JPS5817832A - Method and apparatus for producing compressed inert gas - Google Patents

Method and apparatus for producing compressed inert gas

Info

Publication number
JPS5817832A
JPS5817832A JP9859582A JP9859582A JPS5817832A JP S5817832 A JPS5817832 A JP S5817832A JP 9859582 A JP9859582 A JP 9859582A JP 9859582 A JP9859582 A JP 9859582A JP S5817832 A JPS5817832 A JP S5817832A
Authority
JP
Japan
Prior art keywords
compressor
inert gas
exhaust gas
pressure vessel
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9859582A
Other languages
Japanese (ja)
Inventor
カ−ル・ヴインタ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS5817832A publication Critical patent/JPS5817832A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は不活性ガスを製造し、圧縮し、分離する方法お
よび装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing, compressing and separating inert gases.

容器を不活性化することはしばしば必要である。不活性
ガスで空気を洗い流し、−または液体を取出したもしく
は漏洩した空間を不活性ガスで置替えることが行われる
。最初の場合この洗浄過程を迅速に完了することが望ま
れる。第2の場合不活性ガス流をできるだけよく所要量
に適合させるのが有利である。両方の場合に圧力容器か
ら取出すチッ素が非常圧良く適する。しかしチッ素は比
較的高価な不活性ガスである。
It is often necessary to inert the container. Flushing the air with an inert gas - or replacing the space from which the liquid has been extracted or leaked with an inert gas - is carried out. In the first instance it is desirable to complete this cleaning process quickly. In the second case it is advantageous to adapt the inert gas flow to the required quantity as best as possible. In both cases, nitrogen extracted from a pressure vessel is well suited for extreme pressure. However, nitrogen is a relatively expensive inert gas.

一般【(液体またはガス燃料の空気による燃焼によつ℃
得られる排ガスは・、安価である。この場合使用目的に
応じて水の除去およびとくに金属処理の場合2酸化炭素
または残留酸素の除去が必要であるうこの費用にもかか
わらず、この排ガスから得た不活性ガスは空気分離法に
より得たチッ素より安価である。液体またはガス燃料の
燃焼によって得た不活性ガスを使用する場合、チッ素の
使用に比して不活性ガス製造を所要量に適合させるのが
困難なのが欠点である。
General [(℃) due to combustion of liquid or gaseous fuel with air
The resulting exhaust gas is inexpensive. In this case, depending on the intended use, it is necessary to remove water and, in particular for metal processing, remove carbon dioxide or residual oxygen.Despite the expense, the inert gas obtained from this exhaust gas can be obtained by air separation methods. It is cheaper than nitrogen. The disadvantage of using inert gases obtained by combustion of liquid or gaseous fuels, compared to the use of nitrogen, is that it is more difficult to adapt the inert gas production to the required quantities.

液体またはガス燃料の燃焼忙よって得る不活性ガス製造
装置の核心は燃焼装置である。たとえば排ガス流の大き
さ忙よって決定されるこの燃焼装置の能力は上方にも下
方にも制限される。
The core of an inert gas production device obtained by burning liquid or gaseous fuel is the combustion device. The capacity of this combustion device, which is determined, for example, by the magnitude of the exhaust gas flow, is limited both upwardly and downwardly.

調節範囲は比較的小さい。それゆえ液体またはガス燃料
の燃焼の際発生する不活性ガスを経済的に圧縮し、この
ガスから燃焼の際発生した水分をできるだけ十分忙取出
す課題が生ずる。さらに本発明の目的は燃焼の際発生し
た不活性ガスの2酸化炭素分も除去することである。最
後に本発明の目的はこの方法を有利に実施しさる装置を
得ることである。
The adjustment range is relatively small. The problem therefore arises of economically compressing the inert gas produced during the combustion of liquid or gaseous fuels and of extracting as much as possible of the moisture produced during the combustion from this gas. A further object of the present invention is to remove the carbon dioxide content of the inert gas generated during combustion. Finally, it is an object of the invention to obtain a device with which this method can be carried out advantageously.

