JPS5818077A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5818077A
JPS5818077A JP11572981A JP11572981A JPS5818077A JP S5818077 A JPS5818077 A JP S5818077A JP 11572981 A JP11572981 A JP 11572981A JP 11572981 A JP11572981 A JP 11572981A JP S5818077 A JPS5818077 A JP S5818077A
Authority
JP
Japan
Prior art keywords
refrigerator
compressor
suction pipe
check valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11572981A
Other languages
Japanese (ja)
Inventor
均 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP11572981A priority Critical patent/JPS5818077A/en
Publication of JPS5818077A publication Critical patent/JPS5818077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷却システムを構成する圧縮機としてロータリ
コンプレッサー等の高圧容器タイプの圧縮機を使用し、
庫内温度制御を前記圧縮機の運転を0N−OFFさせる
ことにより行なう冷蔵庫の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a high-pressure container type compressor such as a rotary compressor as a compressor constituting a cooling system,
The present invention relates to an improvement of a refrigerator in which the temperature inside the refrigerator is controlled by turning the compressor ON and OFF.

従来よりこの種の電気冷蔵庫においては庫内に設けた温
度検知サーモスタットにより冷却システムを成す圧縮機
の運転を0N−OFF制御することにより庫内温度を所
定の温度に制御している。
Conventionally, in this type of electric refrigerator, the temperature inside the refrigerator is controlled to a predetermined temperature by ON-OFF control of the operation of a compressor forming a cooling system using a temperature detection thermostat provided inside the refrigerator.

周知のように、冷却システムは圧縮機、凝縮器。As we all know, the cooling system consists of a compressor and a condenser.

キャピラリチー−プ、蒸発器を順次接続′して成り、運
転時には凝縮器に高温、高圧冷媒が、蒸発器内に低温、
低圧冷媒がそれぞれ存在している。
It consists of a capillary cheep and an evaporator connected in sequence.During operation, high-temperature, high-pressure refrigerant is in the condenser, and low-temperature, high-pressure refrigerant is in the evaporator.
Each has a low pressure refrigerant.

ところが高圧容器タイプの圧縮機は圧縮機内部が高圧で
あるため圧縮機の運転を停止せしめると、圧縮機及び凝
縮器内部に滞溜し、ている高温、高圧冷媒は、低温、低
圧に保持された蒸発器内へと流入しよ、うとする。圧縮
機の圧縮機構は運転中はオイルにより高、低圧を気密に
分離することは可能であるが、停止すると同時にオイル
の循環がなくなシこのオイルによる気密は不可能となり
、圧縮機内部の多量の高温、高圧冷媒は圧縮機吸込口よ
り蒸発器出口へと逆流し、冷蔵庫内の熱負荷1となる。
However, in a high-pressure container type compressor, the pressure inside the compressor is high, so when the compressor is stopped, the high-temperature, high-pressure refrigerant that has accumulated inside the compressor and condenser is maintained at a low temperature and low pressure. It tries to flow into the evaporator. While the compressor's compression mechanism is in operation, it is possible to airtightly separate high and low pressures using oil, but as soon as the compressor is stopped, the oil circulation stops, and airtightness due to this oil becomes impossible, resulting in a large amount of oil inside the compressor. The high-temperature, high-pressure refrigerant flows back from the compressor suction port to the evaporator outlet, creating a heat load of 1 inside the refrigerator.

3、 。3.

この種の欠点に対する改良として例えば実開昭55−9
6373号公報に示されるように圧縮機吸込口の手前に
逆止弁を設ける方法がとられているが蒸発器出口と逆止
弁との配管の一部が庫外に位置するため、この部分から
吸熱し、配管内の冷媒が加熱され、蒸発器へと流入する
と共に、蒸発器で放熱し、低温となった冷媒が前記庫外
に位置する配管部へ逆流する、いわゆるヒートパイプ現
象を起こし、庫内への熱負荷の増加となっていた。
For example, as an improvement to this kind of drawback,
As shown in Publication No. 6373, a method of installing a check valve in front of the compressor suction port has been adopted, but since a part of the piping between the evaporator outlet and the check valve is located outside the refrigerator, this part The refrigerant in the piping is heated, flows into the evaporator, and radiates heat in the evaporator, causing the low-temperature refrigerant to flow back into the piping located outside the refrigerator, creating a so-called heat pipe phenomenon. This resulted in an increase in the heat load inside the refrigerator.

