JPS58179309A - Detection of position between two shaded positions - Google Patents

Detection of position between two shaded positions

Info

Publication number
JPS58179309A
JPS58179309A JP6180082A JP6180082A JPS58179309A JP S58179309 A JPS58179309 A JP S58179309A JP 6180082 A JP6180082 A JP 6180082A JP 6180082 A JP6180082 A JP 6180082A JP S58179309 A JPS58179309 A JP S58179309A
Authority
JP
Japan
Prior art keywords
laser
deflector
light receiving
receiving plate
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6180082A
Other languages
Japanese (ja)
Other versions
JPH0126485B2 (en
Inventor
Tamotsu Nozawa
有 野沢
Yoshimasa Kondo
義正 近藤
Toshio Sato
俊男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoki Construction Co Ltd
Original Assignee
Aoki Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoki Construction Co Ltd filed Critical Aoki Construction Co Ltd
Priority to JP6180082A priority Critical patent/JPS58179309A/en
Publication of JPS58179309A publication Critical patent/JPS58179309A/en
Publication of JPH0126485B2 publication Critical patent/JPH0126485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To detect the position between the two points which cannot be viewed from each other as in a curved tunnel by installing a laser deflector having a mirror which can be deflected by two horizontal and vertical shafts between a laser range finder and a photodetection plate to be measured. CONSTITUTION:A laser range finder A and a reference photodetection plate D are installed in the place where the ground 1 is relatively stable as in a vertical shaft 2 of a tunnel. A photodetection plate B to be measured is provided in the rear part of a shield excavator 5 and a laser deflector E is installed at the intermediate between the range finder A and the plate B. The distance between the laser deflector and the photodetection plate to be measured is measured by reflecting the laser from the range finder A with the deflector E, conducting the laser to the plate D, measuring the solid angle assumed by the incident optical axis thereof and the reflected optical axis, calculating the position of the deflector E, conducting the laser from the range finder through the laser deflector to the home position of the plate B, calculating the deviation between the indicent light to said photodetection plate and the incident light to the deflector, further reflecting said incident laser on the photodetection plate to be measured and returning this laser through the laser deflector up to the laser range finder.

Description

【発明の詳細な説明】 本発明は曲がったトンネルの二地点間のように、途中に
障害物があって見通しのきかない二地点間における位置
検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting a position between two points where there are obstacles and visibility is difficult, such as between two points in a curved tunnel.

例えばシールド掘削−等により地中にトンネルを掘削す
る場合、掘削機を定められた計I[lIIに沿って正確
に推進させることが必要である。この場合トンネルの原
義部分における掘削作業は比較的容易であるが、トンネ
ルの湾曲部分では掘削機を計画線に沿って正確に推進さ
せることは非常にむずかしい。
For example, when excavating a tunnel underground by shield excavation, etc., it is necessary to accurately propel the excavator along a defined path. In this case, excavation work in the original part of the tunnel is relatively easy, but in curved parts of the tunnel it is very difficult to accurately propel the excavator along the planned line.

第1図は湾曲部分を有するトンネルの掘削途中を示す横
断平面図で、図中1は地盤、2は立坑、3はトンネルの
VtS部分、4はトンネルの湾曲部分、5はシールド掘
削−である。
Figure 1 is a cross-sectional plan view showing the middle of excavation of a tunnel with a curved part, in which 1 is the ground, 2 is the shaft, 3 is the VtS part of the tunnel, 4 is the curved part of the tunnel, and 5 is shield excavation. .

