JPS5818142B2 - Equipment for supplying solid sublimable substances to high-temperature parts - Google Patents

Equipment for supplying solid sublimable substances to high-temperature parts

Info

Publication number
JPS5818142B2
JPS5818142B2 JP3355776A JP3355776A JPS5818142B2 JP S5818142 B2 JPS5818142 B2 JP S5818142B2 JP 3355776 A JP3355776 A JP 3355776A JP 3355776 A JP3355776 A JP 3355776A JP S5818142 B2 JPS5818142 B2 JP S5818142B2
Authority
JP
Japan
Prior art keywords
supply means
solid
temperature
container
sublimable substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3355776A
Other languages
Japanese (ja)
Other versions
JPS52117284A (en
Inventor
黒木正美
小西敦雄
石松一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3355776A priority Critical patent/JPS5818142B2/en
Publication of JPS52117284A publication Critical patent/JPS52117284A/en
Publication of JPS5818142B2 publication Critical patent/JPS5818142B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/02Feed or outlet devices therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は、ZrCl、、HfC’A4およびA11C
13などの昇華性金属ハライドを固体状のまま、還元反
応容器もしくは昇華精製容器など工業的に使用される高
温度の容器へ供給添加する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention provides ZrCl, , HfC'A4 and A11C
This invention relates to an apparatus for supplying and adding a sublimable metal halide such as No. 13 in a solid state to a high-temperature container used industrially, such as a reduction reaction container or a sublimation purification container.

従来一般に、昇華性物質を高温度の容器へ供給するため
には、上記容器とは独立の昇華装置によって一旦昇華し
てガス状となし、これをパイプ移送によって容器内に導
入させるようにしていたのであるが、この従来法におい
ては以下に述べるような工業上の欠点があった。
Conventionally, in order to supply a sublimable substance to a high-temperature container, it was first sublimated into a gaseous state using a sublimation device independent of the container, and then introduced into the container by pipe transfer. However, this conventional method has the following industrial drawbacks.

1)昇華性物質を一旦昇華してガス状とするための昇華
装置および昇華のための加熱エネルギーを必要とする。
1) A sublimation device and heating energy for sublimation are required to once sublimate the sublimable substance into a gaseous state.

2 前述の昇華装置から高温度の容器まで、ガス状昇華
性物質を移送するための導管は、その昇華性物質の昇華
点以上の温度が全域に亘って必要であり、かりに上記導
管の一部に昇華点以下の低温部が存在した場合には、昇
華性物質が凝固して上記導管を閉塞する欠点が生じる。
2. The conduit for transferring the gaseous sublimable substance from the above-mentioned sublimation device to the high-temperature container requires a temperature equal to or higher than the sublimation point of the sublimable substance over the entire area; If there is a low temperature area below the sublimation point, the sublimable substance will solidify and block the conduit.

例えば、ZrCl3+は331℃の昇華点をもつ常温で
は固体の昇華性物質であり、クロール法によって不活性
ガス雰囲気においてMgで還元して金属ジルコニウムス
ポンジを製造するさいの原料として用いられる。
For example, ZrCl3+ is a sublimable substance that is solid at room temperature and has a sublimation point of 331° C., and is used as a raw material for producing metallic zirconium sponge by reducing it with Mg in an inert gas atmosphere by the Kroll method.

Mgによる上記還元反応はつぎの式によってすすみZr
を生成する。
The above reduction reaction by Mg proceeds according to the following formula.
generate.

Z r C14(g)+ 2Mg (1)−+Z r
(s)+ 2 Mg C12(1)(g):気体、(1
):液体、 (s)固体この反応を行なわせるには、従
来はガス化したZrCl4を、Mgを溶融した不活性ガ
ス雰囲気の反応容器に供給装置によって導入して、Mg
と接触させて反応をすすめていたが、前述したように昇
華装置とそのための加熱エネルギーなどが必要である。
Z r C14 (g) + 2Mg (1) - + Z r
(s) + 2 Mg C12 (1) (g): gas, (1
): liquid, (s) solid In order to carry out this reaction, conventionally, gasified ZrCl4 is introduced into a reaction vessel containing molten Mg and an inert gas atmosphere using a feeding device, and the Mg
The reaction was carried out by contacting with a sublimation device, but as mentioned above, a sublimation device and heating energy for that purpose are required.

