JPS58179551A - Production of copper wire - Google Patents

Production of copper wire

Info

Publication number
JPS58179551A
JPS58179551A JP6269482A JP6269482A JPS58179551A JP S58179551 A JPS58179551 A JP S58179551A JP 6269482 A JP6269482 A JP 6269482A JP 6269482 A JP6269482 A JP 6269482A JP S58179551 A JPS58179551 A JP S58179551A
Authority
JP
Japan
Prior art keywords
copper wire
molten metal
porous
copper
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6269482A
Other languages
Japanese (ja)
Inventor
Ikuji Kamimura
上村 郁二
Fumio Ono
小野 文夫
Kazuo Sawada
澤田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6269482A priority Critical patent/JPS58179551A/en
Publication of JPS58179551A publication Critical patent/JPS58179551A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/119Refining the metal by filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the disconnection during drawing and to produce a copper wire having good drawability, by segmenting a tundish to a receiving part and a tapping by means of a porous gate, removing the foreign matter in molten copper and killing the flow from the tapping part. CONSTITUTION:A tundish 1 which supplies molten metal into a casting device for producing a copper wire is constituted of a receiving part 2 which receives molten metal from a trough 5 and a tapping part 3 provided with a tap hole 6. Both parts are segmented by means of a porous gate 4 consisting of ceramics. Said gate 4 is preferably of 0.5-3mm. average hole size and 50-90% voids, and is provided with the relation 200/alpha<=T<=700/alpha wherein the thickness thereof; Tcm and void content alpha%, so that the effect of removing foreign matter and killing the flow of the molten copper is provided without causing clogging in a short time and the substantial strength is obtained. The material to be used for said gate is preferably cordierite or the like having good heat resistance.

Description

【発明の詳細な説明】 本発明は、伸線性の良い銅線を製造するだめの方法に関
するもので、特に伸線加工時に断線発生の少々い銅線を
得るための溶湯の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a copper wire with good wire drawability, and in particular to a method for processing molten metal to obtain a copper wire that is less likely to break during wire drawing. be.

近年電子工業の発達と共に機器の小型化が進み、使用さ
れる巻線や配線用電線なども益々細線化する傾向にある
。又一方伸線作業能率の点からも伸線加工速度の増加や
、そのような条件下でも伸線加工中における断線発生が
少ないことが一層強く望まれるようになって米た。
In recent years, with the development of the electronic industry, devices have become smaller and smaller, and the winding wires and wiring wires used are also becoming thinner. On the other hand, from the point of view of wire drawing efficiency, it has become even more desirable to increase the wire drawing speed and to reduce the occurrence of wire breakage during wire drawing even under such conditions.

本発明は、上述の型詰に応じる銅線を得るため成された
もので、鋳造に当り溶湯を特殊なタンプ。
The present invention was made in order to obtain a copper wire that can be molded as described above, and for casting, the molten metal is poured into a special tamp.

イッシュを用いて処理することにより、伸線性が大幅に
向上し、伸線加工時の断線発生が少ない銅線を製jli
する方法を提供せんとするものである。
By processing with ish, the drawability is greatly improved and copper wire is produced with less breakage during wire drawing.
The aim is to provide a method for doing so.

不発114は、溶湯を受ける受湯部と溶湯を出湯する出
湯部とより成り、画部分の間をセラミックより成る多孔
体堰で区切ったタンディツシュを用いて鋳造することを
特徴とする銅線の製造方法である。
The dud 114 is a production of copper wire characterized by casting using a tundish consisting of a receiving part for receiving molten metal and a tapping part for dispensing the molten metal, and the drawing part is separated by a porous weir made of ceramic. It's a method.

不発り1方法により製造される銅線は、タフピッチ銅さ
無酸素銅、脱酸銅等の純銅又は銅合金より成る線である
The copper wire manufactured by the non-explosion 1 method is a wire made of pure copper or copper alloy, such as tough pitch copper, oxygen-free copper, deoxidized copper, etc.