第8図〜第6図は上記のようなトンネルを掘削する場合
に行われていた従来の測定方法を示すもので、図中前記
符号と同一の符号は同等のものを一ルド掘削111Sの
後部に設けた被測定用受光板である0 第S図に示すようにトンネルの直線部分8を掘削する場
合は、定位置にセットした固定式のレーザ測距儀ムから
レーザを直接受光板Bにあてることにより、掘削va5
の位置を測定することができるが、掘削1II5が湾曲
部分4に達して、その結果受光板BがB′の位置に変位
してレーデ測距儀Aから射出するレーザ光線が受光板B
′から外れるようになった時は、レーデ測距儀ムをA′
位蓋に取りつけ直す必要がある。しかしながら、レーザ
測距儀Aを頻繁に移動させると誤差が生じやすい上に、
レーザ測距儀ムを固定する地盤が不安定である場合は、
しばしばレーザ測距儀Aの位置を測量し直さなければな
らず、掘削機6のふれか大きくレーザ測距儀Aからのレ
ーザ光が受光板Bの許容範囲から外れる場合は位置測定
が不能になるという問題点があった。
Figures 8 to 6 show the conventional measuring method used when excavating tunnels such as those mentioned above. When excavating a straight section 8 of a tunnel as shown in Figure S, the laser beam is directly directed to the light receiving plate B from a fixed laser range finder set in a fixed position. Drilling by applying va5
However, when the excavation 1II5 reaches the curved portion 4, the light receiving plate B is displaced to the position B', and the laser beam emitted from the radar rangefinder A is transmitted to the light receiving plate B.
' When the rangefinder starts to deviate from A',
It needs to be reattached to the lid. However, if the laser rangefinder A is moved frequently, errors tend to occur, and
If the ground on which the laser rangefinder is fixed is unstable,
It is often necessary to re-measure the position of the laser range finder A, and if the vibration of the excavator 6 is large and the laser beam from the laser range finder A is out of the tolerance range of the light receiving plate B, position measurement becomes impossible. There was a problem.

この固定式レーザ測距儀に対して、第8図に示すように
レーザの射出方向を上下および左右に偏向できるレーザ
測距儀ムを使用すれば、掘削115のふれが大きく受光
板がB′位置になってもレーザ測距儀をA′のように偏
向すれば追従できるが、掘削機が湾曲部4に移動すれば
、レーザ光線が邪魔されずに受光板に到達できる位置(
例えば81位1it)が最大使用範囲となるから、それ
以上掘削機6が進んだ場合は、レーザ測距儀ムの設置位
置を移動させなければならない。
In contrast to this fixed laser range finder, if a laser range finder that can deflect the laser emission direction up and down and left and right as shown in FIG. If the excavator moves to the curved part 4, it will be able to follow the position where the laser beam can reach the light receiving plate without being obstructed (
For example, the maximum usable range is 81st position 1 it), so if the excavator 6 advances further than that, the installation position of the laser range finder must be moved.

第4図はレーザ測距儀ムと受光板Bとの間にプリズム偏
向WOを設置した例であり、このようにすれば、測定可
能なA、B間の距離を延ばすことができるが、プリズム
偏向ICのプリズムを透過する光線の減衰率が高いため
、使用可能なム、B間の距離は限定されており、あまり
長くはない。
Figure 4 shows an example in which a prism deflection WO is installed between the laser rangefinder M and the light receiving plate B. In this way, the measurable distance between A and B can be extended, but the prism Since the attenuation rate of the light beam transmitted through the prism of the deflection IC is high, the usable distance between M and B is limited and is not very long.

また光波(電磁波)の種類によりプリズム偏向器Cを透
過する光の偏向角が異なるという間烏点があると異に、
このプリズム偏向器Oによる光の偏向角は非常に小さい
(8枚プリズムの場合の偏向角は約4°である)ため、
使用範囲はおのずから限定されるという問題点がある。
Also, depending on the type of light wave (electromagnetic wave), the deflection angle of the light that passes through the prism deflector C varies.
Since the deflection angle of the light by this prism deflector O is very small (the deflection angle in the case of 8 prisms is about 4°),
The problem is that the scope of use is naturally limited.

その他この方法では、レーザ測距儀ムとプリズム偏向器
0の設置位置は共に定点でなければならず、A、0間の
距離を測定するには別途の測量が会費であり、プリズム
偏向器Oの設置位置、を変えた場合は、その都度別途の
測量によってその設置位置を測定しなければならないと
いう問題点がある。
In addition, in this method, the installation positions of the laser rangefinder M and the prism deflector 0 must both be fixed points, and a separate survey is required to measure the distance between A and 0, and the prism deflector O If the installation location of the equipment is changed, there is a problem in that the installation location must be measured by a separate survey each time.

本発明は上述のような従来方法の問題点を解決するため
なされたもので、レーザ測距儀と被測定用受光板との間
に、水平および垂直の二軸によって偏向できる鏡を有す
るレーザ偏向器を設置する点が主な特徴であり、これに
より従来方法のように、レーザ測距儀を頻繁に取り付は
直す必要を除去すると共に、レーザ偏向器が多少変位し
ても取り付は直すことなく測定を継続でき、レーザ測距
委を移動させる時の誤差およびセグメント、地山の変位
に伴う誤差も容易に除去することができるようにして、
この種作業の能率を著しく向上させると共に、測定精度
も向上させることを目的とするものである。
The present invention was made in order to solve the problems of the conventional method as described above, and includes a laser deflection device having a mirror capable of deflecting along two axes, horizontal and vertical, between a laser range finder and a light receiving plate for measurement. The main feature is that the laser deflector can be installed easily, which eliminates the need to frequently reinstall the laser range finder as in conventional methods, and also allows the laser deflector to be reinstalled even if it is slightly displaced. Measurement can be continued without any trouble, and errors caused when moving the laser distance measurement board and errors caused by displacement of segments and ground can be easily removed.
The purpose is to significantly improve the efficiency of this type of work, as well as to improve measurement accuracy.

