JPS5818147B2 - Manufacturing method of rhodium catalyst - Google Patents

Manufacturing method of rhodium catalyst

Info

Publication number
JPS5818147B2
JPS5818147B2 JP55048132A JP4813280A JPS5818147B2 JP S5818147 B2 JPS5818147 B2 JP S5818147B2 JP 55048132 A JP55048132 A JP 55048132A JP 4813280 A JP4813280 A JP 4813280A JP S5818147 B2 JPS5818147 B2 JP S5818147B2
Authority
JP
Japan
Prior art keywords
rhodium
catalyst
carrier
aqueous solution
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55048132A
Other languages
Japanese (ja)
Other versions
JPS56144747A (en
Inventor
佐野健一
三田幸満
松比良伸也
中條哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP55048132A priority Critical patent/JPS5818147B2/en
Priority to DE19813115032 priority patent/DE3115032A1/en
Priority to US06/254,074 priority patent/US4376724A/en
Publication of JPS56144747A publication Critical patent/JPS56144747A/en
Priority to US06/398,181 priority patent/US4420420A/en
Publication of JPS5818147B2 publication Critical patent/JPS5818147B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はロジウム触媒の製造方法に関し、更に詳しくは
、シリカ系又はチタニア系担体の粒子表面又はその近傍
の層にロジウムを担持せしめたロジウム触媒を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a rhodium catalyst, and more particularly to a method for producing a rhodium catalyst in which rhodium is supported on the particle surface of a silica-based or titania-based carrier or in a layer near the particle surface.

多孔性無機質担体に6金、パラジウム、ロジウムなどの
貴金属を担持した触媒は各種反応の触媒として工業的に
広く利用されている。
Catalysts in which noble metals such as hexagonal gold, palladium, and rhodium are supported on porous inorganic carriers are widely used industrially as catalysts for various reactions.

ところで多くの反応において、反応は触媒粒子の外部表
面又は表層部で殆んど行なわれ、触媒粒子内部の貴金属
は反応にあまり関与しないことが多い。
Incidentally, in many reactions, most of the reaction takes place on the outer surface or surface layer of the catalyst particles, and the noble metals inside the catalyst particles often do not participate much in the reaction.

従って、高価な貴金属類を担体粒子の内部まで含浸させ
ることは経済的でないので、貴金属類を担体粒子の表面
又はその近傍の層のみに担持することが望まれている。
Therefore, it is not economical to impregnate the interior of the carrier particles with expensive noble metals, and it is therefore desirable to support the noble metals only on the surface of the carrier particles or in a layer near the surface.

例えば、特公昭47−35670号公報には、1パラジ
ウム塩の酸性水溶液に炭酸アルカリを加えて液のpHを
2゜8〜4.8の範囲に調整したのち無機質多孔性担体
に加えて担体表面に含浸させ、更に環元処理することに
より担体粒子の表面にパラジウムを担持させて成るパラ
ジウム触媒を製造する;ことが開示されており、このよ
うにして製造された表皮層のみにパラジウムを担持した
触媒は、パラジウムが担体粒子内部までほぼ均一に分散
担持された触媒に比較して高い活性をもつことが記載さ
れている。
For example, in Japanese Patent Publication No. 47-35670, alkali carbonate is added to an acidic aqueous solution of a palladium salt to adjust the pH of the solution to a range of 2.8 to 4.8, and then added to an inorganic porous carrier and added to the surface of the carrier. It is disclosed that a palladium catalyst is produced in which palladium is supported on the surface of the carrier particles by impregnating the catalyst with a catalyst and further carrying out a ring treatment. It is described that the catalyst has higher activity than a catalyst in which palladium is almost uniformly dispersed and supported inside the carrier particles.

1 特公昭48−10135号公報にも担体上に予じめ
適当な環元金属(例えばパラジウム金属)を担体に対し
て0.001〜0.2重量係付着析出させ、しかるのち
必要量のパラジウム系触媒成分を付着させて得られた担
体表面にパラジウムの90係以上が付着した触媒を用い
て酢酸ビニルを製造することが開示されており、かかる
触媒の使用によって多孔性担体の深部までパラジウムが
浸み込んだ触媒に比べてはるかにすぐれた反応成績をあ
げることができる旨記載されている。
1 Japanese Patent Publication No. 48-10135 also discloses that a suitable ring metal (for example, palladium metal) is precipitated on a carrier in a weight ratio of 0.001 to 0.2, and then a necessary amount of palladium is deposited on the carrier. It has been disclosed that vinyl acetate is produced using a catalyst on which palladium has a modulus of 90 or more attached to the surface of a carrier obtained by attaching a catalyst component, and by using such a catalyst, palladium can be deposited deep into the porous carrier. It is stated that the reaction results are far superior to those of impregnated catalysts.