本発明において、鋳造の方法は、連続鋳造(例ホイルア
ンドベルト方式、ツインベルト方式等)、棹銅鋳造、そ
の他の鋳造方式のいずれであっても良い。
In the present invention, the casting method may be continuous casting (eg, foil and belt method, twin belt method, etc.), round copper casting, or other casting methods.

又タンティッシュとは、鋳造機へ所望の流量でρψ揚を
供給するための出湯口を有する湯だまり部であり、例え
ば連続鋳造の場合のように注湯量を微妙に調整したりす
るために一般に設置されるものである。その形状は、例
えば第1図に示すような底部に出fMJ1+を有するも
の(含、保持1弐のもの)でも、叉第3図に示すように
鋳造機直前で溶湯を若干酸溜め、この傾斜量を連続的に
制御して所望の流量で鋳造機に注湯するもの(注湯用ト
ラフ七dう)であっても良い。
In addition, the tongue tissue is a tundish part that has an outlet for supplying ρψ to the casting machine at a desired flow rate, and is generally used to finely adjust the amount of poured molten metal, such as in continuous casting. It will be installed. For example, even if the shape has fMJ1+ at the bottom as shown in Fig. 1 (including the one with holding 12), the molten metal may be slightly acidic in front of the casting machine as shown in Fig. 3, and the slope It may be possible to continuously control the amount and pour the molten metal into the casting machine at a desired flow rate (seven troughs for pouring the molten metal).

以下、本発明を図面を用いて実施例により説明する。Hereinafter, the present invention will be explained by examples using the drawings.

第1図は本発明方法の実施例に用いられるタンディツシ
ュの例を示す縦断面図である。図においてクシティッシ
ュ1は溶湯を受ける受湯部2と、溶湯を出湯する出湯部
3とより成り、それらの間をセラミツタより成る多孔体
堰4で区切られている。
FIG. 1 is a longitudinal sectional view showing an example of a tundish used in an embodiment of the method of the present invention. In the figure, a comb tissue 1 consists of a receiving part 2 for receiving molten metal and a tapping part 3 for tapping the molten metal, and a porous weir 4 made of ceramic ivy separates them.

5はトラフで、6け出湯口である。5 is a trough, and there are 6 spouts.

次に、第3図〜第5図はタンディツシュが注湯量トラフ
の場合を説明する図である。図において第1図と同一の
符号はそれぞれ同一の部分を示す。
Next, FIGS. 3 to 5 are diagrams for explaining the case where the tundish is a pouring amount trough. In the figure, the same reference numerals as in FIG. 1 indicate the same parts.

第3図はツインベルト方式連続鋳造機に注湯する状態を
示す側面図である。図において、Cはツインベルト方式
連続鋳造機であり、上下1対の対向する金属ベルト9,
9と、銅合金ブロック群を連結した左右1対のサイドダ
ム1oとがら構成される鋳型部へ、注湯用トラフ11か
ら鋳造速度にLr; シて鋳ii、41部での未凝固液
面を一定として、乱流を11じて巻込みなどを生じない
ように制御して注7易するものである。しかし従来トラ
フ11の傾斜を食史したりする際、トラフ内の場面の波
打ちや、ストラフ11への輸送路(樋)からの落下流に
よっても21場綱も一定にし璧<、又鋳型部での乱流も
’1.し易かった。このため従来一つの案として、第4
図に例を示すような構造の注湯用トラフ41を使用して
、中間に障キ42を設け、受湯時の落下流の影響を弱め
たり、又同時にスラグ類の注湯時の混入を防11−する
「夫も行なわれた。しかし前述の間鴇の完1゛な解決は
得られず、又スラグ類が注湯流に巻込捷ねて鋳望部に混
入することもあった。
FIG. 3 is a side view showing a state in which molten metal is poured into a twin-belt continuous casting machine. In the figure, C is a twin-belt continuous casting machine, with a pair of upper and lower metal belts 9,
9 and a pair of left and right side dams 1o connecting copper alloy block groups, from the pouring trough 11 to the casting speed Lr; As a result, turbulent flow is controlled to prevent entrainment and the like. However, conventionally, when adjusting the slope of the trough 11, the 21 field line was kept constant even due to the undulation of the scene inside the trough or the falling flow from the transport path (gutter) to the trough 11, and the mold part The turbulence of '1. It was easy. For this reason, one of the conventional plans is to
A pouring trough 41 having the structure as shown in the figure is used, and a barrier 42 is provided in the middle to weaken the influence of the falling flow when receiving the hot water, and at the same time to prevent slag from getting mixed in when pouring the hot metal. Prevention 11 - "My husband also carried out this process. However, a complete solution to the above-mentioned casting problem was not obtained, and slag sometimes got caught up in the pouring flow and got mixed into the casting area. .