本発明者は、上記のような従来のこの種供給装置の欠点
に鑑み、昇華性物質を固体状のまま高温容器内に供給さ
せる装置につき種々の研究を重ね。
In view of the above-mentioned shortcomings of conventional supply devices of this type, the inventors have conducted various studies on a device for supplying a sublimable substance in a solid state into a high-temperature container.

その一例として、スクリューコンベアのコンベア軸内に
電熱ヒーターを挿入する方式を、本出願人の特願昭50
−17474号明細書及び図面、 コ(名称、ジルコ
ニウムスポンジ類の製造方法およびその装置)中に開示
したのであるが、この方式においても、供給手段の管理
壁面にZrC114が固着することは避けられず、満足
な供給は出来なかったoj 以上のような点につき、さらに研究、実験を重ねた結果
、ガス状ZrCl4は250〜280℃の温域の器壁に
触れたときがもつとも固結しやすく。
As an example, a method of inserting an electric heater into the conveyor shaft of a screw conveyor was proposed in a patent application filed in 1970 by the present applicant.
As disclosed in the specification and drawings of No. 17474, ``Method for manufacturing zirconium sponges and apparatus therefor'', even in this method, it is inevitable that ZrC114 adheres to the control wall surface of the supply means. , oj could not be supplied satisfactorily Regarding the points mentioned above, as a result of further research and experiments, it was found that gaseous ZrCl4 tends to solidify even when it comes into contact with the vessel wall in the temperature range of 250 to 280°C.

同じガス状Z r C14を急激に約150℃以下に冷
却するとやわらかな粉体状となって固結しないこjとが
判明し、これに基づいて本発明を完成させたものである
It has been found that when the same gaseous Z r C14 is rapidly cooled to about 150° C. or lower, it becomes a soft powder and does not solidify, and the present invention was completed based on this finding.

この発明は1以上のような点に鑑みてなしたもので、昇
華性物質をその昇華点以上の高温部へ供給する場合、供
給手段が閉塞を起すことのない供ユ給装置を提供するこ
とを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a supply device in which the supply means does not become clogged when a sublimable substance is supplied to a high temperature section above its sublimation point. The purpose is to

すなわち、この発明は、ハロゲン化ジルコニウム等の昇
華性物質を、還元反応容器もしくは昇華精製容器などの
高温部へ、−固体状として供給する装置において、少な
くとも上記高温部と接触する2供給手段の部分は、その
昇華点以下の温度に冷却せしめることにより、高温部か
ら供給手段の側へ流入するガス状昇華性物質を急冷せし
めてこれを粉状体となし、供給手段壁面への昇華性物質
の固着を防止して、円滑な供給をはかる装置を提供すこ
るものである。
That is, the present invention provides an apparatus for supplying a sublimable substance such as zirconium halide to a high temperature section such as a reduction reaction vessel or a sublimation purification vessel in the form of a solid, at least the portions of the two supply means that come into contact with the high temperature section. By cooling to a temperature below its sublimation point, the gaseous sublimable substance flowing from the high temperature section to the supply means is rapidly cooled and turned into powder, and the sublimable substance is transferred to the wall surface of the supply means. It is an object of the present invention to provide a device that prevents sticking and ensures smooth supply.

次に、この発明を、・第1図及び第2図の第1の実施例
によって説明する。
Next, the present invention will be explained with reference to a first embodiment shown in FIGS. 1 and 2.

図は、この発明にかかる供給装置を有するジルコニウム
スポンジの製造装置を示すものである。
The figure shows a zirconium sponge manufacturing apparatus having a supply device according to the present invention.

5図において1は、内部にMgが装入される密閉反応容
器で、ヒーター2を有する電熱炉3内に嵌置され、上部
開口は、圧力調節バルブ4を有する密閉蓋5により密閉
されている。
In Fig. 5, reference numeral 1 denotes a closed reaction vessel into which Mg is charged, which is placed in an electric furnace 3 having a heater 2, and whose upper opening is sealed by a sealing lid 5 having a pressure regulating valve 4. .