このような欠点に関し、本ア萌は蒸発器出口と圧縮機吸
入口との配管(以下サクションパイプという)に逆止弁
を介在し、これら逆止弁及びサクションパイプを断熱材
中に横設するのみならず、逆止弁より上流側のサクショ
ンパイプを庫内寄シに、下流側を庫外寄りに位置せしめ
ることにより上記欠点を改良するものである。
Regarding these drawbacks, this method involves interposing a check valve in the piping between the evaporator outlet and the compressor inlet (hereinafter referred to as the suction pipe), and installing the check valve and suction pipe horizontally in the insulation material. In addition, the above-mentioned drawbacks are improved by locating the suction pipe upstream of the check valve closer to the inside of the refrigerator and the downstream side closer to the outside of the refrigerator.

以下に本易朗の一実施例について添付図面に従がい説明
する。
An embodiment of Honyiro will be described below with reference to the accompanying drawings.

図において、1は冷蔵庫本体であり、断熱壁2より成る
キャビネット3の内部を上下に仕切る中仕切材4を設け
、上室を冷凍室6、下室を冷蔵室6に分割している。両
室5,6にはそれぞれ専用の冷凍室扉7、冷蔵室扉8を
有している。前記中仕切材4の内部には周知の冷却シス
テムの一部を成す蒸発器9と、庫内に冷気を送るファン
10を備え、冷凍室用冷気吹出口11、冷蔵室用冷気吹
出口12よシそれぞれの室6,6へ冷気を送り庫内を冷
却する。冷蔵室用冷気吹出口12には冷蔵室6内の温度
を検出し、前記冷蔵室用冷気吹出口12の開口面積を調
整するダンパ13を備えている。(このダンパ13は一
般にダンパーサーモスタットと呼ばれるもので従来周知
のものでよい)また冷凍室6上面には冷凍室6内の温度
を検出し、圧縮機14の運転を0N−OFFさせるサー
モスタット16を備えている。
In the figure, reference numeral 1 denotes a refrigerator body, and a partition member 4 is provided to partition the inside of a cabinet 3 made of a heat insulating wall 2 into upper and lower parts, and the upper chamber is divided into a freezing chamber 6 and the lower chamber into a refrigerator chamber 6. Both chambers 5 and 6 have dedicated freezer compartment doors 7 and refrigerator compartment doors 8, respectively. The interior of the partition 4 is equipped with an evaporator 9 that forms part of a well-known cooling system, and a fan 10 that sends cold air into the refrigerator. Cold air is sent to each chamber 6, 6 to cool the inside of the warehouse. The cold air outlet 12 for the refrigerator compartment is equipped with a damper 13 that detects the temperature inside the refrigerator compartment 6 and adjusts the opening area of the cold air outlet 12 for the refrigerator compartment. (This damper 13 is generally called a damper thermostat, and may be of a conventionally known type.) Furthermore, a thermostat 16 is provided on the upper surface of the freezer compartment 6 to detect the temperature inside the freezer compartment 6 and turn the operation of the compressor 14 ON-OFF. ing.