第5図(イ)、(ロ)はそわぞれ本発明方法の実施例に
用いられるタンティッシュ(注湯量トラフ)を示を縦断
面図である。(イ)図に示すものは、注湯用トラフ21
の中央部近傍にセラミックより成る多孔体堰24を配し
たもので、(ロ)図に示すものは、注湯用トラフ31の
中間部に、セラミックより成る多孔(4j RIt 3
5および同様の多孔体堰34を配したものである022
は受湯部、23は出湯部である。多孔体堰24、84 
、多孔体障壁35は、例えば空孔率75%、平均粒径2
mm、r#さ80mmの多孔体物質より成るものである
FIGS. 5(A) and 5(B) are longitudinal sectional views showing a tongue tissue (molten metal pouring amount trough) used in an embodiment of the method of the present invention. (a) The one shown in the figure is the pouring trough 21
A porous weir 24 made of ceramic is arranged near the center of the trough 31. In the case shown in Fig.
5 and 022, which is equipped with a similar porous weir 34.
23 is a hot water receiving part, and 23 is a hot water outlet part. Porous weir 24, 84
, the porous barrier 35 has a porosity of 75% and an average particle size of 2, for example.
It is made of a porous material with a diameter of 80 mm and r#.

こhらの多孔体物質により、トラフ21 、31の傾き
による溶湯面の波動の発生が減少し、又受湯時の落下流
も静鎮され、注湯口26から安定した溶湯が鋳型部に注
湯され、未凝固部液面の変動も少なく、又この部分での
乱流を生じることも少なくなった。さらに上流から混入
したスラグ類が多孔体物質で捕捉される効果もあり、ス
ラグ類の巻込みが減少した。
These porous materials reduce the generation of waves on the molten metal surface due to the inclination of the troughs 21 and 31, and also calm down the falling flow when receiving the molten metal, allowing stable molten metal to be poured into the mold from the pouring port 26. Fluctuations in the liquid level in the unsolidified area were small, and turbulence in this area was also reduced. Furthermore, the porous material had the effect of trapping slag mixed in from upstream, reducing entrainment of slag.

本発明において、セラミックより成る多孔体堰は、多孔
性(例、三次元網状骨格構造等)の中ラミyり又はセラ
ミック粒子の集合体(例、焼結体、充填棒等)75・ら
成る隔壁状のもので、その材質は、耐熱性の良い化合物
、例えu Al2O3,MgO、S i O,、。
In the present invention, the porous weir made of ceramic is made of a porous material (e.g., three-dimensional network skeleton structure, etc.) or an aggregate of ceramic particles (e.g., sintered body, packed rod, etc.) 75. It is like a partition wall, and its material is a compound with good heat resistance, such as Al2O3, MgO, SiO, etc.

TiO2、ZrO2、P、、05 、 CaO、S i
3N4. SiC等のうちが。
TiO2, ZrO2, P, 05, CaO, Si
3N4. Out of SiC etc.

