JPS58179536A - Oxidative casting mold - Google Patents

Oxidative casting mold

Info

Publication number
JPS58179536A
JPS58179536A JP6110582A JP6110582A JPS58179536A JP S58179536 A JPS58179536 A JP S58179536A JP 6110582 A JP6110582 A JP 6110582A JP 6110582 A JP6110582 A JP 6110582A JP S58179536 A JPS58179536 A JP S58179536A
Authority
JP
Japan
Prior art keywords
sand
binder
oxidizing agent
mold
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6110582A
Other languages
Japanese (ja)
Other versions
JPS6342529B2 (en
Inventor
Shigeo Endo
茂男 遠藤
Masaki Takemoto
嶽本 正基
Kimio Hirata
公男 平田
Akira Ito
明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP6110582A priority Critical patent/JPS58179536A/en
Publication of JPS58179536A publication Critical patent/JPS58179536A/en
Publication of JPS6342529B2 publication Critical patent/JPS6342529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To prevent deposition of carbon and generation of reducing gas in the case of mixing a binder in sand and producing a molding sand by compounding a specific amt. of an oxidizing agent with the sand and the binder. CONSTITUTION:>=0.3 part oxidizing agent is compounded with 100 parts sand (based on weight) in casting mold which is produced by mixing a binder with the sand. The compounding ratio of the binder and the oxidizing agent is usually preferably >=0.3 part oxidizing agent with 1 part binder. The representative oxidizing agent is nitrate, chlorate and peroxide, among which nitrate is more preferable. The binder may be org. or inorg. A phenolic resin is more preferable.

Description

【発明の詳細な説明】 本発明は酸化性鋳型に関するものである。[Detailed description of the invention] The present invention relates to oxidizable templates.

従来から鋳造物の大部分は砂型で製造される3、砂型の
結合剤には有機質結合剤と無機質結合剤とがある。
Traditionally, most castings have been manufactured using sand molds3, and binders for sand molds include organic binders and inorganic binders.

@線質結合剤にはフェノール樹脂やフラン樹脂等がある
。無機質結合剤には水ガ・ラスやピメント等がある。
@ Radioactive binders include phenolic resins and furan resins. Inorganic binders include water glass and pimento.

しかし、有機質結合剤は加熱されると多量の還元性ガス
を発、生する。あるいは、鋳造物表面に炭素を析出させ
る。また、砂に炭素を混入させる。還元性ガスや炭素は
高温の鋳造物を還元する。炭素の混入した砂は、さらに
強い還元作用をもたら會。
However, organic binders generate a large amount of reducing gas when heated. Alternatively, carbon is deposited on the surface of the casting. It also mixes carbon into the sand. Reducing gases and carbon reduce the hot casting. Sand mixed with carbon has an even stronger reducing effect.

還元作用(又は加炭作用)は銑鉄鋳物には好ましい。し
かし、通常の電鋳耐大物には好ましくない。
Reduction action (or carburization action) is preferred for pig iron castings. However, it is not preferable for ordinary electroformed large objects.

電鋳耐大物は主にガラス・タンク窯に使用される。この
ため、電鋳耐大物は溶融ガラスに対して十分な耐蝕性が
なければならない。
Large electroformed objects are mainly used in glass tank kilns. Therefore, electroformed large objects must have sufficient corrosion resistance against molten glass.

そして、緻密でなければならない。And it has to be precise.

しかし、電鋳耐大物が還元されると、発泡して局部的に
多孔質となる。多孔質の電鋳耐大物は溶融ガラスに対す
る耐蝕性に乏しい。
However, when a large electroformed material is reduced, it foams and becomes locally porous. Large porous electroformed materials have poor corrosion resistance against molten glass.

このため、溶融ガラスに接すると、溶融ガラスを発泡さ
せたり、ストーン(砂利)を発生させたりする。
Therefore, when it comes into contact with molten glass, it causes the molten glass to foam or generate stones (gravel).

