JPS58180945A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPS58180945A
JPS58180945A JP57062299A JP6229982A JPS58180945A JP S58180945 A JPS58180945 A JP S58180945A JP 57062299 A JP57062299 A JP 57062299A JP 6229982 A JP6229982 A JP 6229982A JP S58180945 A JPS58180945 A JP S58180945A
Authority
JP
Japan
Prior art keywords
nozzle
ultrasonic
probe
flaw detection
gimbal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57062299A
Other languages
Japanese (ja)
Inventor
Akira Akasu
赤須 明
Tatsukuma Hosono
細野 辰熊
Akira Nakada
仲田 昭
Kimio Kanda
神田 喜美雄
Akisuke Naruse
成瀬 明輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP57062299A priority Critical patent/JPS58180945A/en
Publication of JPS58180945A publication Critical patent/JPS58180945A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q9/00Arrangements for supporting or guiding portable metal-working machines or apparatus
    • B23Q9/0014Portable machines provided with or cooperating with guide means supported directly by the workpiece during action
    • B23Q9/0021Portable machines provided with or cooperating with guide means supported directly by the workpiece during action the tool being guided in a circular path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable ultrasonic flaw detecting in good efficiency and preciseness, by a method wherein an ultrasonic probe is held by a gimbal and this gimbal is supported in a freely accessible manner along a direction pressing the ultrasonic probe to the outer surface of a nozzle. CONSTITUTION:An ultrasonic probe 2 is held by a gimbal 3 while this gimbal 3 is supported by a support member 6 in a freely accessible manner along a direction pressing the probe 2 to the outer surface 1 of a nozzle. That is, for example, an air cylinder is used as this support member 6 and, therefor, the gimbal 3 is made freely accessible to a doubled arrow A, A' (a direction along the pressing direction of the probe 2). By this constitution as mentioned above, the ultrasonic probe can be scanned so as to be stably pressed to the outer surface of the nozzle in an almost vertical direction and ultrasonic detection can be carried out in good efficiency and preciseness.

Description

【発明の詳細な説明】 本発明は圧力容器のノズル部の超音波探傷装置に関する
。轡に、ノズル外II!面に超音波探触子を設定し、ノ
ズル;−ナーSに発生する欠陥を検出する超音波探傷装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection device for a nozzle portion of a pressure vessel. Outside the nozzle II! The present invention relates to an ultrasonic flaw detection device that detects defects occurring in a nozzle S by setting an ultrasonic probe on a surface thereof.

この樵の技術は、原子炉圧力1!−のノズルコーナ一部
の探傷などに用いられる。従来の原子炉圧力容善ノズル
コーナ一部の外課面からの超音波探傷法としてはα)圧
力箒#Ih1Iからの探傷墨(2))ノズル補強部平坦
部からの擢傷菖という方法がある。ところがこれらには
、 (1) 探傷lll!−が兼く、感度が悪くなる。
The technique of this woodcutter is that the reactor pressure is 1! - Used for flaw detection in a part of the nozzle corner. Conventional ultrasonic flaw detection methods from the external surface of a part of the nozzle corner with good pressure capacity in the reactor include α) flaw detection ink from pressure broom #Ih1I, (2)) flaw detection from the flat part of the nozzle reinforcement. . However, these include: (1) Flaw detection! - also occurs, resulting in poor sensitivity.

(鯵)  欠陥の伽と超音波ビームのなす角が鋭角とな
り、反射効率が悪くなる。
(Mackerel) The angle between the defect and the ultrasonic beam becomes an acute angle, resulting in poor reflection efficiency.

(−)  ノズルコーナ一部に超音、仮ビームを投入す
ることが崩しい。
(-) Injecting ultrasonic and temporary beams into a part of the nozzle corner is problematic.

(1v)  一方向探傷の丸め、能率が悪い。(1v) Rounding of unidirectional flaw detection is inefficient.

という問題があるため、(3)ノズル外表UkJ鞍形部
からの探傷;という方法が採用される場合がある。
Because of this problem, the following method is sometimes adopted: (3) flaw detection from the nozzle outer surface UkJ saddle-shaped portion.