ら選ばれた1種以上の物質からなり、溶銅との反応性、
溶銅の温度(一般に11oo0〜1200 ℃程度)て
の強度、使用時の繰返し熱衝撃により破損しにくい特・
Pl、σ1過件の11に1多孔体への加工性といった製
f1゛1−の問題などを考慮して適当に選択される。
It consists of one or more substances selected from
It has strength at the temperature of molten copper (generally around 1100 to 1200 degrees Celsius), and is resistant to damage due to repeated thermal shock during use.
Pl and σ1 are suitably selected in consideration of manufacturing problems such as processability into a porous body of 11 to 1.

これらの問題を考慮して工業的にはコープイライトがイ
1奨さねる。
In consideration of these problems, copierite is recommended industrially.

ここでコーチイライトとは、理論組成は2Mg02Ae
2045SiO2で表わされるセラミックであるが、M
gO,AI!203.5i02の喰の割合は大略Mg0
2〜14%、 A e20.25〜39%、  5i0
251〜65%の範囲であわば良く、又不「拝避的に又
は故意に添加される若干1t)の曲、の酸化物などの混
入は何等差支えない。
Here, corchiilite has a theoretical composition of 2Mg02Ae.
It is a ceramic represented by 2045SiO2, but M
gO, AI! The eating ratio of 203.5i02 is approximately Mg0
2-14%, A e20.25-39%, 5i0
The content may be within the range of 251% to 65%, and there is no problem with the inclusion of some 1t oxide, etc., which may be added intentionally or unintentionally.

ここでコーチイライトが推奨される理由についてさらに
説り]すると、例えば石英ガラスのような材料は熱衝撃
には強いが、溶鋼の温度域で強度がなく、又アルミナや
スピネルは熱衝撃に弱く、多孔体の一部か破損し易い。
I will further explain why coachilite is recommended here] For example, materials such as quartz glass are strong against thermal shock, but they are not strong in the temperature range of molten steel, and alumina and spinel are weak against thermal shock. A part of the porous body is easily damaged.

又黒鉛などのように酸化′雰囲気で消耗し勧い材料も実
用し難い。このように使用時の温度や雰囲気と多孔体堰
の機能、又”A jf”iのしトhさを合せ考えると、
溶鋼に対してはコーチイライトが最適であることを本発
明者等は見出しだ。
Also, materials such as graphite, which are consumed in an oxidizing atmosphere, are difficult to put into practical use. Considering the temperature and atmosphere during use, the function of the porous weir, and the strength of "Ajf"i,
The present inventors have found that coachillite is optimal for molten steel.

第2図は多孔体の構造を模式的に示す図で、7はセラミ
ック粒子で、8はその粒体間の空孔である。
FIG. 2 is a diagram schematically showing the structure of a porous body, where 7 is a ceramic particle and 8 is a pore between the particles.

次に、本発明において、溶湯がタンテ゛イツシュ中で処
理される機構について説明する。
Next, in the present invention, a mechanism in which molten metal is processed in a container will be explained.

タンティッシュの受湯部にはトラフ(樋)などを通って
保持炉や溶解炉等からの溶湯が流入されるが、一般にこ
のような流入部は乱流を生じており、ガスや表面に浮遊
する酸化物などを巻込み易い。又出湯部はノズルやトラ
フを経て鋳型へ溶湯を所望流歇供給する部位である。本
発明のように受湯部と出湯部の間をセラミックより成す
る多孔体堰で区切ることにより、鋳造されるべき溶湯は
この多孔体堰の中を通過し、この間に受湯部内中の〆銅
が含有していた酸化物や他の耐火物又は鉄粉等の異物を
除去すると共に、受湯部の乱流が出湯部では静流となり
、鋳消時にガスや残存する異物が鋳塊内に混入すること
を極力防雨する。
Molten metal from a holding furnace, melting furnace, etc. flows into the receiving part of the tongue tissue through a trough, etc., but generally, such an inflow part creates turbulent flow, and there are gases and floating particles on the surface. It is easy to entrain oxides, etc. The tapping section is a part that supplies molten metal to the mold in a desired flow through a nozzle or a trough. By separating the receiving part and the tapping part with a porous weir made of ceramic as in the present invention, the molten metal to be cast passes through this porous weir, and during this time the molten metal in the receiving part is closed. In addition to removing foreign substances such as oxides contained in the copper, other refractories, and iron powder, the turbulent flow in the receiving section becomes a static flow in the tapping section, and gases and remaining foreign substances are removed from the ingot during casting. Prevent rain from getting mixed in as much as possible.