また6は、粉状体の精製Z r C114を貯蔵する貯
4蔵槽で、この貯蔵槽6と上記反応容器1とは密閉型ス
クリューフィーダーより成る下記の自動供給手段7によ
り連結されている。
Reference numeral 6 denotes a storage tank 4 for storing purified powder Z r C114, and this storage tank 6 and the reaction vessel 1 are connected by the following automatic supply means 7 consisting of a closed screw feeder.

この供給手段7の移送外筒8は、その内端が反応容器1
の上部内壁面に開口され、外筒8の外端近くの上面には
貯蔵槽6の下端ホッパ一部が開口されている。
The transfer outer cylinder 8 of this supply means 7 has its inner end connected to the reaction vessel 1.
, and a portion of the lower end hopper of the storage tank 6 is opened at the upper surface near the outer end of the outer cylinder 8 .

マタ外筒8内に軸支されるスクリューシャフト9の、外
筒8の外端開口からの突出外端部には、従動゛スプロケ
ット10が装着され、さらに外筒8の外端開口面におけ
るスクリューシャフト9の外周は密閉状となっている。
A driven sprocket 10 is attached to the outer end of the screw shaft 9 that is rotatably supported in the outer cylinder 8 and protrudes from the outer end opening of the outer cylinder 8. The outer periphery of the shaft 9 is sealed.

然して、上記外筒8の壁面内には、その内端近くの上面
に開口される入口11から、外端近くの下面に開口され
る出口12に乃)けて連通ずる冷却水路13が形成され
ている。
A cooling water channel 13 is formed within the wall surface of the outer cylinder 8, which communicates from an inlet 11 opened at the upper surface near the inner end to an outlet 12 opened at the lower surface near the outer end. ing.

またスクリューシャフト9内には、その外端面側に排水
開口14を有する冷却孔15が中ぐり状に形成され、こ
の冷却孔15内には、外端開口側から冷却水が供給され
る水流パイプ16が遊挿されている。
A cooling hole 15 having a drainage opening 14 on its outer end surface is formed in the screw shaft 9 in the shape of a bore, and inside this cooling hole 15 is a water flow pipe through which cooling water is supplied from the outer end opening side. 16 is loosely inserted.

このようにして、供給手段7は水冷構造となっている。In this way, the supply means 7 has a water-cooled structure.

次に上記装置の作用について説明する。Next, the operation of the above device will be explained.

まず装置全体の気密を確かめ、排気してから不活性ガス
のArを大気圧よりもやや高めに通人し。
First, check that the entire device is airtight, then exhaust the air and then inject Ar, an inert gas, to a pressure slightly higher than atmospheric pressure.

電熱炉3によって反応容器1内のMgを溶融し。Mg in the reaction vessel 1 is melted by the electric furnace 3.

約800°Cに加熱する。Heat to approximately 800°C.

この反応容器1は貯蔵槽6よりも0.1〜0.2 kg
/cr!圧力が高いので、供給手段7のスクリューによ
って押込みながら粉体状精製ZrC114を反応容器1
内に供給添加させる。
This reaction vessel 1 weighs 0.1 to 0.2 kg more than the storage tank 6.
/cr! Since the pressure is high, powdered refined ZrC114 is pumped into the reaction vessel 1 while being pushed by the screw of the supply means 7.
Supply and add inside.

反応容器1内に供給された上記粉体状Z rcIj4は
The above powdered ZrcIj4 was supplied into the reaction vessel 1.

容器1内の熱をうばってガス化し、Mgと反応してZr
を生成し、同時にMgCl2を副生ずる。
The heat inside the container 1 is absorbed to gasify it, and it reacts with Mg to form Zr.
and at the same time produce MgCl2 as a by-product.

ここにおいて、供給手段7は、外筒8内の冷却水路13
と、スクリューシャフト9内の水流パイプ16の内端開
口から、冷却孔15を通って排水開口14に至る冷却水
により常に内外から水冷されている。
Here, the supply means 7 is a cooling water channel 13 in the outer cylinder 8.
The screw shaft 9 is constantly water-cooled from the inside and outside by cooling water that flows from the inner end opening of the water flow pipe 16 through the cooling hole 15 to the drainage opening 14.