しかしこれに関しても、 (1) 欠陥の位置は、探触子のノズル軸方向位置、入
射角、m根等から、その位r1twA足を行うので、精
度が悪い。
However, regarding this as well, (1) the position of the defect is determined by r1twA based on the position of the probe in the nozzle axis direction, the angle of incidence, the m root, etc., so the accuracy is poor.

(It)  一方向探傷のため、能率が悪い。(It) Due to unidirectional flaw detection, efficiency is low.

(lji)  ノズル外弐面鞍形部からの探傷のため、
接触子を正確に外表面に接触させることが―シ<、かつ
接触子をスムーズに走査することも囲周である。
(lji) For flaw detection from the saddle-shaped part on the outside of the nozzle,
It is important to have the contact accurately contact the outer surface, and it is also important to scan the contact smoothly.

という問題点が残っている。There remains the problem.

本発明は、上記問題点を改善することを目的としてなさ
れたもので、ノズル外表面、特にその鞍形部の如籾曲向
部分からでも、その探傷に際して接触子を正確に外表向
に接触させることができ、接触子の走査もスムーズであ
って、これによυ欠陥位置標定精度の向上、能率向上を
図つ友ノズル部の超音改探傷装置t−提供せんとするも
のでおる。
The present invention has been made with the aim of improving the above-mentioned problems, and it is possible to accurately contact the contactor with the outer surface when detecting flaws even from the outer surface of the nozzle, especially from the curved part of the saddle-shaped part thereof. It is an object of the present invention to provide an ultrasonic modified flaw detection device for a companion nozzle portion, which enables smooth scanning of the contact and thereby improves defect location accuracy and efficiency.

この目的の達成のためには、ノズル外表面特にその鞍形
部の如く一面tなす部分にも安定に接触して、スムーズ
に走査回転するように超音波探触子を設定する必要があ
る。
In order to achieve this objective, it is necessary to set the ultrasonic probe so that it can stably contact the outer surface of the nozzle, especially its saddle-shaped portion, and scan and rotate smoothly.

このため、本発明においては、超音波探触子をX) 7
 ハルによ〕保持し、このジンバルはノズル外表面に超
音波探触子を押付ける方向に沿って出入自在になるよう
に支持S#に支持し、かつその支持部材4に回転可能に
軸着されるようにして、このような構成によル超音II
LII触子をノズル外赤面にほぼその法一方向で押付は
可縮とする。本発明では、このような超音IIL−触子
t1つ壕九は複数設ける。
Therefore, in the present invention, the ultrasonic probe is
This gimbal is supported by the support S# so that it can move in and out along the direction in which the ultrasonic probe is pressed against the outer surface of the nozzle, and is rotatably attached to the support member 4. With this configuration, ultrasonic II
The LII contactor can be compressed by pressing it almost in one direction on the outside of the nozzle. In the present invention, a plurality of such ultrasonic IIL probes and trenches are provided.

上記構成06釆、探触子の安定な接触・走査が可能とな
υ、探触子の位置が安定となって、その位置検出も安定
で、従って屈折角・w6根等から火成p正確な位l11
m定が可能となる。
With the above configuration 06 button, stable contact and scanning of the probe is possible υ, the position of the probe is stable, and its position detection is also stable, so the igneous p is accurate from the refraction angle, w6 root, etc. 111
m-determination becomes possible.

また、このような超音波探触子を複数設ければ、伺えば
ノズル外表向鞍形錫の周方向に探触子を複数amする構
成にでき、これによれば複数の探触子による能率の良い
探傷が可能となって、′!11fも同上される。
Furthermore, if a plurality of such ultrasonic probes are provided, it is possible to construct a structure in which a plurality of probes are arranged in the circumferential direction of the saddle-shaped tin on the outer surface of the nozzle. Good flaw detection is now possible. 11f is also mentioned above.