従来から電鋳耐大物を製造する場合には、なるへ<ih
n用を受けないようにした。電鋳耐大物の原料は酸化性
雰囲気で溶融した。。
Conventionally, when manufacturing large electroformed objects, Naruhe<ih
I made it so that I don't receive the n version. The raw materials for electroformed large objects were melted in an oxidizing atmosphere. .

ぞして無機質結合剤の鋳型で鋳造した。しかし、それで
も多孔質の電鋳耐大物が時々発生した。
Then, it was cast in a mold with an inorganic binder. However, large porous electroformed objects still occasionally occurred.

本発明は、上記の実情に鑑みてなされたもので、炭素も
還元ガスも発生しない酸化性鋳型を提供すること番目的
とする。
The present invention has been made in view of the above-mentioned circumstances, and its object is to provide an oxidizing mold that does not generate carbon or reducing gas.

本発明の酸化性鋳型は、砂と結合剤にさらに酸化剤を配
合して製造される。酸化剤が鋳造物の還元を防ぐ。電鋳
耐大物を製造する場合、砂には11砂を用いるのが好ま
しい。
The oxidizing mold of the present invention is manufactured by adding an oxidizing agent to sand and a binder. The oxidizing agent prevents reduction of the casting. When manufacturing large electroformed objects, it is preferable to use 11 sand as the sand.

本発明で用いる酸化剤で代表的なものは硝酸塩、塩素I
!塩及び過酸化物である。このうち硝酸塩が好ましい。
Typical oxidizing agents used in the present invention are nitrates, chlorine I
! salts and peroxides. Among these, nitrates are preferred.

その理由は硝酸塩は結合剤及びその硬化剤と混合したと
き反らし難いからである。また1、硝酸塩は水にとけ難
く、熱分解温度が高いからである。硝酸塩には硝酸ソー
ダ、硝酸バリウム、硝酸カルシウムがある。このうち硝
酸バリウムが好ましい。その理由は中でも特に硝酸バリ
ウムは結合剤及び、その硬化剤と混合したとき反応し難
いからで、ある。また、硝酸バリウムは水にとけ難く、
熱分解温度が高いからである。塩素酸塩には塩素酸カリ
、塩素′酸ナトリウムがある。このうち塩素酸カリウム
が好ましい。その理由は塩素酸カリウムは耐湿(水)性
が優れているからである。また、塩素酸カリウムは水に
とけ難いからである。過酸化物の中では過酸化バリウム
が水にとけ難<(@水性が小さい)、熱分解温度も高く
、過酸化物中で最も安定であり、本発明の目的に合致す
る。
The reason is that nitrates are difficult to warp when mixed with binders and their hardeners. Another reason is that nitrates are difficult to dissolve in water and have a high thermal decomposition temperature. Nitrates include sodium nitrate, barium nitrate, and calcium nitrate. Among these, barium nitrate is preferred. This is because barium nitrate, in particular, is difficult to react with when mixed with a binder and its curing agent. In addition, barium nitrate is difficult to dissolve in water;
This is because the thermal decomposition temperature is high. Chlorates include potassium chlorate and sodium chlorate. Among these, potassium chlorate is preferred. The reason is that potassium chlorate has excellent moisture (water) resistance. This is also because potassium chlorate is difficult to dissolve in water. Among peroxides, barium peroxide is difficult to dissolve in water (@small aqueous property), has a high thermal decomposition temperature, and is the most stable among peroxides, thus meeting the purpose of the present invention.

第2表(後掲)に硝#I塩、塩素S!塩及び過酸化物の
融点、分解温度及び水に対する溶解度をそれぞれ掲げる
Table 2 (see below) shows nitrate #I salt, chlorine S! List the melting points, decomposition temperatures, and water solubility of salts and peroxides.

酸化剤には以上の他に金a酸化物がある。In addition to the above-mentioned oxidizing agents, there is gold a oxide.

しかし、金属酸化物は砂や鋳造物を汚染するので適当で
ない。
However, metal oxides are not suitable because they contaminate the sand and castings.