以下第5図〜第10図により本発明の実施例をシールド
掘削機を使用したトンネル掘削について説明する。図中
前記符号と同一の符号は同等のものである。
Embodiments of the present invention will be described below with reference to FIGS. 5 to 10 regarding tunnel excavation using a shield excavator. In the figure, the same symbols as the above-mentioned symbols are equivalent.

本実施例においては、第6図〜第7図に示すように、ま
ずトンネルの立坑Bのように比較的地盤1の安定した場
所にレーザ測距儀Aを設置すると共に、このレーデ測距
儀Aから水平および上下方向にある程度離れた位置に跣
準用受光板りを設置する。レーデ測距儀ムはレーザ照準
器(レーザ発振器)と距離計の機能を有するものとして
説明したが、ごの他レーザ発振器と距離計とをそれぞれ
別にして設置してもよいし、距離の計測には別の方法を
使用してもよい。
In this embodiment, as shown in FIGS. 6 and 7, a laser range finder A is first installed at a relatively stable location on the ground 1, such as a shaft B of a tunnel, and the laser range finder A is A light-receiving board for kneeling is installed at a certain distance from A in the horizontal and vertical directions. Although the radar rangefinder has been described as having the functions of a laser sight (laser oscillator) and a rangefinder, it is also possible to install the laser oscillator and rangefinder separately, or to measure distance. You may use other methods.

他方シールド掘削機5の後部(は被測定用受光板Bを設
け、レーザ測距儀Aと被測定用受光板Bとの中間におい
てレーデ測距儀ムと被測定用受光板Bをそれぞれ見通せ
る位置に、互に直交する二輪、例えば水平および垂直の
二軸によって偏向できる鏡を有するレーザ偏向器Eを設
置する。
On the other hand, the rear part of the shield excavator 5 is provided with a light receiving plate B to be measured, and a position where the radar rangefinder and the light receiving plate B to be measured can be seen between the laser rangefinder A and the light receiving plate B to be measured. A laser deflector E having two wheels perpendicular to each other, for example, a mirror that can be deflected by two horizontal and vertical axes, is installed.

第8図はこのレーザ偏向IIIの一例を示すもので、図
中6はレーデビーム、フはレーザ偏向器Eのケース(図
示せず)に設けた入射窓、8.9は固定ミラー、10.
11は回転ミラー、12は出射窓である。また18は回
転ミラーIOを支持する水平軸、14は回転ミラー11
を支持する垂直軸、15はこれら回転ミラー10.11
を回転開園するためのX%へXモータ、16は減速歯車
装置、17はエンコーダ、18は方向変換用−歯車装置
である。
FIG. 8 shows an example of this laser deflection III, in which 6 is a Radhe beam, F is an entrance window provided in the case (not shown) of the laser deflector E, 8.9 is a fixed mirror, and 10.
11 is a rotating mirror, and 12 is an exit window. Further, 18 is a horizontal axis that supports the rotating mirror IO, and 14 is the rotating mirror 11.
15 are the rotating mirrors 10.11
16 is a reduction gear device, 17 is an encoder, and 18 is a direction change gear device.

第9図はシールド掘削s5の後部に設ける被測定用受光
板Bの一例を示すもので、19はケース、80は枠形の
外側受光板、!1は中心部の受光板で、受光板go、g
xはその表面に多数の受光素子eを分布しである。なお
前記基準用受光板りの表面にも多数の受光素子を同じよ
うに分布しておき、受光位置を中心点に修正できるよう
にしておく。
FIG. 9 shows an example of the light-receiving plate B for measurement provided at the rear of the shield excavation s5, where 19 is a case, 80 is a frame-shaped outer light-receiving plate, and ! 1 is the light receiving plate in the center, light receiving plates go, g
x has a large number of light receiving elements e distributed on its surface. Note that a large number of light receiving elements are distributed in the same manner on the surface of the reference light receiving plate so that the light receiving position can be corrected to the center point.

