラン酸
アンモニウム等の沈殿0.158 gを得た。この操作
のウラン収率は99.9%であった。従って総合のウラ
ン収率は96%(0,98XQ、98XO0999)で
あった。
Next, 50 g of hydrated stone wax (U quality = 2 ppm) was added, the slurry temperature was adjusted to 110°C, and the mixture was reacted for 2 hours. After confirming that the entire amount of water stone wax has been transferred to hemiwater stone wax, it is filtered, P, 0.29.4%, T52 ppm
325 g of phosphoric acid was obtained. The hemihydrate wax cake was washed first with hot water and then with acetone to obtain 53 ml of recovered liquid. The uranium concentration in the recovered liquid was 552 ppm s, so the uranium yield in the irrigation operation was 98%. Further p
When the recovered residue with H4=1 was neutralized to 6 in I) H with ammonia water, 0.158 g of precipitate such as ammonium uranate containing 18.5% (as U) of uranium was obtained. The uranium yield of this operation was 99.9%. Therefore, the overall uranium yield was 96% (0.98XQ, 98XO0999).

比較例1 実施例1〜5と同じ湿式リン酸300gにリン鉱石0.
43gを溶解せしめ、(上昇したCaイオ/濃度は0 
、05%に相当する。)実施例1〜5と全く同様の操作
を行った結果 半水化工程のウラン収率は93% 水和工程の   〃  は98% 沈殿化工程の     は99.9%であシ〃 総合のウラン収率は91チ(0,91X0.98X0.
999)iあった。
Comparative Example 1 300 g of wet phosphoric acid as in Examples 1 to 5 was mixed with 0.0 g of phosphate rock.
43g was dissolved (the increased Ca io/concentration was 0).
, corresponds to 05%. ) As a result of performing exactly the same operations as in Examples 1 to 5, the uranium yield in the hemihydration step was 93%, the hydration step was 98%, and the precipitation step was 99.9%.Total uranium yield The yield was 91 inches (0.91X0.98X0.
999) i was there.

Claims (4)

【特許請求の範囲】[Claims] (1)  湿式リン酸にアルカリ土類金属化合物を添加
し、湿式リン酸中のアルカリ土類金属イオン濃度を0.
1重量−以上とした後、二水石コウを添加し、半水石コ
ウの転移温度以上に保持して半水石コウに転移させ、生
成した半水石コウを分離、該半水石コ、つを水和して得
られる二水石コウを分離し、分離母液に沈殿剤を添加し
てウランを不溶性沈殿として回収することを特徴とする
湿式リン酸からウランを回収する方法。
(1) Add an alkaline earth metal compound to wet phosphoric acid to bring the alkaline earth metal ion concentration in the wet phosphoric acid to 0.
1 weight or more, add dihydrate, maintain the temperature above the transition temperature of hemihydrate to transform it into hemihydrate, separate the produced hemihydrate, and hydrate the hemihydrate. 1. A method for recovering uranium from wet phosphoric acid, which comprises separating dihydrate sulfur obtained from the process and adding a precipitant to the separated mother liquor to recover uranium as an insoluble precipitate.
(2)  湿式リン酸として脱弗リン酸を用いる特許請
求の範囲(1)項に記載の方法
(2) The method according to claim (1) using defluorinated phosphoric acid as wet phosphoric acid
(3)  アルカリ土類金属イオンがOaあるいはMg
である特許請求の範囲(1)項、(2)項に記載の方法
(3) Alkaline earth metal ion is Oa or Mg
The method according to claims (1) and (2).
(4)分離二水石コウの一部をウラン回収剤としてリン
酸中に戻し循環使用する特許請求の範囲0)項に記載の
方法
(4) The method according to claim 0), in which a part of the separated dihydrate is returned to phosphoric acid as a uranium recovery agent and used for circulation.
JP57060431A 1982-04-13 1982-04-13 How to recover uranium from wet phosphoric acid Expired JPS6055446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060431A JPS6055446B2 (en) 1982-04-13 1982-04-13 How to recover uranium from wet phosphoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060431A JPS6055446B2 (en) 1982-04-13 1982-04-13 How to recover uranium from wet phosphoric acid

Publications (2)

Publication Number Publication Date
JPS58181728A true JPS58181728A (en) 1983-10-24
JPS6055446B2 JPS6055446B2 (en) 1985-12-05

Family

ID=13142042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060431A Expired JPS6055446B2 (en) 1982-04-13 1982-04-13 How to recover uranium from wet phosphoric acid

Country Status (1)

Country Link
JP (1) JPS6055446B2 (en)

Also Published As

Publication number Publication date
JPS6055446B2 (en) 1985-12-05

Similar Documents

Publication Publication Date Title
US4171342A (en) Recovery of calcium fluoride from phosphate operation waste water
JP5442740B2 (en) Production process of high purity phosphoric acid
CN109476484B (en) Method for preparing calcium sulfate
US3104950A (en) Process for the separation of iron and titanium values by extraction and the subsequent preparation of anhydrous titanium dopxode
JP4243649B2 (en) Method for producing calcium phosphate and aluminum hydroxide from sludge incineration ash
US2398493A (en) Production of magnesium chloride from serpentine
CN110240201B (en) Method for treating scheelite
CA1237644A (en) Process for treating and recovering pickling waste liquids for stainless steel
US10011891B2 (en) Methods for concentrating rare-earth metals in phosphogypsum and removing thereof from wet process phosphoric acid
US3338674A (en) Process for preparation of substantially pure phosphoric acid
US4060586A (en) Recovery of fluorides from gypsum
JPS58181728A (en) Method for recovering uranium from wet process phosphoric acid
US2384856A (en) Manufacture of crude phosphoric acid
JP7284596B2 (en) Method for producing gypsum dihydrate
CN111874877A (en) Method for efficiently removing arsenic from Na2SeSO3 solution
JP3105347B2 (en) How to treat phosphate sludge
JPH09253658A (en) Method for treating waste water containing concentrated phosphoric acid
US5624650A (en) Nitric acid process for ferric sulfate production
JPS58181729A (en) Method for recovering uranium from wet process phosphoric acid
US3005685A (en) Process for desilicifying fluorspar and the like minerals
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
US3044848A (en) Method of uranium recovery
JPS6035286B2 (en) How to recover uranium from wet phosphoric acid
JP6828400B2 (en) Manufacturing method of scrodite
JPS6144810B2 (en)