1 このように、担体付き触媒において多孔性担体粒子
の表面層又はその近傍層のみに実質的にパラジウムなど
の貴金属触媒成分が担持された触媒を用いることによっ
て、触媒成分が触媒の内部又は深部まで含浸された触媒
に比較して、触媒効率1(例えば触媒単位重量当りの収
量)が著しく高く、かつ実質上有効に作用しない担体内
部の触媒成分を含まないので触媒コストを著しく低減で
きることは既に知られている。
1 In this way, by using a supported catalyst in which a noble metal catalyst component such as palladium is substantially supported only on the surface layer of porous carrier particles or a layer near it, the catalyst component can reach the inside or deep part of the catalyst. It is already known that the catalyst efficiency 1 (e.g., yield per unit weight of catalyst) is significantly higher than that of impregnated catalysts, and the cost of the catalyst can be significantly reduced because it does not contain catalyst components inside the carrier that do not substantially function effectively. It is being

ところで多孔性担体にロジウムを担持させて成る触媒も
、合成ガスわら含酸素化合物、例えばエチレングリコー
ル、エタノール、アセトアルデヒド、酢酸などの合成、
自動車排ガスの浄化、各種の水素化反応、例えばアルデ
ヒドやケトン等のカルボニル基の選択的水素化、芳香族
化合物の核水素化、オレフィン、アセチレン、ニトリル
等の不飽和結合への水素化などの各種反応における触媒
として使用されている。
By the way, catalysts made of rhodium supported on porous carriers are also useful for the synthesis of oxygenated compounds such as ethylene glycol, ethanol, acetaldehyde, acetic acid, etc.
Purification of automobile exhaust gas, various hydrogenation reactions such as selective hydrogenation of carbonyl groups such as aldehydes and ketones, nuclear hydrogenation of aromatic compounds, hydrogenation of unsaturated bonds such as olefins, acetylenes, nitriles, etc. Used as a catalyst in reactions.

ロジウムは主として白金鉱から採取される貴金属であり
、従って白金やパラジウムと同様に、実質上担体粒子表
面又はその近傍の層のみにロジウムを担持させた担体付
き触媒を用いることは触媒効率を向上させるばかりでな
く経済的にも非常に望まれるところである。
Rhodium is a precious metal mainly extracted from platinum ore. Therefore, like platinum and palladium, using a supported catalyst in which rhodium is supported only on the surface of the carrier particle or a layer near it improves catalytic efficiency. It is also highly desirable economically.

しかしながら、シリカ系又はチタニア系担体にロジウム
を担持させたロジウム触媒の場合には、従来の一般的な
触媒調製方法に従って多孔性担体にロジウムを担持させ
るときは勿論のこと、前記の如きパラジウムや白金を多
孔性担体粒子の表面又はその近傍の層に担持させるのに
使用される方法によったときにも、実質上担体粒子表面
又はその近傍の層のみにロジウムを担持させることはで
きなかった。
However, in the case of a rhodium catalyst in which rhodium is supported on a silica-based or titania-based support, it is of course possible to support rhodium on a porous support according to a conventional general catalyst preparation method, and also to use palladium or platinum as mentioned above. Even when using the method used to support rhodium on the surface of porous carrier particles or a layer near the same, it was not possible to substantially support rhodium only on the surface of the carrier particle or a layer near the same.

従って、本発明者らは、かかる従来技術の現状に鑑み、
実質上多孔性担体粒子の表面又はその近傍の層のみにロ
ジウムが担持された触媒を製造する方法について鋭意研
究を進めた結果、本発明に到達した。
Therefore, in view of the current state of the prior art, the present inventors
The present invention was achieved as a result of intensive research into a method for producing a catalyst in which rhodium is supported only on the surface of porous carrier particles or a layer in the vicinity thereof.

本発明に従ったロジウム触媒の製法は、ロジウムをシリ
カ系又はチタニア系担体に担持させてなるロジウム触媒
を製造するにあたり、シリカ系又はチタニア系担体を、
水溶性ロジウム塩の水溶液に酸を添加してpHを1以下
とした水溶液に浸漬j7゜次いで担体に含浸された酸の
中和およびロジウム塩の水酸化ロジウムへの変換に必要
な当量以上のアルカリを含むアルカリ水溶液に浸漬し、
そしてこの担体を乾燥後環元処理することにより担体粒
子の表面又はその近傍の層にロジウムが偏在した触媒を
製造することを特徴とする。
In the method for producing a rhodium catalyst according to the present invention, in producing a rhodium catalyst in which rhodium is supported on a silica-based or titania-based carrier, a silica-based or titania-based carrier is
Immerse in an aqueous solution of a water-soluble rhodium salt with an acid added to adjust the pH to 1 or less. Then, use an alkali of an equivalent amount or more necessary for neutralizing the acid impregnated in the carrier and converting the rhodium salt to rhodium hydroxide. immersed in an alkaline aqueous solution containing
The method is characterized in that the carrier is dried and then subjected to a ring treatment to produce a catalyst in which rhodium is unevenly distributed on the surface of the carrier particles or in a layer near the carrier particles.

本発明方法において使用する杢溶性ロジウム塩としては
従来ロジウム触媒の調製に使用されている任意のロジウ
ム塩を用いることができる。
As the heather soluble rhodium salt used in the method of the present invention, any rhodium salt conventionally used in the preparation of rhodium catalysts can be used.

そのようなロジウム塩の代表例を例示すれば、例えば。Typical examples of such rhodium salts include, for example.