また22は反射プリズムで、2δはこのプリズム22と
中心部の受光板21とを連結する伝動索であり、2−8
はこの索28を移動させるためのモータである。すなわ
ち受光板21で受光した談モータ24を駆動して紫28
を介してプリズムla2を矢印Fのように移動させるこ
とにより、入射光をプリズム22によって反射できるよ
うにしておく 。
Further, 22 is a reflecting prism, 2δ is a transmission cable connecting this prism 22 and the light receiving plate 21 in the center, and 2-8
is a motor for moving this cable 28. That is, when the light is received by the light receiving plate 21, the motor 24 is driven to generate the purple light 28.
By moving the prism la2 in the direction of arrow F through the prism 22, the incident light can be reflected by the prism 22.

!:10.図は本発明方法を利用してシールド掘削機に
よるトンネル掘削工法を電気的に制御するための酬―系
統を示す説明図である。
! :10. The figure is an explanatory diagram showing a control system for electrically controlling a tunnel excavation method using a shield excavator using the method of the present invention.

つぎにコンピュータを利用して行う本発明方法の手順を
説明する。第6図におけるレーザ測距儀Aと基準用受光
板りとの位置関係、すなわち水平距嵐mと、垂直距離n
はあらかじめ測定しておく。
Next, the procedure of the method of the present invention using a computer will be explained. The positional relationship between the laser rangefinder A and the reference light receiving plate in FIG. 6, that is, the horizontal distance m and the vertical distance n
Measure in advance.

そしてまず第10図の25で示すようにコンピュータを
ONとし、それによって26に示すようにレーザ測距儀
Aのレーザ発振器をONにしてレーデビーム6を投射す
る。ついで87で示すようにコンピュータからの信号に
よりシー4f偏向器Eのモター15を作動させることに
より二枚の回転ミラー10.11をそれぞれ回転させて
レーザビーム6をレーザ測距儀ムの距離針に反射させ、
28で示すようにレーザ偏向aXとレーザ測距儀A間の
距11!7.を測定し、この測定値を29で示すように
コンピュータに送ると共に、この測定した距離llとm
、Hよりα、βを計算し、基準用受光板りの方向へレー
デビーム6が反射するための二枚の回転ミラー10.1
1の角質を算出し、この噌号をレーザ偏向器Eに送って
二枚の回転ミラー10.11を回転させ、δ0で示すよ
うにJII11g用受光板りにレーずビーム6を反射さ
せる。基準用受光板りは投射されたレーデビーム6をう
けて、レーザビーム6が受光板り上のどの位置にあるか
ヲ盾号としてコンピュータに送り、コンピュータはこの
信号をうけて受光板りの中心にレーデビーム6を投射す
るための演算を行ってレーザ偏向器Eを修正し、受光板
りのセンターにレーデビーム6を投射するようにする。
First, the computer is turned on as shown at 25 in FIG. 10, and thereby the laser oscillator of the laser rangefinder A is turned on as shown at 26 to project the radar beam 6. Next, as shown at 87, the motor 15 of the sea 4f deflector E is activated by a signal from the computer, thereby rotating the two rotating mirrors 10 and 11, respectively, and directing the laser beam 6 to the distance needle of the laser rangefinder. reflect,
As shown at 28, the distance between the laser deflection aX and the laser rangefinder A is 11!7. , and send this measured value to the computer as shown at 29, as well as the measured distances ll and m.
, H, and calculate α and β from the two rotating mirrors 10.1 for reflecting the Radhe beam 6 in the direction of the reference light receiving plate.
1 is calculated, and this laser beam is sent to the laser deflector E, which rotates the two rotating mirrors 10 and 11 to reflect the laser beam 6 onto the light receiving plate for JII 11g as shown by δ0. The reference light receiving plate receives the projected laser beam 6 and sends the position of the laser beam 6 on the light receiving plate to the computer as a signal, and the computer receives this signal and moves it to the center of the light receiving plate. Calculations are performed to project the Radhe beam 6, the laser deflector E is corrected, and the Radhe beam 6 is projected onto the center of the light receiving plate.