本発明において、セラミックより成る多孔体堰の・V均
孔径は、0.5 mm未満であると多孔体堰が酸化物等
によって短時間で閉塞してしまい、又3flを越えると
異物除去等の効果が十分でないなどの経験的知見を得た
ため、0.5〜3flが望ましい。
In the present invention, if the average pore diameter of the porous weir made of ceramic is less than 0.5 mm, the porous weir will become clogged with oxides etc. in a short time, and if it exceeds 3 fl, it will be difficult to remove foreign matter etc. Since we have obtained empirical knowledge that the effect is not sufficient, 0.5 to 3 fl is preferable.

kこの寥孔体堰の空孔率は、50%未満であるさ多孔体
堰の熱すγ晴が大きくなり易く、又見掛けのだ〜伝達も
大きくなるため、特に使用切めなどに目つ−まりを生じ
易く、又90%を越えると、セラミックは一般に脆いだ
め、溶銅流により多孔体の一部が破441 L劾くなる
恐れがあるため50〜90%が望捷しい。
If the porosity of this porous weir is less than 50%, the heat generated by the porous weir tends to increase, and the apparent heat transfer also increases, so be careful especially when the porous weir is used up. - 50 to 90% is preferable because it tends to cause clogging, and if it exceeds 90%, ceramics are generally brittle and there is a risk that a part of the porous body may break due to the flow of molten copper.

次に、溶銅かjf’ll過する多孔体堰の厚さくTc+
++)C−1、堰としての強度を有するのみならず、溶
銅流を静流化する効果や異物を濾過する効果を発揮して
、かつ11つまりの発生が少ないことが必要であり、+
光1llI/′l博は多孔体の気孔率(α%)との関係
−C1厚さか200/α未満の場合には濾過効果や静流
化クリ果か1汁でなく、又厚さが700/αを越えると
いたずらに1−1つ1りを発生させたり、価格的に畠価
となるたけで−)二連の効果のそれ以上の改善が少ない
慣を見出した。即ち、多孔体堰の厚さくTcm)と空孔
率(α%)の間には、200/α≦T≦700/α なる関係を有することが望ましい。
Next, the thickness of the porous weir through which the molten copper passes is Tc+
++) C-1, it is necessary not only to have the strength as a weir, but also to exhibit the effect of making the molten copper flow static and the effect of filtering foreign matter, and to have a low occurrence of 11 clogging, +
The relationship between the light 1llI/'l ratio and the porosity (α%) of the porous body - If the C1 thickness is less than 200/α, there will be no filtration effect or static flow, and the thickness will be 700%. We found that if the value exceeds /α, 1-1 1-1 is generated unnecessarily, and the price becomes prohibitive, and there is little further improvement of the double effect. That is, it is desirable that the relationship between the thickness (Tcm) of the porous weir and the porosity (α%) is 200/α≦T≦700/α.