塩化ロジウム、臭化ロジウム、沃化ロジウム、硝酸ロジ
ウム、硫酸ロジウム、酢酸ロジウムなどをあげることが
できる。
Examples include rhodium chloride, rhodium bromide, rhodium iodide, rhodium nitrate, rhodium sulfate, and rhodium acetate.

本発明方法に従えば、先ずこれらのロジウム塩を水に溶
かし、これに例えば塩酸、硝酸、硫酸などの鉱酸を添加
して水溶液のpHを1以下に調整する。
According to the method of the present invention, these rhodium salts are first dissolved in water, and a mineral acid such as hydrochloric acid, nitric acid, or sulfuric acid is added thereto to adjust the pH of the aqueous solution to 1 or less.

ただし、酸の濃度が高すぎるときは、担体自体が侵され
、機械的強度が低下するおそれがあるため、10係以下
とすることが望ましい。
However, if the acid concentration is too high, the carrier itself may be attacked and the mechanical strength may be reduced, so it is desirable to keep the acid concentration at a factor of 10 or less.

) 次に、この水溶液中にシリカ系又はチタニア系担体
を一般的な方法で浸漬し、多孔性担体の細孔内部にロジ
ウム塩水溶液を含浸させる。
) Next, a silica-based or titania-based carrier is immersed in this aqueous solution by a general method, and the rhodium salt aqueous solution is impregnated into the pores of the porous carrier.

シリカ系担体又はチタニア系担体としては、シリカ又は
チタニアの単一成分から成る担体の他、これらを主1成
分として含む混合物や複合酸化物であっても良し)。
The silica-based carrier or titania-based carrier may be a carrier consisting of a single component of silica or titania, or a mixture or composite oxide containing these as the main component).

この場合、他の成分としては、例えばアルミナ、マグネ
シア、トリア、ジルコニア等が挙げられる。
In this case, examples of other components include alumina, magnesia, thoria, and zirconia.

ロジウム塩水溶液を含浸させた担体粒子は、必す要あれ
ば、水切り後風乾して、例えば苛性ソーダ、苛性カリ、
炭酸ソーダ、炭酸カリ、重炭酸ソーダ、重炭酸カリ、水
酸化カルシウムなどの適当なアルカリを含むアルカリ水
溶液に浸漬する。
If necessary, the carrier particles impregnated with an aqueous solution of rhodium salt can be dried in air after draining, for example, with caustic soda, caustic potash, etc.
Immerse in an alkaline aqueous solution containing a suitable alkali such as soda carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, calcium hydroxide, etc.

この際使用するアルカリの量、は1.担体に含浸された
酸の中、和及びロジウム塩の水酸化ロジウムへの変換に
必要な当量以上でなければならず、一方、過剰に過ぎる
ときは担体に含浸されたロジウムが一部アルカリ水溶液
中に溶出するおそれもあるため、通常は理論量の1.0
〜3.0倍、好ましくは1.2〜2.0・変人度の量の
アルカリを用いるのが望ましい。
The amount of alkali used at this time is 1. The amount of acid impregnated into the carrier must be equal to or greater than the equivalent required for converting the rhodium salt into rhodium hydroxide; on the other hand, if the amount is too much, some of the rhodium impregnated into the carrier may be dissolved in the alkaline aqueous solution. Since there is a risk of elution, the theoretical amount is usually 1.0
It is desirable to use an amount of alkali of ~3.0 times, preferably 1.2 to 2.0 degrees of eccentricity.

アルカリに浸漬した後の担体は常法に従って乾燥し、環
元処理する。
After being immersed in an alkali, the carrier is dried and subjected to a ring treatment according to a conventional method.

例えばアルカリ水溶液から取り出した担体粒子を水切り
後風乾し、更に必要に応じて乾燥器中で乾燥する。
For example, carrier particles taken out from an aqueous alkaline solution are drained, air-dried, and further dried in a dryer if necessary.

この場合高温での急速な乾燥は、含浸されたロジウム粒
子の凝集や結晶化を促し、最終的に得られる触媒中でロ
ジウムが微細な粒子として均一に分散することを妨げる
ため、通常は150℃以下の温度で比較的おだやかに乾
燥することが望ましい。
In this case, rapid drying at high temperatures promotes agglomeration and crystallization of the impregnated rhodium particles and prevents the rhodium from being uniformly dispersed as fine particles in the final catalyst. It is desirable to dry relatively gently at the following temperatures.

このようにして乾燥された担体粒子は、通常、水素気流
下50〜500℃の温度で環元処理することにより、例
えば第1図及び第2図に示したように担体粒子の表面又
はその近傍の層に担持ロジウムが偏在した、目的のロジ
ウム触媒を得ることができる。
The carrier particles dried in this way are usually subjected to a cyclic treatment at a temperature of 50 to 500°C under a hydrogen stream, so that the surface of the carrier particles or its vicinity can be removed, for example, as shown in FIGS. 1 and 2. It is possible to obtain the desired rhodium catalyst in which supported rhodium is unevenly distributed in the layer.