この動作をくり返し、智準用受光板りの中心にレーザビ
ーム6が入射した時のレーザ偏向器Eの二枚の回転ミラ
ー10゜11の角度をそれぞれエンコーダ17を介して
81Gこ示すようにコンピュータに記憶させる。このよ
うにしてレーザビーム6の入射光軸と反射光軸とのなす
立体角α、βを測定してレーデ偏向器Eの位1鉦を算出
すると共に、掘削するトンネルの計画線に藁いて掘削機
5に設けた被測定用受光板°Bにレーデビーム6をレー
ザ偏向器Eで偏向させるための演算を行い、この信号を
83に示すようにレー+I″m陶器Eに送ってモータ1
5を介して回転ミラー10.11を回転させることによ
りレープビーム6を被測定用受光板Bに投射する。この
場合掘削機5の受光板Bが計画線から大きくずれて、そ
の結果レーザビーム6が受光板Bにあたらない時ハ、コ
ンピュータの信号によりレーデ偏向器Eの回転ミラー1
0.11を回転させることによりレーザビーム6を立体
的に振り、受光板Bが入射1号をコンピュータに送るま
でこの動作をくり返す。そして受光板Bからの入射信号
をうけると、コンピュータは上記動作を止め、受光板B
からの官営がどの位置にあるかを検知し、ついで受光板
Bの中心にレーデビーム6が投射するようにレーザ1向
11NCに圓号を送って回転ミラー10.11を回転さ
せる。
By repeating this operation, the angles of the two rotating mirrors 10° and 11 of the laser deflector E when the laser beam 6 is incident on the center of the light receiving plate for the light beam are input to the computer via the encoder 17 as shown in the figure. Make me remember. In this way, the solid angles α and β formed by the incident optical axis and the reflected optical axis of the laser beam 6 are measured, and the position of the Radhe deflector E is calculated. The laser deflector E performs calculations for deflecting the radar beam 6 onto the light-receiving plate °B for measurement provided in the machine 5, and sends this signal to the laser beam E as shown at 83, and the motor 1
By rotating the rotary mirror 10.11 via the mirror 5, the lep beam 6 is projected onto the light receiving plate B to be measured. In this case, when the light receiving plate B of the excavator 5 deviates greatly from the planned line and as a result, the laser beam 6 does not hit the light receiving plate B, the rotating mirror 1 of the Rade deflector E is activated by a signal from the computer.
The laser beam 6 is swung three-dimensionally by rotating the laser beam 0.11, and this operation is repeated until the light receiving plate B sends the incident number 1 to the computer. When receiving the incident signal from light receiving plate B, the computer stops the above operation and
Detecting the position of the government office from the center, a circular signal is sent to the laser 1 direction 11NC so that the radar beam 6 is projected onto the center of the light receiving plate B, and the rotating mirror 10.11 is rotated.

このようにしてδ8に示すように受光板Bのセンターに
レーデビーム6が入射したならば、84に示すようにレ
ーザ偏向IHGの回転ミラー10゜11のその時の角度
をエンコーダ17を介してコンビエータが記憶し、つい
で85に示すように距離測定を行なえるように、第9図
に示す中心部の受光板81を反射プリズムS12に切り
がえる信号を出す。
In this way, when the radar beam 6 is incident on the center of the light receiving plate B as shown at δ8, the combiator memorizes the angle of the rotating mirror 10°11 of the laser deflection IHG at that time via the encoder 17, as shown at 84. Then, as shown at 85, a signal is issued to switch the central light receiving plate 81 shown in FIG. 9 to the reflecting prism S12 so that distance measurement can be performed.

すなわちモータg4を回転させることにより、索28を
介して反射プリズム28を矢印Fのように移動させる。
That is, by rotating the motor g4, the reflective prism 28 is moved in the direction of arrow F via the cable 28.

このようにすればレーデビーム6は反射プリズム82に
より反射され、レーザ偏向11Cを介してレーデ測距儀
ムの距離計に入るかべ86に示すように距離の測定が行
なえる。すなわち第6図の距離!、がわかる。ついで8
7に示すように距離!、+7.を圓号としてコンピュー
タに送り、受光板Bのセンター入射時に記憶した角fl
r。
In this way, the radar beam 6 is reflected by the reflecting prism 82 and enters the rangefinder of the radar rangefinder via the laser deflection 11C, making it possible to measure the distance as shown in the wall 86. In other words, the distance shown in Figure 6! , I understand. Then 8
Distance as shown in 7! , +7. is sent to the computer as a round number, and the angle fl stored at the time of incidence at the center of light receiving plate B is
r.