前記冷却システムは、密閉容器内部が高圧となるロータ
リー型圧縮機14(以下単に圧縮機と称す。)、凝縮′
器16、キャピラリチューブ17、蒸発器9.、を順次
接続して構成し、蒸発器9出口     ゛と圧縮機1
4吸込口との間には逆止弁18を設け、蒸発器9出口と
逆上弁18人口との逆止弁より上流側を第1のサクショ
ンパイプ19で、逆止弁18出口と圧縮機14吸込口と
の逆止弁より下流側を第2のサクションパイプ2oでそ
れぞれ接続している。第1のサクシ1ンバイプ19は蒸
発器9側の一部は中仕切材4中に配設しているが他の部
分の第1のサクションパイプ19及びこれと接続された
逆止弁18は断熱壁2中に埋設されている。また逆止弁
18、第1のサクションパイプ19Fi庫外からの吸熱
を少なくするため本体背面の断熱壁2の略中央もしくは
中央より庫内寄りに位置している。
The cooling system includes a rotary compressor 14 (hereinafter simply referred to as a compressor), which generates high pressure inside a closed container, and a condensing unit.
vessel 16, capillary tube 17, evaporator 9. , are connected in sequence, evaporator 9 outlet ゛ and compressor 1
A check valve 18 is provided between the 4 suction ports, and a first suction pipe 19 connects the check valve 18 outlet and the compressor to the upstream side of the check valve between the evaporator 9 outlet and the reversal valve 18 port. The downstream side of the check valve is connected to the suction port 14 by a second suction pipe 2o. A part of the first suction pipe 19 on the side of the evaporator 9 is disposed inside the partition material 4, but the other part of the first suction pipe 19 and the check valve 18 connected thereto are insulated. It is buried in wall 2. In addition, the check valve 18 and the first suction pipe 19Fi are located approximately in the center of the heat insulating wall 2 on the back of the main body or closer to the inside of the refrigerator than the center in order to reduce heat absorption from outside the refrigerator.

前記第1のサクションパイプ2oとキャピラリチ−プ1
7とは、熱的に接触されキャビラリテー−ブ17内の冷
媒の過冷却を行ない、冷凍能力の増加を図っている点に
ついては従来通シである。
The first suction pipe 2o and the capillary peak 1
7 is conventional in that the refrigerant in the cavity retainer 17 is brought into thermal contact and supercooled to increase the refrigerating capacity.

また、第2のサクションパイプ20は圧縮機停止時に、
圧縮機吸入口より逆流する高温高圧冷媒の次め加熱され
るが、キャピラリチー−プとは熱隔離されているためキ
ャピラリチ−プを加熱することなく、又、断熱材2中の
中央より庫外寄りに位置せしめ、庫内への放熱を抑えて
いる。
In addition, the second suction pipe 20 is operated when the compressor is stopped.
The high-temperature, high-pressure refrigerant flowing back from the compressor suction port is heated, but since it is thermally isolated from the capillary chest, the capillary chest is not heated, and the refrigerant is not heated outside the refrigerator from the center of the insulation material 2. It is located closer to the refrigerator to suppress heat radiation into the refrigerator.

次に上記構成による動作について説明する。Next, the operation of the above configuration will be explained.

冷凍宿5内に備えたサーモスタット16により圧縮機1
4及びファン1oを0N−OFF運転制御すると共に、
冷蔵室6に設けたダンパ13により冷蔵室用冷気吹出口
12の開口面積を調整し、冷凍室6、冷蔵室6をそれぞ
れ所定の温度に冷却する。
The compressor 1 is controlled by the thermostat 16 installed in the frozen accommodation 5.
4 and fan 1o to ON-OFF operation control,
The damper 13 provided in the refrigerator compartment 6 adjusts the opening area of the cold air outlet 12 for the refrigerator compartment, and cools the freezer compartment 6 and the refrigerator compartment 6 to respective predetermined temperatures.

冷却運転中は圧縮機14により第1のサクションパイプ
19より第2のサクションノ(イブ20内の圧力が低く
なり、逆止弁18の冷媒通路を開路し、正規冷却運転が
行なわれる。
During the cooling operation, the pressure in the second suction pipe 20 is lowered by the compressor 14 than in the first suction pipe 19, the refrigerant passage of the check valve 18 is opened, and a regular cooling operation is performed.

圧縮機14が停止すると同時に圧縮機14内のオイルに
よる高、低圧の気密が破壊され、圧縮機14内部の高温
、高圧冷媒は第2のサクションノ(イブ2oへ、と逆流
する。このため、第1のサクションパイプ19と第2の
サクシ目ンノくイブ20内との圧力が反転し、逆止弁1
8の冷媒通路が閉路される。
At the same time as the compressor 14 stops, the high and low pressure airtightness due to the oil in the compressor 14 is destroyed, and the high temperature, high pressure refrigerant inside the compressor 14 flows back to the second suction no. (eve 2o).For this reason, The pressure between the first suction pipe 19 and the second suction pipe 20 is reversed, and the check valve 1
No. 8 refrigerant passage is closed.