なお、環元処理の方法としては、上記の方法に限られず
、例えばヒドラジン、ホルマリン、メタ7ノール蒸気等
による環元なと、金属触媒の調製法として慣用されてい
る種々の方法を利用することができる。
The method for treating the ring element is not limited to the above-mentioned method, and various methods commonly used for preparing metal catalysts may be used, such as treating the ring element with hydrazine, formalin, methanol vapor, etc. I can do it.

以上説明した如く、本発明方法の特長は水溶性ロジウム
塩水溶液のpHを1以下に調整した後シリカ系又はチタ
ニア系担体を浸漬してロジウム塩水溶液を含浸させ、こ
れを環元処理する前にアルカリ処理することにある。
As explained above, the feature of the method of the present invention is that after adjusting the pH of a water-soluble rhodium salt aqueous solution to 1 or less, a silica-based or titania-based carrier is immersed to impregnate it with the rhodium salt aqueous solution, and before carrying out the ring-forming treatment. It consists in alkali treatment.

シリカ系又はチタニア系担体を浸漬するロジウム塩水溶
液のpHが1を超える場合にはアルカリ処理をしたとし
ても担体粒子の表面又はその近傍の層に金属ロジウムが
適当に偏在した構成の触媒が得られず本発明の目的を達
成し得ない。
If the pH of the rhodium salt aqueous solution in which the silica-based or titania-based support is immersed exceeds 1, even if an alkali treatment is performed, a catalyst with a structure in which metallic rhodium is appropriately unevenly distributed on the surface of the support particles or in a layer near it cannot be obtained. Otherwise, the object of the present invention cannot be achieved.

一方、担体をpHl以下のロジウム塩水溶液に浸漬した
としても環元処理の前に前記アルカリ処理を実施しない
場合にも本発明の目的を達成し得ない。
On the other hand, even if the carrier is immersed in an aqueous rhodium salt solution having a pH of below pH 1, the object of the present invention cannot be achieved even if the alkali treatment is not performed before the ring treatment.

本発明に従って製造された担体粒子の表面又はその近傍
の層のみに実質上ロジウムが担持された触媒を用いるこ
とによって前記したロジウム触媒を用いる各種反応にお
ける触媒効率(例えば単位触媒重量当りの目的生成物の
収量)が著しく増大し、かつ触媒コストが著しく低減さ
れ実用上極めて有利である。
By using a catalyst in which rhodium is substantially supported only on the surface or a layer near the surface of the carrier particles produced according to the present invention, the catalytic efficiency (e.g., the desired product per unit catalyst weight) in the various reactions using the rhodium catalyst described above can be improved. This is extremely advantageous in practice, as the yield (yield of

以上、シリカ系又はチタニア系担体にロジウムを担持さ
せる場合について詳細に説明したが、本発明の方法はロ
ジウムの他、更に他の成分を助触媒として担持させると
きにも適用できることはいうまでもない。
The case in which rhodium is supported on a silica-based or titania-based support has been described in detail above, but it goes without saying that the method of the present invention can also be applied when supporting other components as co-catalysts in addition to rhodium. .

例えば、シリカ系もしくはチタニア系担体に一般的な方
法でカルシウム、マグネシウム、バリウムなどのアルカ
リ土類金属、白金、パラジウム、イリジウム、ルテニウ
ム、金などの貴金属、鉄、ニッケル、コバルト、セリウ
ム、マンガンその他の金属や塩類などの助触媒成分を担
持させた後前述のようにしてロジウムを担体粒子の表面
又はその近傍の層に担持させることもできるし、また前
述のようにして担体粒子の表面又はその近傍の層にロジ
ウムを担持させた後、その上に常法に従って例えば助触
媒成分を担持させることができる。
For example, alkaline earth metals such as calcium, magnesium, barium, noble metals such as platinum, palladium, iridium, ruthenium, gold, iron, nickel, cobalt, cerium, manganese, etc. After supporting a co-catalyst component such as a metal or a salt, rhodium can be supported on the surface of the carrier particles or a layer in the vicinity thereof as described above, or rhodium can be supported on the surface of the carrier particles or in the vicinity thereof as described above. After rhodium is supported on the layer, for example, a co-catalyst component can be supported thereon in accordance with a conventional method.

或いは、場合によってはロジウム塩水溶液中に助触媒成
分を添加した液を含浸液として用いることもできる。
Alternatively, in some cases, a solution obtained by adding a co-catalyst component to an aqueous rhodium salt solution may be used as the impregnating solution.

以下、本発明を実施例に従って更に詳細に説明するが、
本発明の技術的範囲をこれらの実施例に限定するもので
ないことはいうまでもない。
Hereinafter, the present invention will be explained in more detail according to examples.
It goes without saying that the technical scope of the present invention is not limited to these examples.

実施例 1 嵩密度0.5733kg/l、径約5mmφ、比表面積
150 m1g及び細孔容積0.55 ml/ gのシ
リカ担体に次のようにして金属ロジウムを担持させた。
Example 1 Metallic rhodium was supported on a silica carrier having a bulk density of 0.5733 kg/l, a diameter of approximately 5 mmφ, a specific surface area of 150 ml/g, and a pore volume of 0.55 ml/g in the following manner.