更にこの構成では、周方向に対し、時針方向及び反時計
方向に超音波ビームを投入するようにできるので、欠陥
位置の標定がl′ft蜜に行えるものである。
Furthermore, with this configuration, the ultrasonic beam can be applied in the hour hand direction and counterclockwise direction with respect to the circumferential direction, so that the defect position can be precisely located by l'ft.

以下、本発明の一実mガt−第1図及び112図によシ
説明する。この例は、本発明を原子炉圧力容−のノズル
部の探傷に通用したものであり、特にノズル外表1li
iWt形部に超音波探触子を設置し、かつ自動超音波探
傷装置として構成した例である。
Hereinafter, the embodiment of the present invention will be explained with reference to FIGS. 1 and 112. In this example, the present invention is applied to the flaw detection of the nozzle part of the reactor pressure vessel, and in particular, the nozzle outer surface 1li.
This is an example in which an ultrasonic probe is installed in an iWt-shaped part and configured as an automatic ultrasonic flaw detection device.

第1図は本例の超音波探傷装置の@面図であプ、1g2
図は第1図における用方向からこの装置を見た矢視図で
ある。
Figure 1 is a side view of the ultrasonic flaw detection device of this example, 1g2
The figure is a view of the apparatus viewed from the direction of use in FIG. 1.

この装置itは、圧力容器のノズルlの外表向1aψに
超音波探触子2を設定して、ノズルコーナ一部lb&C
発生する欠陥を検出するものである。超音波探触子2は
ジンバル3により保持させる。このジンバル3は、ノズ
ル外表面11rc探触子2を押付ける方向に沿って、出
入自在になるよう、支持部材6によシ支持させる。例え
ば図のガでは、エアーシリンダをこの支持部材6とし1
用い、従って図で舊えば矢印ム、A′方向(接触子2の
押付は方向に沿う方向)に、ジンバル3が出入自在にな
るような構成にしである。
This device IT sets the ultrasonic probe 2 on the outer surface 1aψ of the nozzle l of the pressure vessel, and
It detects defects that occur. The ultrasonic probe 2 is held by a gimbal 3. This gimbal 3 is supported by a support member 6 so that it can move in and out along the direction in which the nozzle outer surface 11rc probe 2 is pressed. For example, in the illustrated example, the air cylinder is used as the support member 6 and 1
Therefore, the gimbal 3 is configured to be able to move in and out in the direction of the arrow A' (the direction in which the contactor 2 is pressed) as shown in the figure.

更にとの叉f#部材6は、回転可能に軸着されて成る。Furthermore, the fork f# member 6 is rotatably attached to the shaft.

軸は図で貫えは点Pの位置である。The axis is the position of point P in the diagram.

このような構成によp1探触子2は、ノズル外表面1a
KはぼそO法一方向で押付けられることが可能となる。
With such a configuration, the p1 probe 2 has nozzle outer surface 1a.
K can be pressed in one direction using the Boso-O method.

つ1砂、外表面11が一面状をなしていても、ジンバル
3の2つの′41II131,32により、矢印B、C
O回転が可能であplこの面での位置倣φが可縮となる
。かつ、点Pi中心に支持部材6が回転可能なので、外
表向laの図に現れ九−纏に沿う接触子2の曲−倣いも
町総である。
Even if the outer surface 11 is flat, the arrows B and C are
O rotation is possible, and positional tracing φ on this plane is retractable. In addition, since the support member 6 is rotatable around the point Pi, the curve of the contact 2 along the 9-line which appears in the diagram of the outer surface la is also machiso.

従って、どの方向について4h探触子2は曲面に倣うこ
とができ、常に安定して、′外表面11にほぼその法線
方向に沿って押圧される。
Therefore, the 4h probe 2 can follow the curved surface in any direction and is always stably pressed against the outer surface 11 approximately along its normal direction.

1九、jIz図に表されているように、探触子2゜2′
を複数t&置すると、ノズル外表面11の鞍形部にその
周方向Ell触子2,2′を複数設けた構成となり、従
って複数の探触子2,2′による能率の良い探傷を行う
ことができる。これは、精度同上にもつながるものであ
る。
19. As shown in the jIz diagram, the probe 2゜2'
When a plurality of probes 2 and 2' are placed in the saddle shape portion of the nozzle outer surface 11, a plurality of probes 2 and 2' are provided in the circumferential direction, and therefore, efficient flaw detection can be performed using a plurality of probes 2 and 2'. I can do it. This also leads to accuracy.