酸化剤の配合量は、酸化剤の種類、結合剤の量及び種類
で色々と異なる。しかし、通常砂100部(重饅比、以
下同様)に対し、酸化剤0.361r以上が好ましい。
The blending amount of the oxidizing agent varies depending on the type of oxidizing agent and the amount and type of binder. However, it is preferable that the oxidizing agent be 0.361 r or more per 100 parts of normal sand (heavy steam ratio, hereinafter the same).

さらに詳細に説明する。砂100部に対しく11!化剤
0.3部以上で炭素の析出を防止できる。酸化剤0.5
部以上で還元ガスをほぼ完全に酸化させることができる
。そして、酸化剤O・、75部以上では次のようになる
This will be explained in more detail. 11 to 100 parts of sand! Carbon precipitation can be prevented by using 0.3 parts or more of the curing agent. Oxidizing agent 0.5
% or more, the reducing gas can be almost completely oxidized. When the oxidizing agent O. is 75 parts or more, the following results are obtained.

原料を酸化性雰囲気で溶融したものは緻密。Materials melted in an oxidizing atmosphere are dense.

C・高品質の鋳造物となる。原料を還元性雰囲気で溶融
したものは多孔質の鋳造物となる。
C. It becomes a high quality casting. A porous cast product is obtained by melting raw materials in a reducing atmosphere.

多孔質の電鋳耐大物は溶融ガラスに対する耐蝕性に乏し
い。しかし、本発明の鋳型で製造した一合、同一形状の
耐火物では常にほぼ同じ気孔率を有している。つまり、
発泡に再現性がある。そして、気孔は耐火物全体に均・
−に分散する。この点、従来の多孔質電鋳耐火物と異な
る。従来の多孔質電鋳耐火物は気孔率が一定していなか
った。水弁、明の鋳型でWIJ造された多孔質電鋳耐火
物は、耐スポーリング竹に優れ−(いる。従って、例え
ば、ガラス窯の上部構造や天井の煉瓦として使用できる
Large porous electroformed materials have poor corrosion resistance against molten glass. However, refractories of the same shape manufactured using the mold of the present invention always have approximately the same porosity. In other words,
Foaming is reproducible. The pores are uniform throughout the refractory.
− Dispersed in In this respect, it differs from conventional porous electrocast refractories. Conventional porous electroformed refractories have inconsistent porosity. Porous electrocast refractories produced using water valve and Ming molds have excellent spalling resistance. Therefore, they can be used, for example, as bricks for the upper structure of glass kilns and ceilings.

本発明の鋳型で多孔質鋳造物ができる理由は明らかでは
ない。しかし、還元された融液が酸化性の雰囲気と反応
して発泡するためと考えられる。これはらようとガラス
製品の製造時に見れる発泡現象と類似している。
It is not clear why the mold of the present invention produces porous castings. However, it is thought that this is because the reduced melt reacts with the oxidizing atmosphere and foams. This phenomenon is similar to the foaming phenomenon seen during the manufacture of glass products.

しかし、砂100部に対して酸化剤が5部より多くなる
と、砂の耐火度を低下させる。
However, if the amount of oxidizing agent exceeds 5 parts per 100 parts of sand, the refractory level of the sand will decrease.

このため砂の寿命を短くしてしまう。また、酸化剤を過
剰に配合するとコストも^くなる。
This shortens the life of the sand. Also, if an excessive amount of oxidizing agent is added, the cost will also increase.

従って酸化・剤は5部以下が好ましい。Therefore, the amount of the oxidizing agent is preferably 5 parts or less.

本発明の酸化性鋳型に使用する結合剤は有機質のもので
も、無機質のものでも構わない。
The binder used in the oxidizable template of the present invention may be organic or inorganic.

しかし、結合強度の優れたものが好ましい。However, those with excellent bonding strength are preferred.

例えば、フェノール樹脂が好ましい。結合度の優れた結
合剤は、鋳型の製作をし易くする。
For example, phenolic resin is preferred. A binder with an excellent bonding degree facilitates mold production.

また、できた鋳型の取扱いを容易にする。It also facilitates handling of the mold.