実施例: 通常の電気銅をシャフト炉で連続的に溶解し、酸素含有
−を大略250〜800 ppmとした溶融タフピッチ
銅を第1図に示すようなタンディツシュ1の受湯部2に
供給し、多孔体堰4中を通過させて出湯部3へ送り、出
湯部から出湯口6(ノズル)を経てホイルアンドベルト
方式の連続鋳造機にて連続的に鋳造し、直ちに8朋φの
本発明による荒引線を製造した。ここで多孔体堰4には
、表1に示すセラミック多孔体を用いた。
Example: Ordinary electrolytic copper was continuously melted in a shaft furnace, and molten tough pitch copper with an oxygen content of approximately 250 to 800 ppm was supplied to the receiving part 2 of the tundish 1 as shown in FIG. The melt is passed through the porous weir 4 and sent to the tapping section 3, from which it is continuously cast in a foil-and-belt type continuous casting machine through the tapping port 6 (nozzle), and immediately the molten metal of the present invention having a diameter of 8 mm is cast. Manufactured Arahiki line. Here, the ceramic porous bodies shown in Table 1 were used for the porous weir 4.

なお、セラミンクより成る多孔体堰の平均空孔率、平均
孔径、堰の厚さが前述の推奨範囲内にあるものを本発明
用、少なくともいずれか一つが範囲外にあるものを不発
8A(2)とした。
In addition, porous weirs made of ceramics whose average porosity, average pore diameter, and weir thickness are within the above-mentioned recommended ranges are used in the present invention, and those where at least one of them is outside the range are classified as unexploded 8A (2 ).

又比較のため多孔体堰のない従来のタンディツシュを用
いて従来例の荒引線を製造した。
For comparison, a conventional rough wire was manufactured using a conventional tundish without a porous weir.

こハらの荒引線を26朋φに伸線し、さらに連続伸線機
を用いて0.18mmφおよび0.05flφに伸線し
た際の伸線性(断線1回当りの伸線重量)を測定d′ド
1萌した。
The wire drawability (drawing weight per wire breakage) was measured when the rough drawn wire was drawn to 26mmφ and then further drawn to 0.18mmφ and 0.05flφ using a continuous wire drawing machine. d'do1 was moe.

製造上程中の状態および伸線性は表2に示す通りである
。  ゛ 表     1 rl)*印は棺奨範囲外のものを示す。
The conditions during the manufacturing process and the wire drawability are as shown in Table 2.゛Table 1 rl) * indicates items outside the recommended range.

表     2 表2より、本発すIKよる!1〜畜11は、従来例に比
へ、断線発生が少なく、伸線性が向上することが分る。
Table 2 From Table 2, it depends on IK! It can be seen that samples No. 1 to No. 11 have less occurrence of wire breakage and improved wire drawability compared to the conventional example.

なお多孔体層の空孔率、平均孔径、堰の厚さが推奨範囲
内にあるAl−45は、多孔体層に1−1つまりを生じ
たり、欠落したりするこさもなく、安定した鋳造操業が
できたが、これらのうち少なくともいすねか一つが推奨
範囲外にあるムロ〜ん11は多孔体1振に11つまりゃ
欠落を生じ易かりたり、十分な評価用試料も得雉かった
りCJFL7)、静流幼果が1・汗でなかったり、又沢
過が十分でな7かったり< r、 8. *: 9 )
 して、伸線性向上効果も範囲内のものに比べ低かった
In addition, Al-45 whose porosity, average pore diameter, and weir thickness of the porous layer are within the recommended ranges allows for stable casting without causing 1-1 clogging or chipping of the porous layer. The operation was successful, but at least one of these was outside the recommended range, meaning that it was easy for the porous material to break off once per shake, and sufficient samples for evaluation were not obtained. CJFL7), the still young fruit is not 1. perspiration, or there is not enough water 7), 8. *: 9)
Therefore, the effect of improving wire drawability was also lower than those within the range.