θと距離!、により演算してシールド掘削II5の位置
を測定する。そしてこの測定位置と計画線に驕づく掘削
1!A5のあるべき位置との偏差をコンピュータにより
算出し、88に示すように偏差をなくす方向に掘削機を
掘進させる111ijを掘削@5に込れば自動的に掘削
機の位置修正を行うことができる。なおこの修正は手動
によって行うこともできることは云うまでもない。
θ and distance! , and calculates the position of the shield excavation II5. And excavation 1 proud of this measurement position and planned line! The computer calculates the deviation from the desired position of A5, and if 111ij, which causes the excavator to dig in the direction that eliminates the deviation as shown in 88, is included in Excavation@5, the position of the excavator can be automatically corrected. can. It goes without saying that this modification can also be done manually.

以上は掘削機5に対する第1回目の修正を行うまでの手
順であるが、つぎにこれ以後に行う操作について説明す
る。
The above is the procedure up to making the first correction to the excavator 5, and next, the operations to be performed after this will be explained.

掘削II5の位置測定を行った後、つづいである根度掘
進した掘削1115の測定を行う場合、レーず偏向iE
の設置位置が安定している場合は、このレーザ偏向器E
の位置をチェックする必要はないため、第1O図の点@
89で示すように、レーザー向WEの修正操作である8
z以降の操作を繰り返し行なえばよい。
After measuring the position of excavation II 5, when measuring the subsequent excavation 1115 that has been excavated deeply, the laser deflection iE
If the installation position of the laser deflector E is stable,
There is no need to check the position of the point @ in Figure 1O.
As shown at 89, 8 is a correction operation for the laser direction WE.
All you have to do is repeat the operations after z.

これに対してレーザ偏向MEの設置位置が不安定で、は
じめに第6図のスタンダードラインS上に設置されてい
たレーデ偏向amが、その鋳第7図に示すようにスタン
ダードラインSから外れたX′位置に変位した場合は、
第10図の一点鎖線40で示すように、前述した8フの
操作から繰り返す必要がある。すなわち前回の測定後、
レーデ測距儀ムからのレーザビーム6をレーデ偏向器K
により基準用受光板りに投射して、その投射光が受光板
りのセンターに入射すれば、レーデ偏向−Eが変位して
いないことがわかるが、第7図に示すようにレーザ傷向
醤が罵′位置に変位した場合は、再び前述した87以降
の操作を繰り返して、スタンダードラインSに対するレ
ーザビーム6′の立体的変位角X @ 7 sおよびα
′・β′、θ e r’ +1□l 、 1.1を新た
に測定する。
On the other hand, the installation position of the laser deflection ME is unstable, and the laser deflection am, which was initially installed on the standard line S in Fig. 6, has shifted from the standard line S as shown in Fig. 7. ′ position,
As shown by the dashed line 40 in FIG. 10, it is necessary to repeat the operation from Step 8 described above. That is, after the previous measurement,
The laser beam 6 from the radar range finder K is directed to the radar deflector K.
If the projected light is projected onto the reference light receiving plate and the projected light enters the center of the light receiving plate, it can be seen that the radar deflection -E is not displaced. If the laser beam 6' is displaced to the ``extreme'' position, repeat the operations from 87 onwards again to determine the three-dimensional displacement angles X @ 7 s and α of the laser beam 6' with respect to the standard line S.
'·β', θ e r' +1□l, 1.1 are newly measured.

なお前記実施例ではレーデ偏向器Eを一個所にのみ設置
した例について説明したが、二個以上のレーデ偏向11
11iEを使用することも可能である。特に本発明で使
用するレーザ偏向MEは鏡を使用すするため、従来使用
していた反射プリズムのように透過光が減衰しないから
、レーデ測距儀ムと被測定用受光6Bとの距離を大幅に
増大することができる。従って本発明によれば、従来方
法のように”レーザ測距儀Aの設置位置を頻繁に移動さ
せる必要はなく、設置位置を変更する場合も、地盤の安
定した場所を選んで設置することができる。
In the above embodiment, an example was explained in which the Rade deflector E was installed only in one place, but if two or more Rade deflectors 11
It is also possible to use 11iE. In particular, since the laser deflection ME used in the present invention uses a mirror, the transmitted light does not attenuate unlike the conventionally used reflecting prism, so the distance between the radar rangefinder and the light receiver 6B to be measured can be greatly increased. can be increased to Therefore, according to the present invention, unlike the conventional method, there is no need to frequently move the installation position of the laser range finder A, and even when changing the installation position, it is possible to select a place with stable ground and install it. can.