結合剤と酸化剤の配合比は通常結合剤1部に対して酸化
剤0.3部以上が好ましい。また、フェノール樹脂には
硝酸バリウムが、水ガラスには過酸化バリウムが好まし
い。
The mixing ratio of the binder and the oxidizing agent is usually preferably 0.3 parts or more of the oxidizing agent to 1 part of the binder. Moreover, barium nitrate is preferable for the phenol resin, and barium peroxide is preferable for the water glass.

次に本発明の好適な実施例について説明する。Next, preferred embodiments of the present invention will be described.

本発明の酸化性鋳型でアルミナ−ジルコニア−シリカ質
の電鋳耐大物を製造した。
Alumina-zirconia-silica electroformed large objects were manufactured using the oxidizing mold of the present invention.

電鋳耐大物の原料はバイヤーアルミナ48部、ジル−1
250部及びソーダ灰2部からなる混合物である。この
混合物をアーク炉で溶融した、2溶融する場合、特公昭
36−5375号公報に記載されている方法によると溶
融雰囲気が酸化性となる。また、特公昭47−5093
号公報に記載されている方法によると溶融雰囲気が還元
性となる。
The raw materials for electroforming large-sized products are 48 parts of Bayer alumina and 1 part of Jill.
250 parts and 2 parts of soda ash. When this mixture is melted in an arc furnace, the melting atmosphere becomes oxidizing according to the method described in Japanese Patent Publication No. 36-5375. In addition, special public service No. 47-5093
According to the method described in the publication, the melting atmosphere becomes reducing.

原料の融液を本発明の酸化性鋳型に入れ徐冷して電&!
耐火物を製造した。使用した酸化t!iU型の基本調合
は、A−ストラリア産フリマントル珪砂100部、結合
剤として“′ファウントレッツDA−603”0.8部
(゛ファウントレツツI) A −603”はフェノー
ル自硬性レジンの商si)、それに硬化剤として“ファ
ウントレyッc−22−M” 0.24〜0.3部(゛
ファウントレッッC−22−M IIはフェノール自硬
性レジンの商標)であった。また、製造された電鋳耐大
物の化学組成はZr0□33%、A、 + 20349
 %、3i0.16%、Na、01.3%その他であっ
た。この電鋳耐大物が緻密な場合、がさ比重は3.7〜
3.8になる。
The raw material melt is placed in the oxidizing mold of the present invention, slowly cooled, and then heated!
Manufactured refractories. The oxidation t used! The basic formulation of the iU type is A-100 parts of Fremantle silica sand from Stralia, 0.8 parts of "Fountrez DA-603" as a binder (Funtrez I) A-603 is a phenol self-hardening resin. commercial product Si), and 0.24 to 0.3 parts of "Fountray C-22-M" as a hardening agent (Fountret C-22-M II is a trademark of phenol self-hardening resin). The chemical composition of the electroformed large product was Zr0□33%, A, +20349
%, 3i0.16%, Na, 01.3% and others. If this electroformed large resistant material is dense, the bulk specific gravity is 3.7~
It becomes 3.8.

鋳型に配合する酸化剤の種類及び配合量を色々かえた。The type and amount of oxidizing agent added to the mold was varied.

その結果を第1表(後掲)に示す。The results are shown in Table 1 (see below).

試料A−1〜A−7は原料の溶融雰囲気が酸化性のもの
である。試料B−1〜B−7は原料の溶融雰囲気が還元
性のものである。
In samples A-1 to A-7, the melting atmosphere of the raw materials is oxidizing. Samples B-1 to B-7 have a reducing atmosphere for melting the raw materials.

試料A−1は、従来の鋳型で製造したものである。試1
!4A−1の外表面には炭素が析出した。組織も局部的
に多孔質となった。従って、かさ比重も3.54と小さ
い。使用後の珪砂には炭素が混入して灰黒色となった。
Sample A-1 was manufactured using a conventional mold. Trial 1
! Carbon was deposited on the outer surface of 4A-1. The tissue also became locally porous. Therefore, the bulk specific gravity is also as small as 3.54. After use, the silica sand was mixed with carbon and turned grayish-black.