また、本構成においては、探触子2 (2’ )kノズ
ル外表面1mにおいて時針方向りで走査させることや、
逆に反時針方向D′で走査させることができ、従って各
方向で超音波ビームを投入できるので、欠陥位置の標定
を正確に行えるようになる。
In addition, in this configuration, the probe 2 (2') k is scanned in the direction of the hour hand over 1 m of the outer surface of the nozzle,
Conversely, scanning can be performed in the counterclockwise direction D', and therefore, the ultrasonic beam can be applied in each direction, so that the defect position can be accurately located.

以下、本実施例についてその具体的構成を一層峰しく説
明する。
Hereinafter, the specific configuration of this embodiment will be explained in more detail.

第1図中、符号1はノズル、1mはその外表面で本例の
礪合鞍形部、1bはノズルコーナー、2は超音波探触子
、3はジンバルであって、こnらはすでに説明したとお
りである。更に4はモータ、5は位置検出用のポテンシ
ョメータ、6は前述したように支持部材を構成している
エアシリンダ、7は扇形ギヤである。これら構成部分の
相互関係は、仄のようになっている。つまシェアシリン
ダ6と扇形ギヤ7は軸を介してMIc続され、モータ4
によ〕扇形キヤ7に駆動し、これにょシェアシリンダ(
支持部材)6を点Pを中心として、2れをαの方向に揺
−する、ポテンショメータ5で、位置検出を行う。また
、ジンバル3の作用にょシ、超音波探触子2をノズル外
表向に倣わせる。
In Fig. 1, reference numeral 1 is the nozzle, 1m is its outer surface, which is the saddle shape of this example, 1b is the nozzle corner, 2 is the ultrasonic probe, and 3 is the gimbal. As explained. Furthermore, 4 is a motor, 5 is a potentiometer for position detection, 6 is an air cylinder forming a support member as described above, and 7 is a fan-shaped gear. The mutual relationships among these constituent parts are as shown below. The claw share cylinder 6 and the fan-shaped gear 7 are connected to each other via a shaft, and the motor 4
This is driven by the fan-shaped gear 7, and the share cylinder (
Position detection is performed by a potentiometer 5 that swings the supporting member 6 around a point P in the direction α. Further, due to the action of the gimbal 3, the ultrasonic probe 2 is caused to follow the outer surface of the nozzle.

図中8は倣いセンナ、9は設置され九軌道91上を走行
する走行車、1Gは走行車9の中に組込まれ九ノズル軸
方向躯動輪である。軌道91はノズル1の全jIliK
沿って設置されておp1走行車が軌道91全周を走行す
ると、これに伴って超音波探触子2がノズルコーナーf
i1M全周を走査して、探傷を行えるようになっている
。この場合、ノズルコーナー全周を超音aim傷する九
めに走行車9が軌道91上τ走行する鵬、走行中9内の
ノズル軸方内部11i1@lO1倣いセ/す8にょシサ
ーボ制御することによp1超f猷妹触子2t−ノズル外
縁*薮形部に倣わせる。
In the figure, 8 is a copying sensor, 9 is a traveling vehicle installed and running on a nine track 91, and 1G is a nine nozzle axial sliding wheel built into the traveling vehicle 9. Trajectory 91 is all jIliK of nozzle 1
When the p1 running vehicle runs around the entire circumference of the track 91, the ultrasonic probe 2 moves along the nozzle corner f.
It is now possible to perform flaw detection by scanning the entire circumference of i1M. In this case, when the traveling vehicle 9 travels on the track 91 with ultrasonic aim scratching the entire circumference of the nozzle corner, the axial servo control of the nozzle inside 11i1@lO1 while traveling is performed. ni p1 super f 猋 imitator 2t - Nozzle outer edge * Make it follow the bush-shaped part.