100m1ビーカーにRhCI 3” 3H20水溶液
(液中の金属ロジウム含量15.68 g/A’) 2
0.7ml!をとり、これに12規定の濃塩酸1.3m
lを添加してpHを0.3に調整したのち純水を加えて
液量を38.5mlとした。
RhCI 3" 3H20 aqueous solution (metallic rhodium content in the liquid: 15.68 g/A') in a 100ml beaker 2
0.7ml! and add 1.3 m of 12N concentrated hydrochloric acid to it.
After adjusting the pH to 0.3, pure water was added to make the liquid volume 38.5 ml.

次に、このようにして調製したRhCl3水溶液中に上
記シリカ担体100m1を加えて充分攪拌し、担体中に
RhCl3水溶液を含浸させた。
Next, 100 ml of the above-mentioned silica carrier was added to the RhCl3 aqueous solution prepared in this manner and thoroughly stirred to impregnate the RhCl3 aqueous solution into the carrier.

ロジウム含浸シリカ担体をビーカーから取り出し、風乾
後0.4規定苛性ソーダ水溶液80m1(前記塩化ロジ
ウム及び塩酸の合計量に対して約1.3倍当量に相当)
中に投入し24時間静置した。
The rhodium-impregnated silica carrier was taken out from the beaker and air-dried, followed by 80 ml of a 0.4N aqueous sodium hydroxide solution (equivalent to about 1.3 times the total amount of rhodium chloride and hydrochloric acid).
It was placed in a container and left to stand for 24 hours.

静置後、水を切って風乾し、次いで乾燥型中で110℃
で1時間、そして150°Cで2時間乾燥した。
After standing still, drain the water, air dry, and then heat in a drying mold at 110℃.
for 1 hour at 150°C and 2 hours at 150°C.

このようにして乾燥したロジウム含浸シリカ担体を水素
流通下300℃で環元し、シリカ担体に金属ロジウムを
担持させた触媒を得た。
The thus dried rhodium-impregnated silica carrier was subjected to ring reduction at 300° C. under hydrogen flow to obtain a catalyst in which metallic rhodium was supported on the silica carrier.

触媒中の金属ロジウム含量は約0.5重量%であった。The metallic rhodium content in the catalyst was approximately 0.5% by weight.

得られた触媒の断面を光学顕微鏡(倍率:5倍)で観察
したところ、第1図に模式的に示したように触媒粒子1
0の表層部11に金属ロジウムが偏在し、内部12に存
在する金属ロジウムの量は僅かであることが確認された
When the cross section of the obtained catalyst was observed with an optical microscope (magnification: 5x), it was found that catalyst particles 1 were observed as schematically shown in Figure 1.
It was confirmed that metal rhodium was unevenly distributed in the surface layer 11 of 0, and the amount of metal rhodium present in the interior 12 was small.

一方、この触媒断面の金属ロジウムの分布をEPMA(
Electron ProbeMicro Analy
zer )で分析したところ、第2図に示すように大部
分の金属ロジウムは表面から0.4mm深までの層(表
面から粒子半径の約16%深までの層)に偏在していた
On the other hand, the distribution of metallic rhodium in the cross section of this catalyst was measured using EPMA (
Electron Probe Micro Analysis
As shown in FIG. 2, most of the metal rhodium was unevenly distributed in a layer 0.4 mm deep from the surface (a layer about 16% of the particle radius from the surface).

比較例 l RhCl3・3H20水溶液(液中の金属ロジウム含量
15.68 g/l ) 20.7ydを100m1ビ
ーカーにとり、これに純水を加えてpH=1.2のRh
Cl3水溶液を調製した。
Comparative Example l RhCl3.3H20 aqueous solution (metallic rhodium content in the liquid: 15.68 g/l) 20.7 yd was placed in a 100 ml beaker, and pure water was added to it to prepare Rh at pH=1.2.
A Cl3 aqueous solution was prepared.

この液中に実施例1で用いたシリカ担体1007717
1!を加えて充分攪拌し、担体中にRhCl3水溶液を
含浸させた。
In this liquid, the silica carrier 1007717 used in Example 1 was added.
1! was added and thoroughly stirred to impregnate the RhCl3 aqueous solution into the carrier.

このようにして得たロジウム含浸シリカ担体を苛性ソー
ダ水溶液を用いてアルカリ処理しなか−〕た以外は実施
例1と同様にして焼成及び環元して、シリカ担体に金属
ロジウムを担持させた触媒を得た。
The rhodium-impregnated silica carrier thus obtained was calcined and cyclized in the same manner as in Example 1, except that it was not treated with an alkali using an aqueous solution of caustic soda. Obtained.

触媒中の金属ロジウム含量は約0.5重量%であった。The metallic rhodium content in the catalyst was approximately 0.5% by weight.

得られた触媒の断面を実施例1と同様にして光学顕微鏡
で観察(倍率:5倍)したところ、第3図に示したよう
に金属ロジウムが触媒粒子13の断面全体に分布してお
り、また実施例1と同様にしてEPMA分析した結果を
第4図に示す。
When the cross section of the obtained catalyst was observed using an optical microscope (magnification: 5x) in the same manner as in Example 1, it was found that metal rhodium was distributed over the entire cross section of the catalyst particles 13, as shown in FIG. Further, the results of EPMA analysis in the same manner as in Example 1 are shown in FIG.