本発明は上述の通りであるから、これによれば従来のよ
うにレーザ測距儀を頻繁に取り付は直す1・・必要を除
去すると共に、レーザ偏向器が多少襞位しても取り付は
直すことなく測定を継続でき、レーザ測距儀の移動に伴
う誤差も減少させることにより、この種作業の能率を着
しく向上させると共に、測定精度も向上させることがで
きるというす。
Since the present invention is as described above, it eliminates the need for frequent reinstallation of a laser rangefinder as in the past, and also eliminates the need for frequent reinstallation of a laser rangefinder, and allows for easy installation even if the laser deflector is slightly folded. By allowing measurements to continue without making any corrections and reducing errors caused by the movement of the laser rangefinder, it is possible to significantly improve the efficiency of this type of work, as well as improve measurement accuracy.

ぐれた効果が得られる。You can get a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は湾曲部を有するトンネルの横断平面図、 第2図〜第4図は従来方法の説明図、 第6図は第1図のトンネルに本発明を実施した状態を示
す平面図、 第6図および第7図は本発明方法の説明図、第8図はレ
ーデ偏向器の一例を示す斜視図、第9図(a) G:!
被測定用受光板の一例を示す正面図、同v!J(b)は
その縦断側面図、 第10図は本発明方法の説明用ブロック図である0 1・・・地盤       3・−立坑8・・・トンネ
ルの*S部分 4・・・)ンネルの湾曲部分 6・・・シールド掘削−ム・・・レーザ測距儀B・・・
被測定用受光板  D・・・基準用受光板6・・・レー
デビーム   x・・・レーデ偏向器7・・・入射窓 
     8.9・・・固定ミラー10.11・・・回
転ミラー  18・・・出射室18・・・水平軸   
  1−・・・垂直軸16・・・モータ      1
6・・・減速歯車装置1フ・・・エンコーダ   1B
・・・方向変換用命歯車装置 19・・・被測定用受光板Bのケース 20・・・外側受光板   21・・・中心部の受光板
22・・・反射プリズム  28・・・伝動索24・・
・モータ 特許出願人  株式会社青木建設 第6図 −50− 第8図 第 ・a) 9図 <b>
FIG. 1 is a cross-sectional plan view of a tunnel having a curved portion; FIGS. 2 to 4 are explanatory diagrams of the conventional method; FIG. 6 is a plan view showing the tunnel shown in FIG. 1 in which the present invention is applied; 6 and 7 are explanatory diagrams of the method of the present invention, FIG. 8 is a perspective view showing an example of a Rade deflector, and FIG. 9 (a) G:!
A front view showing an example of a light receiving plate to be measured, v! J(b) is a vertical side view of the same, and Fig. 10 is a block diagram for explaining the method of the present invention. Curved portion 6...Shield drilling-mu...Laser range finder B...
Light receiving plate for measurement D...Reference light receiving plate 6...Leede beam x...Leede deflector 7...Incidence window
8.9...Fixed mirror 10.11...Rotating mirror 18...Emission chamber 18...Horizontal axis
1-...Vertical axis 16...Motor 1
6...Reduction gear device 1f...Encoder 1B
. . . Direction conversion gear device 19 . . . Case 20 of light receiving plate B to be measured . . . Outer light receiving plate 21 . . Center light receiving plate 22 .・
・Motor patent applicant Aoki Construction Co., Ltd. Figure 6-50- Figure 8 ・a) Figure 9 <b>

Claims (1)