また、圧縮機14停止時には、高温、高圧冷媒が圧縮機
14よシ、逆流し、第2のサクションパイプ2oへ流入
するが、逆止弁18の流路が閉路されているため、第1
のサクションパイプ19へは流入せず、第1のサクショ
ンパイプ19及びこれと熱交換的に接触しているキャビ
ラリチー−プ17を加熱することはない。さらに、前記
第2のサクションパイプ2oは断熱壁2内の中央よシ庫
外寄りに位置しているため、冷蔵室6内より高温となる
が、冷蔵室6への放熱を抑制できる。逆に、第1のサク
ションパイプ19及びこれより表面積が大きく、吸熱量
の大きな逆止弁18は断熱壁2内の中央より庫内寄シに
位置しているため、庫外から吸熱し、蒸発器9の加熱源
とはなシ得ない。
Furthermore, when the compressor 14 is stopped, high-temperature, high-pressure refrigerant flows backward through the compressor 14 and flows into the second suction pipe 2o, but since the flow path of the check valve 18 is closed, the first
The first suction pipe 19 does not flow into the first suction pipe 19, and the first suction pipe 19 and the cavity chest 17 in heat exchange contact with the first suction pipe 19 are not heated. Furthermore, since the second suction pipe 2o is located closer to the outside of the refrigerator than the center of the heat insulating wall 2, the temperature is higher than that inside the refrigerator compartment 6, but heat radiation to the refrigerator compartment 6 can be suppressed. Conversely, the first suction pipe 19 and the check valve 18, which has a larger surface area and a larger amount of heat absorption, are located closer to the inside of the refrigerator than the center of the insulation wall 2, so they absorb heat from outside the refrigerator and prevent evaporation. It cannot be used as a heating source for the vessel 9.

以−Fの効果の上に、わずかではあるが、逆止弁18は
反転動作する時には騒音を発生していたが、逆止弁18
はその全体を断熱壁2にて被われているため、騒音をほ
とんど皆無とすることができる。
In addition to the above-F effect, the check valve 18 generated some noise when operating in reverse, although the noise was generated by the check valve 18.
Since the whole is covered with the heat insulating wall 2, noise can be almost completely eliminated.