実施例 2 実施例1で使用したシリカ担体100m1をMgC12
・6H2010,75gを含む水溶液36.7ml中に
浸漬してマグネシウムを含む担体を調整し風乾後、乾燥
型中で150℃で乾燥し、マツフル炉中で900℃で3
0分間焼成した。
Example 2 100 ml of the silica carrier used in Example 1 was mixed with MgC12
・Prepare a carrier containing magnesium by immersing it in 36.7 ml of an aqueous solution containing 75 g of 6H2010, air-dry it, dry it at 150°C in a drying mold, and dry it at 900°C in a Matsufuru furnace for 30 minutes.
Baked for 0 minutes.

このようにして得た担体を用いて実施例1と同様にして
金属ロジウム担持触媒を調整した。
A metallic rhodium-supported catalyst was prepared in the same manner as in Example 1 using the carrier thus obtained.

得られた触媒中の金属ロジウム含量は約0.5重量%で
あり、触媒断面の金属ロジウム分布を実施例1と同様に
して調べたところ、第1図および第2図と同じような結
果が得られ、大部分のロジウムが担体粒子の表層部に担
持されていることを確認した実施例 3 シリカ担体に代えて市販の球状チタニア(TiO□:担
体(堺化学製、粒径4〜6mmφ、嵩密度1.1kg/
A’、表面積s o m/ g)を使用した以外は実施
例1と同様にしてチタニア担体に゛金属ロジウム約0.
5重量係を担持させた触媒を調製した。
The metallic rhodium content in the obtained catalyst was approximately 0.5% by weight, and when the metallic rhodium distribution in the cross section of the catalyst was investigated in the same manner as in Example 1, results similar to those shown in Figs. 1 and 2 were obtained. Example 3 In place of the silica carrier, commercially available spherical titania (TiO□: carrier (manufactured by Sakai Chemical Co., Ltd., particle size 4 to 6 mmφ, Bulk density 1.1kg/
A', surface area s o m/g) was used in the same manner as in Example 1, except that approximately 0.0.
A catalyst supporting 5 weight fractions was prepared.

得られた触媒中の金属ロジウムの分布を実施例1と同様
にして調べたところ、第1図および第2図と同じような
結果が得られ、大部分のロジウムが担体粒子の表層部に
担持されていることを確認した。
When the distribution of metallic rhodium in the obtained catalyst was investigated in the same manner as in Example 1, results similar to those shown in Figures 1 and 2 were obtained, indicating that most of the rhodium was supported on the surface layer of the carrier particles. I confirmed that it was.

比較例 2 シリカ担体に代えて実施例3で用いた市販の球状チタニ
ア担体を使用した以外は比較例1と同様にしてチタニア
担体に金属ロジウム約0.5重量%を担持させた触媒を
調製した。
Comparative Example 2 A catalyst in which about 0.5% by weight of metal rhodium was supported on a titania support was prepared in the same manner as in Comparative Example 1, except that the commercially available spherical titania support used in Example 3 was used instead of the silica support. .

得られた触媒中の金属ロジウムの分布を実施例1と同様
にして調べたところ、金属ロジウムは、第3図及び第4
図に示した結果と同様、担体内部までほぼ一様に分布し
ていた。
The distribution of metallic rhodium in the obtained catalyst was investigated in the same manner as in Example 1, and it was found that metallic rhodium was found in Figures 3 and 4.
Similar to the results shown in the figure, it was almost uniformly distributed inside the carrier.

実施例 4 シリカ担体としてダビソン社製+−59シリカを用いた
以外は実施例1と同様にしてシリカ担体に金属ロジウム
約0,5重量%を担持させた触媒を調製した〇 得られた触媒中の金属ロジウムの分布を実施例1と同様
にして調べたところ、第1図および第2図と同じような
結果が得られ、大部分のロジウムが担体粒子の表層部に
担持されていることを確認した。
Example 4 A catalyst in which about 0.5% by weight of metallic rhodium was supported on a silica carrier was prepared in the same manner as in Example 1 except that +-59 silica manufactured by Davison was used as the silica carrier. When the distribution of metallic rhodium was investigated in the same manner as in Example 1, results similar to those shown in Figures 1 and 2 were obtained, indicating that most of the rhodium was supported on the surface layer of the carrier particles. confirmed.

比較例 3 シリカ担体としてダビソン社製≠59シリカを用いた以
外は比較例1と同様にしてシリカ担体に金属ロジウム約
0.5重量%を相持させた触媒を調製した。
Comparative Example 3 A catalyst in which about 0.5% by weight of metal rhodium was supported on a silica carrier was prepared in the same manner as in Comparative Example 1, except that ≠59 silica manufactured by Davison was used as the silica carrier.

得られた触媒中の金属ロジウムの分布状態を実施例1と
同様にして調べたところ、金属ロジウムは第3図および
第4図に示した結果と同様、担体内部までほぼ一様に分
布していた。
When the distribution state of metallic rhodium in the obtained catalyst was investigated in the same manner as in Example 1, it was found that metallic rhodium was almost uniformly distributed inside the carrier, similar to the results shown in FIGS. 3 and 4. Ta.