82図は前記し九とおル、第1図を矢印鳳方向から見比
ものである。超音波探触子2.2’ 1i−2一配列し
ている。それぞれのエアシリンダ(支持部材)6.6’
はノズル中心方図を向いておプ、ノズル外表面M型部の
法一方向に押付ける構造となっている。このような法一
方向での外表向上への押付けが可能であることはジンバ
ル3その他の構成によ如結来されるものであり、これは
既に説明したとおりである。
Figure 82 is a comparison of the previous figure and Figure 1 from the direction of the arrow. Ultrasonic probes 2.2' 1i-2 are arrayed. Each air cylinder (support member) 6.6'
The structure is such that it faces towards the center of the nozzle and is pressed in one direction along the M-shaped portion on the outer surface of the nozzle. The ability to press to improve the outer surface in one direction is achieved by the gimbal 3 and other structures, as described above.

第2図中、11は傘璽単、12は接触子1g11転軸で
ある。両エアシリンダ(支持部材)6.6’は角度が異
なるので、これをモータ4及び扇形ギヤ7により回転さ
せるため、それぞれのエア7リンダ6.6′に連結され
次回転軸12.12’を、傘歯車12で接続する構成を
採っているのである。
In FIG. 2, 11 is an umbrella, and 12 is a rotating shaft of the contact 1g11. Since both air cylinders (supporting members) 6.6' have different angles, in order to rotate them by the motor 4 and sector gear 7, they are connected to their respective air cylinders 6.6', and the next rotation shaft 12.12' is rotated by the motor 4 and sector gear 7. , a configuration in which they are connected by bevel gears 12 is adopted.

本実施例によれば、超音波探触子2(2’)をノズル外
表面1aに画直につまりその法一方向に沿って押付ける
ことができるので、探触子の安定な接触・走査が可能で
あり、!fI度の良い超音波探傷が可能となる。
According to this embodiment, since the ultrasonic probe 2 (2') can be pressed directly against the nozzle outer surface 1a, that is, along one direction, stable contact and scanning of the probe can be achieved. is possible! Ultrasonic flaw detection with good fI becomes possible.

かつ本実施例の如く2個の超音波探触子2.2′を設け
れは、能率的な超音波探傷が可能となり、各方向からの
探傷を行うことになるので、精度も向上する。
Furthermore, by providing two ultrasonic probes 2, 2' as in this embodiment, efficient ultrasonic flaw detection becomes possible, and since flaw detection is performed from each direction, accuracy is also improved.

上配夷膳−では位置検出の九めにボテンシ盲メータ5を
用い九が、その代わ9にロータリーエンコ −ダ等の位
置検出*Wt*用してもよ−。また傘歯車の代わ9に、
ユンバーナルジョイントあるいはフレキシブルカップリ
ング等の、角度をなす軸を駆動する一縁を採用すること
奄、轟然可能である。超音波探触子の数を、更に多くす
ることによシ、一層能率的な超音波探傷を達成すること
もできる。
In the upper case, a potentiometer blind meter 5 is used for position detection, but instead, a rotary encoder or the like may be used for position detection *Wt*. Also, instead of bevel gear 9,
It is perfectly possible to use a rim that drives an angled shaft, such as a universal joint or a flexible coupling. By increasing the number of ultrasonic probes, even more efficient ultrasonic flaw detection can be achieved.

上述の如く、従来は超音波探触子を安定にノズル外表向
に押付け・走査することができず、精度同上にも限界が
6つ九のに対し、本発明によれば超音波−触子を外形表
面にそのほぼ垂直方向で安定に押付け・走査することが
でき、精度良好な超音波探傷が可能になるという効果t
Mする。
As mentioned above, in the past, it was not possible to stably press and scan the ultrasonic probe on the outer surface of the nozzle, and there were limits to the accuracy, but according to the present invention, the ultrasonic probe can be stably pressed and scanned against the external surface in a direction almost perpendicular to the external surface, enabling highly accurate ultrasonic flaw detection.
M.