以1−述べたように、本発明の銅線の製造方法は、kチ
揚を受ける受ン易部と溶湯を出湯する出湯部とよりIJ
kす、画部分の間をセラミックより成る多孔体層で区切
−)だタンティッシュを用いて鋳造するから、鋳造され
るべき溶湯は多孔体層の中を通過することにより、この
聞に受湯部内中の溶鋼が含有し7ていた醇fと物や師の
異物を除去すると共に、受)L、A +’+l−の乱、
油か出湯部では静流となり、鋳造時にガスや残存する異
物が鋳塊内に混入することを防出するので、銅線伸線時
の断線発生が少なく、非常に伸線性が向卜し、特に銅細
線の生産性が向上する効果かある。
As described above, the copper wire manufacturing method of the present invention has a receiving part for receiving k-chip and a tapping part for tapping molten metal.
(k) Since the image parts are separated by a porous layer made of ceramic and are cast using a tan tissue, the molten metal to be cast passes through the porous layer, and the molten metal receives the molten metal during this period. In addition to removing the molten steel contained in the molten steel and foreign substances from objects and materials, the disturbance of L, A +'+l-,
The oil flow is static in the tapping area, which prevents gas and residual foreign matter from entering the ingot during casting, resulting in less wire breakage during copper wire drawing and greatly improved wire drawability. In particular, it has the effect of improving the productivity of thin copper wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発I′!1.1方法の実施例に用いられるタ
ンティッシュの例を示す縦断面図である。 第2図は第1図に示す多孔体層の多孔体の構造を模式的
に示す図である。 第3図はツインベルト方式連続鋳造機に注湯する状態を
示す側面図である。 第4図は従来の注湯用トラフの例を示す縦断面図である
。 第5図(イ)、(ロ)はそれぞれ不発FJ1方法の他の
実施例に用いられるタンディツシュを示す縦断面図であ
る。 l・・タンティッシュ、2.22・・・1M部、312
3・・・1+1/M部、4,24.34−多孔体層、5
 トラフ、6・出湯口、7・・・セラミック粒子、8・
・・空孔、9・・・金属ベルト、10・・・サイドグム
、11.21.8+ 、旧?1g ?M用トラフ、26
・・・注湯口、35・・・多孔体障壁、42−障’¥1
<−・・ツインベルト方式連続鋳造機。 芳1図 72図
Figure 1 shows misfire I'! FIG. 1.1 is a longitudinal cross-sectional view showing an example of a tongue tissue used in an example of the method. FIG. 2 is a diagram schematically showing the structure of the porous body of the porous layer shown in FIG. 1. FIG. 3 is a side view showing a state in which molten metal is poured into a twin-belt continuous casting machine. FIG. 4 is a longitudinal sectional view showing an example of a conventional pouring trough. FIGS. 5A and 5B are longitudinal cross-sectional views showing tundishes used in other embodiments of the unexploded FJ1 method. l...Tan tissue, 2.22...1M part, 312
3...1+1/M part, 4, 24.34-porous layer, 5
Trough, 6. Outlet, 7. Ceramic particles, 8.
... Hole, 9... Metal belt, 10... Side gum, 11.21.8+, old? 1g? Trough for M, 26
... pouring spout, 35 ... porous barrier, 42-obstruction' ¥1
<-...Twin belt type continuous casting machine. Yoshi 1 figure 72 figure

Claims (1)