比較例 4 RhCl3・3H20水溶液(液中の金属ロジウム含量
15.6 g / l ) 20.7mlを10011
11のビーカーにとり、これに純水を加えてpH=1.
2のRhCl3水溶液を調製した。
Comparative Example 4 20.7 ml of RhCl3.3H20 aqueous solution (metallic rhodium content in the liquid: 15.6 g/l) was mixed with 10011
11, add pure water to it and adjust the pH to 1.
A RhCl3 aqueous solution of No. 2 was prepared.

この液中に実施例1で用いたシリカ担体100m1を加
えて充分攪拌し、担体中にRhCl3水溶液を含浸させ
た。
100 ml of the silica carrier used in Example 1 was added to this liquid and thoroughly stirred to impregnate the aqueous RhCl3 solution into the carrier.

このようにして得られたロジウム含浸シリカ担体を実施
例1と同様にして、苛性ソーダ水溶液を用いてアルカリ
処理した後、焼成及び環元して、シリカ担体に金属ロジ
ウム約0.5重量%を担持させた触媒を調製した。
The rhodium-impregnated silica carrier thus obtained was treated with an alkali using a caustic soda aqueous solution in the same manner as in Example 1, and then calcined and cyclized to support approximately 0.5% by weight of metal rhodium on the silica carrier. A catalyst was prepared.

得られた触媒中の金属ロジウムの分布を実施例1と同様
にして調べたところ、金属ロジウムは第3図及び第4図
に示した結果と同様、担体内部までほぼ一様に分布して
いた。
When the distribution of metallic rhodium in the obtained catalyst was investigated in the same manner as in Example 1, metallic rhodium was found to be almost uniformly distributed inside the carrier, similar to the results shown in FIGS. 3 and 4. .

比較例 5 RhC13・3H20水溶液(液中の金属ロジウム含量
15.6 g/l! ) 20.7rulを100m/
!のビーカーにとり、これに濃塩酸及び純水を加えてp
H=0.3のRhCl3水溶液を調製した。
Comparative Example 5 RhC13・3H20 aqueous solution (metallic rhodium content in the liquid: 15.6 g/l!) 20.7 rul was added to 100 m/l
! into a beaker, add concentrated hydrochloric acid and pure water, and
A RhCl3 aqueous solution with H=0.3 was prepared.

この液中に実施例1で用いたシリカ担体100属を加え
て充分攪拌し、担体中にRhCl3水溶液を含浸させた
The silica carrier 100 used in Example 1 was added to this solution and thoroughly stirred to impregnate the RhCl3 aqueous solution into the carrier.

このようにして得られたロジウム含浸シリカ担体を苛性
ソーダ水溶液を用いてアルカリ処理しなかった以外は、
実施例1と同様にして、焼成及び環元して、シリカ担体
に金属ロジウム約0.5重量%を担持させた触媒を調製
した。
Except that the rhodium-impregnated silica support thus obtained was not subjected to alkali treatment using a caustic soda aqueous solution.
In the same manner as in Example 1, a catalyst in which approximately 0.5% by weight of metallic rhodium was supported on a silica carrier was prepared by calcination and ring removal.

得られた触媒中の金属ロジウムの分布を実施例1と同様
にして調べたところ、金属ロジウムは第3図及び第4図
に示した結果と同様、担体内部まではシ一様に分布して
いた。
When the distribution of metallic rhodium in the obtained catalyst was investigated in the same manner as in Example 1, it was found that metallic rhodium was uniformly distributed inside the carrier, similar to the results shown in Figures 3 and 4. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られた触媒中の金属ロジウムの分
布状態を光学顕微鏡で観察した結果を模式的に示す断面
図である。 第2図は実施例1で有られた触媒中の金属ロジウムの分
布状態をEPMAで分析した結果を示すグラフ図である
。 第3図は比較例1で得られた触媒中の金属ロジウムの分
布状態を光学顕微鏡で観察した結果を模式的に示す断面
図である。 第4図に比較例1で得られた触媒中の金属ロジウムの分
布状態をEPMAで分析した結果を示すグラフ図である
。 10.13・・・・・・触媒、11・・・・・・金属ロ
ジウム偏在層。
FIG. 1 is a cross-sectional view schematically showing the results of observing the distribution state of metal rhodium in the catalyst obtained in Example 1 using an optical microscope. FIG. 2 is a graph showing the results of EPMA analysis of the distribution state of metal rhodium in the catalyst in Example 1. FIG. 3 is a cross-sectional view schematically showing the results of observing the distribution state of metal rhodium in the catalyst obtained in Comparative Example 1 using an optical microscope. FIG. 4 is a graph showing the results of EPMA analysis of the distribution state of metal rhodium in the catalyst obtained in Comparative Example 1. 10.13...Catalyst, 11...Metal rhodium unevenly distributed layer.