また、実施例の如く複数個の超音波探触子を用いる構成
にして、更に能率の良い、精[嵐好な超音波探傷を可能
ならしめることができる。
Further, by using a configuration using a plurality of ultrasonic probes as in the embodiment, more efficient and precise ultrasonic flaw detection can be performed.

従って本発明は、超音波探傷装置のg!I幀性を格段に
向上させることができ、このため探傷のための工数低減
幼果も大であり、実際上工業的に人感な利益が期待でき
る。
Therefore, the present invention provides g! It is possible to significantly improve the I/O efficiency, and therefore the man-hours required for flaw detection can be greatly reduced, and significant industrial benefits can be expected.

なお当然のことではあるが、本発明は図示の夫施的にの
み限定されるものではない。
It should be noted that, as a matter of course, the present invention is not limited to the embodiments shown in the drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び42図は本発明の超音波探傷装置の一実施例
を示し、第1図はその@面図、第2図は第1図における
…方回矢視図である。 1・・・ノズル、1a・・・ノズル外表面、lb・・・
ノズルコーナ一部、2.2′・・・超音波探触子、3,
3′・・・ジンバル、6.6’・・・支持部材(エアシ
リンダ) 、                   
 、−、;=・・、代理人 弁理± ^惧祷ネ、゛ 箋 1 口 第2 口
1 and 42 show an embodiment of the ultrasonic flaw detection apparatus of the present invention, FIG. 1 is a @ side view thereof, and FIG. 2 is a view taken from the direction of the arrow in FIG. 1. 1... Nozzle, 1a... Nozzle outer surface, lb...
Part of nozzle corner, 2.2'...Ultrasonic probe, 3,
3'...Gimbal, 6.6'...Support member (air cylinder),
,-,;=..., agent attorney ± ^ Concerns, ゛ note 1st part 2nd part

Claims (1)

【特許請求の範囲】 1、圧力容器のノズル外表面に超音tIL探触子t−設
にし、ノズルコーナ一部に発生する欠陥を検出する超音
波探傷装置において、超音波探触子をジンバルによシ保
持し、該ジンバルはノズル外衆向に超音波探触子を押付
ける方向に沿って出入自在に支持部材に支持し、線支持
部材は回転可能に設定し、この構成により前記超音波探
触子をノズル外表面にほぼその汰一方向で押付は司舵と
し、かつかかる超音波探触子t−1つまたはl[畝設け
たことをW做とする超音波探傷装置。 2 超音波探触子を設定するノズル外表面は、ノズル外
底rfi鞍msである、特許請求の範囲銀1項VC記叡
の超音波探傷装置。 & 超音波探触子を複数設け、これtノズル外表面鞍a
it部の周方向に沿って配設して成る、特許請求の範囲
第2項に記載の超音波探傷装置。 4、圧力容器は原子炉圧力容福であり、かつ超音波探触
子は自動的にglIkするようにして、自動超音aSS
装置とした、特許請求の範囲第1項乃至嬉喜項のいずれ
かに記載の超音波探傷装置。
[Scope of Claims] 1. In an ultrasonic flaw detection device that installs an ultrasonic IL probe on the outer surface of a nozzle of a pressure vessel and detects defects occurring in a part of the nozzle corner, the ultrasonic probe is mounted on a gimbal. The gimbal is supported by a support member so as to be movable in and out along the direction in which the ultrasonic probe is pressed toward the outside of the nozzle, and the line support member is set to be rotatable. An ultrasonic flaw detection device in which a probe is pressed substantially in one direction on the outer surface of a nozzle, and the ultrasonic probe is provided with t-1 or l [ridges]. 2. The ultrasonic flaw detection device according to claim 1, wherein the nozzle outer surface on which the ultrasonic probe is set is the nozzle outer bottom RFI saddle ms. & Multiple ultrasonic probes are installed, and the nozzle outer surface saddle a
The ultrasonic flaw detection device according to claim 2, which is arranged along the circumferential direction of the IT section. 4. The pressure vessel is under reactor pressure, and the ultrasonic probe is automatically glIk, so that automatic ultrasonic aSS
An ultrasonic flaw detection device according to any one of claims 1 to 1, which is an apparatus.
JP57062299A 1982-04-16 1982-04-16 Ultrasonic flaw detector Pending JPS58180945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57062299A JPS58180945A (en) 1982-04-16 1982-04-16 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57062299A JPS58180945A (en) 1982-04-16 1982-04-16 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPS58180945A true JPS58180945A (en) 1983-10-22