従って、上記ガス状Z r C14が供給手段7内に侵
入して来ても、約150°Cに急冷され250〜280
℃の温域がきわめて狭いため、ZrClは壁面に固結す
ることなく粉体となって、反応容器1内にそのまま逆送
され、通路閉塞の虞れはない。
Therefore, even if the gaseous ZrC14 enters the supply means 7, it is rapidly cooled to about 150°C and heated to 250-280°C.
Since the temperature range of 0.degree. C. is extremely narrow, ZrCl does not solidify on the wall surface, becomes a powder, and is directly transported back into the reaction vessel 1, so there is no risk of clogging the passage.

上記本発明に係る装置の作用を、従来技術との対比にお
いてさらに詳細に説明する。
The operation of the device according to the present invention will be explained in more detail in comparison with the prior art.

反応容器1は耐熱鋼であるが、935℃で容器1を構成
するFeとZrが共晶を生じて合金化するので、従来の
前記ガス状ZrCl4の導入による反応の場合は、発熱
反応による温度上昇のため反応速度を早めることは出来
なかったが1本発明装置におけるような固体状ZrCl
4供給の方式においては1反応熱の一部が固体状ZrC
l14のガス化にうばわれるため、反応温度の上昇が抑
えられ。
The reaction vessel 1 is made of heat-resistant steel, but since Fe and Zr forming the vessel 1 form a eutectic and become alloyed at 935°C, in the case of the conventional reaction by introducing the gaseous ZrCl4, the temperature due to the exothermic reaction Although it was not possible to accelerate the reaction rate due to the increase in
In the four-supply system, part of the heat of one reaction is transferred to solid ZrC.
The rise in reaction temperature is suppressed because it is taken over by the gasification of l14.

その割合だけ反応速度が早められることとなる。The reaction speed will be accelerated by that proportion.

また、単なるスクリューフィーダ等より成る供給手段に
より、固体状Z、rcA4を供給させるようにすると、
供給手段と反応容器が接合する部分は約700℃である
のに対し、固体状ZrCl14の貯蔵槽の側はほぼ室温
である。
Furthermore, if solid Z and rcA4 are supplied by a supply means such as a simple screw feeder,
The temperature at the junction between the supply means and the reaction vessel is approximately 700° C., whereas the temperature at the side of the storage tank of solid ZrCl 14 is approximately room temperature.

従って供給手段の中央部に250〜280℃のガス状Z
r C14がもつとも固結しやすい温域があり、反応容
器からのガス状ZrCA’4が供給手段内に侵入して来
てスクリューフィーダーの羽根に徐々に固着し、これが
肥厚して遂には供給通路の閉塞をきたす虞れがある。
Therefore, a gaseous Z
r There is a temperature range in which C14 tends to solidify, and gaseous ZrCA'4 from the reaction vessel enters the supply means and gradually adheres to the screw feeder blades, which thickens and eventually forms the supply passage. There is a risk of blockage.

これに対し、上記本発明にかかる装置によれば。In contrast, according to the apparatus according to the present invention.

前述の通り、供給通路閉塞の虞れは全くなく、シかも、
前記従来のガス状ZrCl4供給方式に比し、試験の結
果、約2倍の効率でジルコニウムスポンジを製造させる
ことが出来る。
As mentioned above, there is no risk of supply passage blockage;
Compared to the conventional gaseous ZrCl4 supply method, tests have shown that zirconium sponge can be produced with approximately twice the efficiency.