試11A−2〜Δ−7は本発明の鋳型で鋳造したもので
ある。酸化剤を配合すると炭素の析出が防」1され、鋳
込物外表面の色が白色からアイポリ−ホワイトになった
。組織も緻密になった。従って、かさ比重も3.7〜3
゜E3と大きい。使用後の珪砂には、炭素が混入しなか
った。
Samples 11A-2 to Δ-7 were cast using the mold of the present invention. When an oxidizing agent was added, carbon precipitation was prevented, and the color of the outer surface of the casting changed from white to eyelid white. The organization has also become more elaborate. Therefore, the bulk specific gravity is also 3.7~3
It's as big as ゜E3. No carbon was mixed into the silica sand after use.

試料B−1は、従来の鋳型で製造したものである。試料
B−1の外表面には炭素が析出した。しかし、組織は緻
密である。かさ比重も3.77と大きい。使用後の珪砂
には炭素が混入し灰黒色となった。
Sample B-1 was manufactured using a conventional mold. Carbon was deposited on the outer surface of sample B-1. However, the organization is dense. The bulk specific gravity is also large at 3.77. After use, the silica sand was contaminated with carbon and turned grayish-black.

試料B−1は、電鋳耐大物の中では異例である。、一般
的には、還元性雰囲気で溶融された融液を従来の鋳型で
製造した場合多孔質の電鋳耐大物となる。しかも、その
気孔率は一定ぐはない。
Sample B-1 is unusual among large electroformed products. In general, when a melt melted in a reducing atmosphere is produced using a conventional mold, a large porous electroformed product is produced. Moreover, its porosity is not constant.

試1.1 r3−2〜B−7は、本発明の鋳型で製造し
たもので・ある。酸化剤を配合すると炭素の析出が防n
された。しかし、組織は酸化剤の配合量の増加に伴い多
孔質となった。従って、かざ比重も小さくなった。しか
し、従来の多孔質電鋳耐火物と異なり発泡に再現性があ
り、均一であった。使用後の珪砂には炭素が混入しなか
った。
Trial 1.1 r3-2 to B-7 were manufactured using the mold of the present invention. Adding an oxidizing agent prevents carbon precipitation.
It was done. However, the structure became porous as the amount of oxidizing agent increased. Therefore, the specific gravity also became smaller. However, unlike conventional porous electrocast refractories, foaming was reproducible and uniform. No carbon was mixed into the silica sand after use.

本発明の酸化性鋳型で製造できるのは、電鋳耐大物ばか
りでない。他の鋳造物ももちろん製造できる。
The oxidizing mold of the present invention can be used to manufacture not only large electroformed objects. Other castings can of course also be produced.

本発明の酸化性鋳型は以上のように構成されているので
、炭素の析出と還元性ガスを防止することができる。従
って、鋳造物が還元されることがない。また、砂にも炭
素が混入でることがなく、再度利用するときに大変都合
がよい。
Since the oxidizing mold of the present invention is configured as described above, it is possible to prevent carbon precipitation and reducing gas. Therefore, the casting is not reduced. In addition, no carbon is mixed into the sand, which is very convenient when reusing it.

Claims (2)

【特許請求の範囲】[Claims] (1)砂に結合剤を混ぜて製造する鋳型におい゛C1前
記砂100部に対して0.3部以上の酸化剤を前記砂及
び前記結合剤に配合して製造したことを特徴とする酸化
性鋳型。
(1) In the mold manufactured by mixing sand with a binder, C1 oxidation characterized in that the mold is manufactured by mixing 0.3 parts or more of an oxidizing agent with the sand and the binder per 100 parts of the sand. Gender template.
(2)砂に結合剤を混ぜて製造する鋳型において、前記
結合剤1部に対して0.3部以上の酸化剤を前記砂及び
前記結合剤に配合して製造したことを特徴とする酸化性
鋳型。
(2) A mold manufactured by mixing a binder with sand, characterized in that the mold is manufactured by mixing 0.3 parts or more of an oxidizing agent with the sand and the binder per 1 part of the binder. Gender template.
JP6110582A 1982-04-14 1982-04-14 Oxidative casting mold Granted JPS58179536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6110582A JPS58179536A (en) 1982-04-14 1982-04-14 Oxidative casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6110582A JPS58179536A (en) 1982-04-14 1982-04-14 Oxidative casting mold