以上の説明からも明らかなように本驕刷による冷蔵庫は
高圧容器タイプの圧縮機、凝縮器、キャピラリチー−ブ
、蒸発器を順次接続して構成する冷却システムにより庫
内を冷却すると共に、圧縮機のON−OFF運転により
庫内温度制御を行な;)l−’7v、z;Iz、蒸発器
出口と逆止弁入口との間の逆止弁上流側を第1のサクシ
ョンパイプ、逆止弁出口と圧縮機吸入口の間の逆止弁下
流側を第2のサクションパイプにて接続してなり、前記
逆止弁及び第1のザクジョンパイプを冷蔵庫の断熱壁中
に埋設すると共に、第1のサクションパイプとキャピラ
リチューブとを交熱的に接触せしめてなるものであるか
ら、冷却運転は従来と比較し全で悪影響がなく、運転停
止時に、圧縮機吸入口から蒸発器への高温冷媒の逆流、
逆止弁、サクションパイプからの吸熱を防止し、蒸発器
への熱負荷の流入を完全に排除することが可能となるば
かりでなく、騒音の点からも改善された冷蔵庫を提供で
きるものである。
As is clear from the above explanation, the refrigerator according to this printing uses a cooling system consisting of a high-pressure container type compressor, a condenser, a capillary tube, and an evaporator connected in sequence to cool the inside of the refrigerator. The temperature inside the refrigerator is controlled by ON-OFF operation of the machine; The downstream side of the check valve between the stop valve outlet and the compressor suction port is connected by a second suction pipe, and the check valve and the first suction pipe are buried in the heat insulating wall of the refrigerator. , the first suction pipe and the capillary tube are brought into thermal contact with each other, so there is no adverse effect on the cooling operation compared to conventional methods, and when the operation is stopped, the air flow from the compressor suction port to the evaporator is reduced. backflow of high temperature refrigerant;
This not only makes it possible to prevent heat absorption from the check valve and suction pipe and completely eliminate the heat load flowing into the evaporator, but also provides a refrigerator with improved noise. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本裕畷の一実施例を示す冷蔵庫の縦断面図である
。 2・・・・・・断熱材層9・・・・・・冷却器・14・
・・・・・圧縮機)16・・・・・・凝縮器117・・
・・・・キャピラリチューブ、18 、、、、、、逆止
弁、19 、、、、、、第1サクシヨンパイプ、20 
、、、、、、第2サクシヨンパイプ。
The drawing is a longitudinal sectional view of a refrigerator showing one embodiment of the present invention. 2... Heat insulation layer 9... Cooler 14.
... Compressor) 16 ... Condenser 117 ...
...Capillary tube, 18, Check valve, 19, First suction pipe, 20
,,,,,Second suction pipe.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、キャピラリチューブ、蒸発器を順次接
続して構成する冷却システムにより、庫内を冷却すると
共に圧縮機の0N−OFF運転により庫内温度制御を行
ない、かつ前記蒸発器出口と圧縮機吸入口とを逆止弁を
介在したサクションパイプにて接続し、このサクション
パイプ及び逆止弁を断熱壁中に埋設すると共に、サクシ
ョンパイプの逆止弁より上流側を断熱壁の中央より庫内
寄り側に、逆上弁より下流側を断熱壁の中央より庫外寄
り側にそれぞれ配設したことを特徴とした冷蔵庫。
A cooling system consisting of a compressor, a condenser, a capillary tube, and an evaporator are connected in sequence to cool the inside of the refrigerator and control the temperature inside the refrigerator by turning the compressor on and off. Connect the machine suction port with a suction pipe with a check valve in between, and bury the suction pipe and check valve in the insulation wall, and connect the suction pipe upstream of the check valve to the storage space from the center of the insulation wall. The refrigerator is characterized in that the inward side and the downstream side of the reversal valve are disposed on the outside side from the center of the heat insulating wall.
JP11572981A 1981-07-23 1981-07-23 Refrigerator Pending JPS5818077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11572981A JPS5818077A (en) 1981-07-23 1981-07-23 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11572981A JPS5818077A (en) 1981-07-23 1981-07-23 Refrigerator

Publications (1)

Publication Number Publication Date
JPS5818077A true JPS5818077A (en) 1983-02-02

Family

ID=14669651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11572981A Pending JPS5818077A (en) 1981-07-23 1981-07-23 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5818077A (en)

Similar Documents

Publication Publication Date Title
JP6934603B2 (en) Refrigerator and cooling system
KR100687934B1 (en) Refrigerator and controlling method for the same
KR101324042B1 (en) Cooling storage
JP3746496B2 (en) refrigerator
JP4253957B2 (en) refrigerator
JP2000018796A (en) Vapor condensation preventing unit for refrigerator
JP6872689B2 (en) refrigerator
JPS5819677A (en) Refrigerator
JPH08296942A (en) Freezer-refrigerator and its controlling method
JPS5818077A (en) Refrigerator
JP5056026B2 (en) vending machine
KR100451710B1 (en) Refrigerator with cold regenerative room
US11852387B2 (en) Refrigerator
JPH0123708B2 (en)
JP2018004121A (en) Refrigerator
CN219390195U (en) Refrigerating apparatus
KR100704359B1 (en) The joint structure for separating fluid of kim-chi refrigerator
KR100786068B1 (en) separate-cooling type refrigerator
JPS6320944Y2 (en)
KR20040026463A (en) Device for heating and cooling apparatus of useing thermoelectic degauss
KR0117025Y1 (en) Heater exchanger
JPS6189444A (en) Refrigeration cycle
JPS592452Y2 (en) Refrigerator oil temperature control device
JPH0618189Y2 (en) Refrigerant circuit for refrigerated open case
JPS5816167A (en) Refrigerator