第3図は、この発明の第2の実施例を示すもので、これ
は、上記と同様の固体状ZrCA4を貯蔵槽6から、ロ
ータリーフィーダーより成る供給手段7を介して反応容
器1へ添加供給する装置である。
FIG. 3 shows a second embodiment of the present invention, in which solid ZrCA4 similar to the above is added and supplied from a storage tank 6 to a reaction vessel 1 via a supply means 7 consisting of a rotary feeder. It is a device that does

このような装置の場合においても、上記供給手段7と反
応容器1を結ぶシュートパイプ17にZrCl4が固結
して供給通路を閉塞する虞れがあるが、このシュートパ
イプ17の外周に、前記第1の実施例における外筒8と
同様の構造を有する冷却ジャケット18を取り付け、冷
却水を通して急冷させることにより、反応容器1側から
侵入するガス状Z rcl14は粉体となり、通路の閉
塞は防止される。
Even in the case of such an apparatus, there is a risk that ZrCl4 solidifies in the chute pipe 17 connecting the supply means 7 and the reaction vessel 1 and blocks the supply passage. By attaching a cooling jacket 18 having the same structure as the outer cylinder 8 in Example 1 and rapidly cooling it by passing cooling water, the gaseous Zrcl 14 entering from the side of the reaction vessel 1 becomes powder, and clogging of the passage is prevented. Ru.

上記第2の実施例において、第1の実施例と対応する部
分には第1の実施例におけると同一の符号を付してその
詳細は説明は省略した。
In the second embodiment, parts corresponding to those in the first embodiment are given the same reference numerals as in the first embodiment, and detailed explanation thereof is omitted.

なお本発明にかかる装置は、粉体状Z r C14の反
応容器への供給に限らず、Hf(J?4ならびに)kl
c13など金属ハライド等の昇華性物質を高温部へ供給
する装置についても適用することが出来同様の効果が得
られるものである。
Note that the apparatus according to the present invention is not limited to supplying powdered Z r C14 to a reaction vessel, but can also be used to supply Hf (J?4 and) kl
The present invention can also be applied to a device that supplies a sublimable substance such as a metal halide such as C13 to a high temperature section, and similar effects can be obtained.

この発明は以上説明したように、高温部から供給手段の
側へ侵入するガス状昇華性物質を、該供5給手段内にお
いて急冷させることによりこれを粉状として再供給させ
るようにしたので、供給通路の閉塞を生じさせることな
く、固体状昇華性物質を、その昇華点以上の高温部へ能
率良く供給させることが出来る効果がある。
As explained above, in this invention, the gaseous sublimable substance that enters the supply means from the high temperature section is rapidly cooled in the supply means, so that it is re-supplied in the form of powder. This has the effect of efficiently supplying the solid sublimable substance to a high temperature section above its sublimation point without causing blockage of the supply passage.

9図面の簡単な説明 第1図はこの発明の第1の実施例に係る供給装置を有す
るジルコニウムスポンジの製造装置の一部の断面図、第
2図は同要部の拡大断面図、第3図はこの発明の第2の
実施例に係る供給装置を有5するジルコニウムスポンジ
の製造装置の断面図である。
9 Brief Description of the Drawings FIG. 1 is a partial cross-sectional view of a zirconium sponge manufacturing apparatus having a supply device according to the first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the same essential parts, and FIG. The figure is a sectional view of a zirconium sponge manufacturing apparatus 5 having a supply device according to a second embodiment of the present invention.

1・・・・・・高温部としての反応容器、7・・・・・
・供給手段、13・・・・・・冷却水路、15・・・・
・・冷却孔、16・・・・・・水流パイプ、18・・・
・・・冷却ジャケット。
1... Reaction vessel as a high temperature section, 7...
・Supply means, 13... Cooling water channel, 15...
...Cooling hole, 16...Water pipe, 18...
...cooling jacket.

Claims (1)