【特許請求の範囲】 (1)  溶湯を受ける受湯部と溶湯を出湯する出湯部
とより成り、画部分の間をセラミックより成る多孔体層
で区切ったタンディ・7シユを用いて鋳造することを特
徴とする銅線の製造方法。 (2)  セラミックより成る多孔体層が、平均子り径
が0.5〜3 txmであり、かつ空孔率が50〜90
%である特。(H請求の範囲第1項記載の銅線の製造 
ツノ ン去5、。 (、l)  セラミックより成る多孔体層が、その厚さ
をT am 、空孔率をα%とした時、200/α≦T
≦700/αなる関係を有する特許請求の範囲第1」口
叉は第2項記載の銅線の製造方法。 (4)  セラミックがコープイライトである特許請求
の範囲第1項、第2項又は第3項記載の銅線の装J2L
力法。 (5)  タン子イノシュが注油用トラフである特許請
求の範囲第1項、第2項、第3項又は第4項記載の銅線
の製造方法。 (6)鋳造がツインベルト方式連続鋳造機を用いて行な
われる特許請求の範囲第5項記載の銅線の製造方法。
[Scope of Claims] (1) Casting using a tandy-7, which consists of a receiving part for receiving molten metal and a tapping part for dispensing the molten metal, and the drawing parts are separated by a porous layer made of ceramic. A method for producing copper wire characterized by: (2) The porous layer made of ceramic has an average diameter of 0.5 to 3 txm and a porosity of 50 to 90
% special. (H Manufacture of copper wire according to claim 1)
Tsunon left 5. (, l) When the thickness of a porous layer made of ceramic is T am and the porosity is α%, 200/α≦T
The method for manufacturing a copper wire according to claim 1, wherein the fork has a relationship of ≦700/α. (4) Copper wire assembly J2L according to claim 1, 2 or 3, wherein the ceramic is copeillite.
force law. (5) The method for manufacturing a copper wire according to claim 1, 2, 3, or 4, wherein the tank inosu is a lubrication trough. (6) The method for producing a copper wire according to claim 5, wherein the casting is performed using a twin-belt continuous casting machine.
JP6269482A 1982-04-15 1982-04-15 Production of copper wire Pending JPS58179551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269482A JPS58179551A (en) 1982-04-15 1982-04-15 Production of copper wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269482A JPS58179551A (en) 1982-04-15 1982-04-15 Production of copper wire

Publications (1)

Publication Number Publication Date
JPS58179551A true JPS58179551A (en) 1983-10-20

Family

ID=13207653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269482A Pending JPS58179551A (en) 1982-04-15 1982-04-15 Production of copper wire

Country Status (1)

Country Link
JP (1) JPS58179551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221158A (en) * 1984-04-16 1985-11-05 Nisshin Steel Co Ltd Continuous casting installation
US4928748A (en) * 1987-05-06 1990-05-29 R. Guthrie Research Associates Inc. Continuous casting of thin metal strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221158A (en) * 1984-04-16 1985-11-05 Nisshin Steel Co Ltd Continuous casting installation
JPH0525585B2 (en) * 1984-04-16 1993-04-13 Nisshin Steel Co Ltd
US4928748A (en) * 1987-05-06 1990-05-29 R. Guthrie Research Associates Inc. Continuous casting of thin metal strip

Similar Documents

Publication Publication Date Title
EP0095645B1 (en) Method and apparatus for melting and casting metal
US4190404A (en) Method and apparatus for removing inclusion contaminants from metals and alloys
JPH09501871A (en) Refining molten metal
US4830090A (en) Method of continuously casting lead-bearing steel
JPS58179551A (en) Production of copper wire
WO2005018851A1 (en) Immersion nozzle for continuous casting of steel and meethod for continuous casting of steel using the immersion nozzle
JPH0641618B2 (en) Molten metal refining method and apparatus
WO2017192334A1 (en) High quality, void and inclusion free alloy wire
JPH11123509A (en) Immersion nozzle for continuous casting
US5171358A (en) Apparatus for producing solidified metals of high cleanliness
JP2007130653A (en) Immersion nozzle for continuous casting
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
FR2575094A1 (en) MOLTEN STEEL CASTING BUSH
JP4135386B2 (en) Steel continuous casting method
KR101062953B1 (en) Immersion nozzle
JPS63149057A (en) Method for cleaning molten steel in tundish
JPS58151948A (en) Continuous casting method
JPH0494851A (en) Nozzle for continuous casting
JPS58181832A (en) Treatment of copper melt
JP6746974B2 (en) Method for manufacturing copper-based material
JP2004188421A (en) Immersion nozzle for continuous casting and continuous casting method
RU2030963C1 (en) Method of producing of cast thermobimetal blank
JPS61215249A (en) Molding composition for steeling
JPH0237952A (en) Molten metal pouring device for centrifugal casting mold
JPS61127808A (en) Production of steel having high cleanliness