【特許請求の範囲】[Claims] 1 途中に障害物があって見通しのきかない二地点の一
方にレーザ測距儀および褪準用受光板を設置すると共に
、他方に被測定用受光板を設け、このレーザ測距儀と被
測定用受光板との中間においてレーザ測距儀と被測定用
受光板をそれぞれ見通せる位置に、互に直交する二軸に
よって偏向できる鏡を有するレーザ偏向器を設置し、レ
ーザ測距儀からのレーザをレーデ偏向器で反射させて基
準用受光板に導き、その入射光軸と反射光軸とのなす立
体角を測定してレーデ偏向器の位置を算出し、ついでレ
ーザ測距儀からのレーザをレーザー陶器を介して被測定
用受光板の定位置に導き、この受光板への入射光とレー
ザーfFF[ftへの入射光との偏差を算出し、さらに
被測定用受光板上で前記入射レーザを反射させて、この
レーザをレーザ偏向器を介してレーザ測距儀まで戻すこ
とによりレーザ傷向靜と被測定用受光板との距離を測定
するようにした事を特徴とする隘敵された二地点間にお
ける位置検出方法。
1 Install a laser rangefinder and a light receiving plate for leveling at one of two points where there is an obstacle in the way and have no visibility, and install a light receiving plate for the object to be measured on the other side. A laser deflector with a mirror that can be deflected by two mutually orthogonal axes is installed at a position between the laser rangefinder and the light receiver to be measured so that the laser rangefinder and the light receiver to be measured can be seen. It is reflected by a deflector and guided to a reference light receiving plate, and the solid angle formed between the incident optical axis and the reflected optical axis is measured to calculate the position of the Rade deflector. to the fixed position of the light receiving plate to be measured, calculate the deviation between the incident light to this light receiving plate and the incident light to the laser fFF[ft, and further reflect the incident laser on the light receiving plate to be measured. The laser is then returned to the laser range finder via a laser deflector to measure the distance between the laser scratch direction and the light receiving plate to be measured. A method for detecting the position between
JP6180082A 1982-04-15 1982-04-15 Detection of position between two shaded positions Granted JPS58179309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6180082A JPS58179309A (en) 1982-04-15 1982-04-15 Detection of position between two shaded positions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6180082A JPS58179309A (en) 1982-04-15 1982-04-15 Detection of position between two shaded positions

Publications (2)

Publication Number Publication Date
JPS58179309A true JPS58179309A (en) 1983-10-20
JPH0126485B2 JPH0126485B2 (en) 1989-05-24

Family

ID=13181529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6180082A Granted JPS58179309A (en) 1982-04-15 1982-04-15 Detection of position between two shaded positions

Country Status (1)

Country Link
JP (1) JPS58179309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7856729B1 (en) * 2007-08-09 2010-12-28 The United States Of America As Represented By The Secretary Of The Army Bore elevation and azimuth measuring apparatus and method
CN109751983A (en) * 2019-03-05 2019-05-14 淮南矿业(集团)有限责任公司 A method of emergency, which is surveyed, sets laser data and transmitting point height

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110792A (en) * 1974-02-08 1975-09-01
JPS50147352A (en) * 1974-05-16 1975-11-26
JPS57191509A (en) * 1981-05-22 1982-11-25 Kumagai Gumi Ltd Surveying method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110792A (en) * 1974-02-08 1975-09-01
JPS50147352A (en) * 1974-05-16 1975-11-26
JPS57191509A (en) * 1981-05-22 1982-11-25 Kumagai Gumi Ltd Surveying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7856729B1 (en) * 2007-08-09 2010-12-28 The United States Of America As Represented By The Secretary Of The Army Bore elevation and azimuth measuring apparatus and method
CN109751983A (en) * 2019-03-05 2019-05-14 淮南矿业(集团)有限责任公司 A method of emergency, which is surveyed, sets laser data and transmitting point height

Also Published As

Publication number Publication date
JPH0126485B2 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US5237384A (en) Laser positioner and marking method using the same
JP3039801B2 (en) Position measurement device
US5055666A (en) Surveying apparatus detecting relative angular position of projector and range finder
AU2018289881B2 (en) Excavation positioning system and method for curved roadway construction
US4688937A (en) Methods of, and systems, for monitoring and/or controlling mobile cutting means
US6480289B1 (en) Position measuring apparatus and optical deflection angle measuring apparatus for underground excavators
JPS58179309A (en) Detection of position between two shaded positions
JPH08271251A (en) Method and apparatus for measurement of position and posture of tunnel excavator
JPH0423229B2 (en)
KR960008180B1 (en) Laser surveying system having a function on marking reference point
JP2000018944A (en) Range-finding/angle-measuring device and linear survey device
JP3442451B2 (en) Survey method
JP2002070082A (en) Construction equipment control system
JPH0379646B2 (en)
JPH0319486B2 (en)
JPH05288548A (en) Shield surveying method
JP3295157B2 (en) Shield surveying method
JPS60203808A (en) Automatic measuring instrument
JP2000234929A (en) Interconnecting automatic position/attitude measuring system
JPH06100078B2 (en) Automatic survey positioning system for tunnel lining machines
RU2792054C1 (en) Method for measurement of drive path of heading machine
JP2507541B2 (en) Track survey system
JPS5912964B2 (en) Surveying method
JPH02307088A (en) Three-dimensional position measuring instrument
JP2913043B2 (en) Underground excavator laser equipment