【特許請求の範囲】 1 固体状昇華性物質を、その昇華点以下の高淵部へ、
固体のまま供給手段により供給させる装置において、少
なくとも上記高温部と接触する供給手段の部分は、上記
昇華性物質の昇華点以下の温度に冷却せしめられるよう
にしたことを特徴とする固体状昇華性物質の高温度への
供給装置。 2 固体状昇華性物質としての固体状ハロゲン化ジルコ
ニウム類を、その昇華点以上の高温とした還元反応容器
もしくは昇華精製容器などの高温容器内へ、固体のまま
供給手段により供給する装置において、少なくとも上記
高温容器内と接続される供給手段の部分は、上記ハロゲ
ン化ジルコニウム類の昇華点以下の温度に急冷せしめる
ことにより、高温容器側から供給手段側へ流出されるガ
ス状ハロゲン化ジルコニウム類を、上記供給手段の冷却
部において粉体状に凝縮せしめた状態で容器内に逆送さ
せるようにしたことを特徴とする特許請求の範囲第1項
記載の固体状昇華性物質の高温部への供給袋も
[Claims] 1. Transferring a solid sublimable substance to a high abyss below its sublimation point,
A device for supplying a solid substance by a supply means, characterized in that at least a portion of the supply means that comes into contact with the high temperature part is cooled to a temperature below the sublimation point of the sublimable substance. Device for feeding substances to high temperatures. 2. In an apparatus for supplying solid zirconium halides as a solid sublimable substance into a high-temperature container such as a reduction reaction container or a sublimation purification container at a high temperature higher than the sublimation point thereof, as a solid by a supply means, at least The part of the supply means connected to the inside of the high-temperature container is rapidly cooled to a temperature below the sublimation point of the zirconium halides, thereby controlling the gaseous zirconium halides flowing out from the high-temperature container side to the supply means side. Supplying the solid sublimable substance to the high temperature section according to claim 1, characterized in that the solid sublimable substance is condensed into powder in the cooling section of the supply means and sent back into the container. Bag too
JP3355776A 1976-03-29 1976-03-29 Equipment for supplying solid sublimable substances to high-temperature parts Expired JPS5818142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355776A JPS5818142B2 (en) 1976-03-29 1976-03-29 Equipment for supplying solid sublimable substances to high-temperature parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355776A JPS5818142B2 (en) 1976-03-29 1976-03-29 Equipment for supplying solid sublimable substances to high-temperature parts

Publications (2)

Publication Number Publication Date
JPS52117284A JPS52117284A (en) 1977-10-01
JPS5818142B2 true JPS5818142B2 (en) 1983-04-11

Family

ID=12389845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355776A Expired JPS5818142B2 (en) 1976-03-29 1976-03-29 Equipment for supplying solid sublimable substances to high-temperature parts

Country Status (1)

Country Link
JP (1) JPS5818142B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130036869A1 (en) * 2010-11-08 2013-02-14 Albert Ivanovich Begunov Method for producing aluminum by means of metallothermic recovery of aluminum trichloride with magnesium and a device for its realization

Also Published As

Publication number Publication date
JPS52117284A (en) 1977-10-01

Similar Documents

Publication Publication Date Title
US2556763A (en) Production of refractory metals
US4897116A (en) High purity Zr and Hf metals and their manufacture
US4830665A (en) Process and unit for preparing alloyed and non-alloyed reactive metals by reduction
US4632849A (en) Method for making a fine powder of a metal compound having ceramic coatings thereon
JPS54145400A (en) Production of metal nitride powder
CA1310472C (en) Process for the production of ultra high purity polycrystalline silicon
US4105192A (en) Process and apparatus for producing zirconium sponge
JPS5818142B2 (en) Equipment for supplying solid sublimable substances to high-temperature parts
GB1284178A (en) Process and apparatus for production of tungsten and similar metals in powder form
US2787536A (en) Process for melting and refining uranium
ES422132A1 (en) Method of carrying out endothermic metallurgical reduction processes with the aid of a continuously operating mechanical kiln
GB1351422A (en) Water cooling system of a vacuum arc furnace
US3874439A (en) Device for cooling the crystallizer in a plant for casting metal ingots with a periodic discharge thereof
JPS55162403A (en) Manufacture of hydrogen chloride and ammonia from ammonium chloride as starting material
JP4231283B2 (en) High purity magnesium oxide fine powder production apparatus and high purity magnesium oxide fine powder production method using the same
JPS5688494A (en) Process and apparatus for recovering sensible heat of slag
US2870006A (en) Process for melting metals
JPS57188632A (en) Manufacture of metal ti
US3332741A (en) Crucible reactor and method
JPS58210128A (en) Device and method for reduction and refining of metallic chloride
JPS6137338B2 (en)
JPS6037053B2 (en) Silicon carbide manufacturing method
JPS62148311A (en) Process and device for preparing aluminum nitride powder
US2391193A (en) Process for the production of magnesium
GB925142A (en) Improvements in metallic compositions and the manufacture of same