Claims (1)

【特許請求の範囲】[Claims] 1 ロジウムをシリカ系又はチタニア系担体に担持させ
てなるロジウム触媒を製造するにあたり、シリカ系又は
チタニア系担体を、水溶性ロジウム塩の水溶液に酸を添
加してpHを1以下とした水溶液に浸漬し、次いで担体
に含浸された酸の中和およびロジウム塩の水酸化ロジウ
ムへの変換に必要な当量以上のアルカリを含むアルカリ
水溶液に浸漬し、そしてこの担体を乾燥後環元処理する
ことにより担体粒子の表面又はその近傍の層にロジウム
が偏在した触媒を製造することを特徴とするロジウム触
媒の製法。
1. When producing a rhodium catalyst in which rhodium is supported on a silica-based or titania-based support, the silica-based or titania-based support is immersed in an aqueous solution of a water-soluble rhodium salt whose pH is adjusted to 1 or less by adding an acid to the aqueous solution. The carrier is then immersed in an alkaline aqueous solution containing an alkali equivalent or more than that necessary for neutralizing the acid impregnated in the carrier and converting the rhodium salt into rhodium hydroxide, and after drying, the carrier is subjected to a ring-forming treatment. A method for producing a rhodium catalyst, characterized by producing a catalyst in which rhodium is unevenly distributed on the surface of particles or in a layer near the particle surface.
JP55048132A 1980-04-14 1980-04-14 Manufacturing method of rhodium catalyst Expired JPS5818147B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55048132A JPS5818147B2 (en) 1980-04-14 1980-04-14 Manufacturing method of rhodium catalyst
DE19813115032 DE3115032A1 (en) 1980-04-14 1981-04-14 RHODIUM CATALYST AND METHOD FOR THE PRODUCTION THEREOF
US06/254,074 US4376724A (en) 1980-04-14 1981-04-14 Rhodium catalyst and method for preparing the same
US06/398,181 US4420420A (en) 1980-04-14 1982-07-14 Rhodium catalyst and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55048132A JPS5818147B2 (en) 1980-04-14 1980-04-14 Manufacturing method of rhodium catalyst

Publications (2)

Publication Number Publication Date
JPS56144747A JPS56144747A (en) 1981-11-11
JPS5818147B2 true JPS5818147B2 (en) 1983-04-11

Family

ID=12794798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55048132A Expired JPS5818147B2 (en) 1980-04-14 1980-04-14 Manufacturing method of rhodium catalyst

Country Status (1)

Country Link
JP (1) JPS5818147B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101961A (en) * 1985-10-28 1987-05-12 Yamaha Motor Co Ltd Cam chain tensioner
US6706914B2 (en) 2000-05-18 2004-03-16 Haldor Topsoe A/S Rhodium containing solutions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226341A (en) * 2008-03-24 2009-10-08 Toyota Central R&D Labs Inc Catalyst for cleaning automobile exhaust gas and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101961A (en) * 1985-10-28 1987-05-12 Yamaha Motor Co Ltd Cam chain tensioner
US6706914B2 (en) 2000-05-18 2004-03-16 Haldor Topsoe A/S Rhodium containing solutions

Also Published As

Publication number Publication date
JPS56144747A (en) 1981-11-11

Similar Documents

Publication Publication Date Title
US4376724A (en) Rhodium catalyst and method for preparing the same
KR100458785B1 (en) A two step gold addition method for preparing a vinyl acetate catalyst
US5665667A (en) Process for the preparation of vinyl acetate catalyst
JP4975721B2 (en) Method for preparing vinyl acetate using a catalyst comprising palladium, gold, and certain third metals
US4048096A (en) Surface impregnated catalyst
JP4043520B2 (en) Heterogeneous bimetallic palladium-gold catalyst for vinyl acetate production
JP4034820B2 (en) Preparation method of vinyl acetate catalyst
KR100575967B1 (en) Vinyl acetate catalyst comprising metallic palladium and gold prepared with potassium aurate
JP2001503321A (en) Improved method of producing supported palladium-gold catalyst
JP2002516749A (en) Vinyl acetate catalyst containing metal palladium, copper and gold and method for producing the same
JP4165663B2 (en) Vinyl acetate catalyst containing palladium and gold deposited on a copper-containing carrier
KR100575968B1 (en) Vinyl acetate catalyst comprising metallic palladium, copper and gold and preparation thereof
JP2002508240A (en) Vinyl acetate catalyst comprising palladium, gold, copper and certain quaternary metals
KR100403073B1 (en) Catalyst for vinyl acetate manufacture
EP1060018B1 (en) Vinyl acetate catalyst preparation method
JP2000511101A (en) Honeycomb catalyst for vinyl acetate synthesis
JP2012254446A (en) Method for producing metal-containing shell catalyst without intermediate calcining
US5536693A (en) Process for the preparation of vinyl acetate catalyst
JP2021510344A (en) Heterogeneous catalyst for producing methyl methacrylate by oxidative esterification
JPS5818147B2 (en) Manufacturing method of rhodium catalyst
CN1089638C (en) Process for preparing catalyst and its application in preparing of enester acetate
JP2008503440A (en) Synthesis of microporous silica gel and its application to the preparation of catalyst for synthesis of C2 oxygenates from synthesis gas
JPS5818146B2 (en) Manufacturing method of rhodium catalyst
KR100270164B1 (en) Preparation process of catalyst for producing alkenyl acetates and catalyst prepared by this process
US7166557B2 (en) Process for the preparation of a microspheroidal catalyst