Publications (2)

Publication Number Publication Date
JPS58179536A true JPS58179536A (en) 1983-10-20
JPS6342529B2 JPS6342529B2 (en) 1988-08-24

Family

ID=13161461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6110582A Granted JPS58179536A (en) 1982-04-14 1982-04-14 Oxidative casting mold

Country Status (1)

Country Link
JP (1) JPS58179536A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920911B2 (en) * 2001-04-12 2005-07-26 General Motors Corporation Foundry sand with oxidation promoter
JP2005298277A (en) * 2004-04-13 2005-10-27 Saint-Gobain Tm Kk High-zirconia electrocasted refractory and manufacturing method thereof
US7188660B2 (en) * 2002-02-07 2007-03-13 Iko Minerals Gmbh Method for producing a molding sand that is in particular recirculated, for foundry purposes
JP2022116240A (en) * 2017-02-10 2022-08-09 旭有機材株式会社 Casting mold material composition and method for manufacturing casting mold using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037012A (en) * 1973-06-25 1975-04-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037012A (en) * 1973-06-25 1975-04-07

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920911B2 (en) * 2001-04-12 2005-07-26 General Motors Corporation Foundry sand with oxidation promoter
US7188660B2 (en) * 2002-02-07 2007-03-13 Iko Minerals Gmbh Method for producing a molding sand that is in particular recirculated, for foundry purposes
JP2005298277A (en) * 2004-04-13 2005-10-27 Saint-Gobain Tm Kk High-zirconia electrocasted refractory and manufacturing method thereof
JP4503339B2 (en) * 2004-04-13 2010-07-14 サンゴバン・ティーエム株式会社 High zirconia electroformed refractories and manufacturing method thereof
JP2022116240A (en) * 2017-02-10 2022-08-09 旭有機材株式会社 Casting mold material composition and method for manufacturing casting mold using the same

Also Published As

Publication number Publication date
JPS6342529B2 (en) 1988-08-24

Similar Documents

Publication Publication Date Title
US5328878A (en) Aluminum nitride refractory materials and methods for making the same
CN1042495A (en) Be used to form the suspension process of metal matrix composite
US2611712A (en) Method of preparing a cellulated glass body
JPS58179536A (en) Oxidative casting mold
JPH0673730B2 (en) Exothermic mold powder for continuous casting
JPS5844945A (en) Mold coating material for prevention of carburization and sulfurization used for organic self-hardening mold
GB2166432A (en) Refractory wear part for use in the pouring of molten metal
US3181958A (en) Refractory composition
JPH09164459A (en) Mold powder for continuous casting of steel
US2196075A (en) Refractory and method of making it
PT85733B (en) PROCESS FOR THE &#34;IN SITU&#34; DIMENSION OF THE METAL COMPONENT OF CERAMIC PRODUCTS AND PRODUCTS MANUFACTURED BY THE SAME
US4269799A (en) Method of forming fusion cast refractories
JP3751135B2 (en) Indefinite refractory
JP2001302281A (en) Foamed glass and method for producing the same
JPH1072264A (en) Production of alumina-zirconia-silica fused refractory
RU2226445C1 (en) Filler for burning-inhibiting coatings
JP3074921B2 (en) Vitreous sintered body
JPH03208869A (en) Porous high zirconia cast refractory and production thereof
SU598130A1 (en) Current-conducting coating for manufacturing ceramic casting moulds
JP2733644B2 (en) Non-phosphoric acid spray repair material
SU772670A1 (en) Suspension for producing casting moulds with use of investment patterns
JPH0557402A (en) Heat insulating material for low melting point metal horizontal continuous casting device
RU2207214C1 (en) Parting sand for molds and cores
JPH0530793B2 (en)
RU2028280C1 (en) Raw material mix for producing refractory articles