Family

ID=13196096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57062299A Pending JPS58180945A (en) 1982-04-16 1982-04-16 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS58180945A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284465A (en) * 1987-04-28 1988-11-21 ビーアンドダブリュー・ニュークリア・サービス・カンパニー Contact ultrasonic transducer head
JPH11326288A (en) * 1998-05-15 1999-11-26 Babcock Hitachi Kk Probe hold mechanism for use in tube inner face
JP2002340866A (en) * 2001-05-21 2002-11-27 Ishikawajima Harima Heavy Ind Co Ltd Nozzle flaw detector
KR101254123B1 (en) * 2011-11-11 2013-04-12 주식회사 포스코 Apparatus for forming grindstone-mark
JP2015526742A (en) * 2012-09-05 2015-09-10 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Floating head contour following holder for ultrasonic inspection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461589A (en) * 1977-10-26 1979-05-17 Hitachi Ltd Ultrasonic locating device for nozzle root
JPS5663250A (en) * 1979-10-26 1981-05-29 Mitsubishi Electric Corp Flaw inspecting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461589A (en) * 1977-10-26 1979-05-17 Hitachi Ltd Ultrasonic locating device for nozzle root
JPS5663250A (en) * 1979-10-26 1981-05-29 Mitsubishi Electric Corp Flaw inspecting apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284465A (en) * 1987-04-28 1988-11-21 ビーアンドダブリュー・ニュークリア・サービス・カンパニー Contact ultrasonic transducer head
JPH11326288A (en) * 1998-05-15 1999-11-26 Babcock Hitachi Kk Probe hold mechanism for use in tube inner face
JP2002340866A (en) * 2001-05-21 2002-11-27 Ishikawajima Harima Heavy Ind Co Ltd Nozzle flaw detector
KR101254123B1 (en) * 2011-11-11 2013-04-12 주식회사 포스코 Apparatus for forming grindstone-mark
JP2015526742A (en) * 2012-09-05 2015-09-10 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Floating head contour following holder for ultrasonic inspection

Similar Documents

Publication Publication Date Title
US9470658B2 (en) Self-contained holonomic tracking method and apparatus for non-destructive inspection
JPH0134342B2 (en)
CN106568786B (en) A kind of ray automatic detection device of small-sized cylinder girth joint
JPS58180945A (en) Ultrasonic flaw detector
JPH0338149B2 (en)
CN103808740A (en) Detection method based on computer hierarchal scanning imaging CL (Computer Laminography) system
JPH0245822B2 (en)
JP5198112B2 (en) Piping inspection device and inspection method thereof
CA1148249A (en) Device for the inspection of welds
JPH0664028B2 (en) Ultrasonic flaw detection method
JP2554157B2 (en) Tooth profile error measurement method
CN108639098B (en) Device and method for dynamically measuring geometric parameters of train wheels on line
JPH028657B2 (en)
JP2557944Y2 (en) Underwater mobile inspection system
CN107507257A (en) A kind of big visual field indexing migration reconstruction method and its system
CN218872920U (en) Dual-mode ray detection device
JPS5913706B2 (en) Weld position detection device
JPS61250553A (en) Trackless type scanning apparatus for inspecting pipe
CN117330009A (en) Method for detecting propeller blade by using three-coordinate measuring machine
JPH1082771A (en) Inspection device for drum section of vessel
JPH0434452Y2 (en)
JPH06273393A (en) Ultrasonic flaw detector
JP3523113B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JPH0346375Y2 (en)
Nepomuceno et al. Ultrasonic inspection and examination of steel sheets and plates that were used in the production of spherical sectors