この目的を解決するため、内燃機関の排ガスの少なくと
も1部を冷却し、コンプレッサで圧縮し、その際コンプ
レッサを内燃機関で駆動することが提案される。この手
段によつ【内燃機関とくにオツドまたはディーゼルエン
ジンの不循性排ガスは中間冷却の後コンプレッサ内で圧
縮され、その際コンプレッサは不活性ガスを発生する内
燃機関により【駆動される。中間冷却によって、使用す
るコンプレッサは熱的に過負荷されず、特殊仕様な必要
としない。圧縮した不活性ガスはそのまま使用すること
ができる。
To achieve this object, it is proposed to cool at least a portion of the exhaust gas of the internal combustion engine and compress it in a compressor, the compressor being driven by the internal combustion engine. With this measure, the uncirculated exhaust gas of an internal combustion engine, in particular a gas or diesel engine, is compressed after intercooling in a compressor, the compressor being driven by the internal combustion engine generating an inert gas. With intercooling, the compressor used is not thermally overloaded and does not require special specifications. Compressed inert gas can be used as is.

さらに排ガスを10−9−ルより高い圧力とくに20〜
50/セールに圧縮し、圧縮後60℃より低い温度に冷
却することが提案される。高圧への圧縮によって水の分
圧も同じ比で上昇する。
In addition, the exhaust gas must be heated to a pressure higher than 10-9 liters, especially 20~
It is proposed to compress to 50/sail and cool to below 60° C. after compression. Compression to high pressure also increases the partial pressure of water at the same rate.

しかし100℃より低い温度への冷却罠より圧縮後の分
圧より低い水の飽和分圧が決定される。
However, a cooling trap to a temperature below 100° C. determines a saturation partial pressure of water that is lower than the partial pressure after compression.

これは過剰の水が液体の形に凝縮することを表わす。凝
縮した水は圧縮した不活性ガスから簡Qi、に分離する
ことができる。
This represents excess water condensing into liquid form. The condensed water can be separated from the compressed inert gas into Qi.

さらに不活性ガスを圧縮後、不活性化媒体として使用す
る前圧圧力容器に貯蔵することが提案される。この貯蔵
により不活性ガスを衝撃的に発生する所要量に適合させ
ることができる。
Furthermore, it is proposed to store the inert gas after compression in a prepressure pressure vessel for use as inerting medium. This storage allows the inert gas to be adapted to the percussively generated requirements.

方法の1つの変化によれば、排ガスを2酸化炭素の臨界
圧力より高い圧力と([200〜5OOJ−ルに圧縮し
、2酸化炭素の臨界温度より低い温度と(1m31℃よ
り低い温度に冷却し、液化した2酸化炭素を残りの凝縮
しない不活性ガスと分離する。この方法によれば2酸化
炭素の分圧は圧縮の際圧縮比忙応じて上昇する。圧縮し
た不活性ガスを2酸化炭素の臨界温度より低い温度とく
に31℃より低い温度へ冷却するととkよって、・2酸
イし炭素の飽和圧力は達成される分圧より低くなる。過
剰の2酸化炭素は液体の形に凝縮し、凝縮しない残りの
不活性ガスから分離することができる。
According to one variation of the method, the exhaust gas is compressed to a pressure higher than the critical pressure of carbon dioxide ([200 to 5 OOJ-L) and cooled to a temperature lower than the critical temperature of carbon dioxide (1 m31 °C). Then, the liquefied carbon dioxide is separated from the remaining non-condensable inert gas. According to this method, the partial pressure of carbon dioxide increases during compression according to the compression ratio. When cooled to a temperature below the critical temperature of carbon, especially below 31°C, the saturation pressure of carbon dioxide is therefore lower than the partial pressure achieved. Excess carbon dioxide condenses into liquid form. and can be separated from the remaining inert gases that do not condense.

この方法を実施するため内燃機関とコンプレッサの間に
、中間に熱交換器を配置した排ガス導管を備えることが
提案される。さらにコンプレッサの後方に圧力容器を配
置し、コンプレッサから圧力容器へ通ずる導管に蓄熱交
換器を配置することが提案される。この2つの提案によ
つて内燃機関の圧縮すべき排ガスをコンプレッサに入る
前圧冷却することが保証される。さらにコンプレッサか
ら圧力容器へ流れる圧縮した排ガスを、圧縮熱のために
上昇した温度を低下するように冷却することが保証され
る。
To implement this method, it is proposed to provide an exhaust gas line between the internal combustion engine and the compressor, with a heat exchanger arranged in between. Furthermore, it is proposed to arrange a pressure vessel behind the compressor and to arrange a heat storage exchanger in the conduit leading from the compressor to the pressure vessel. These two proposals ensure that the exhaust gases of the internal combustion engine to be compressed are cooled before entering the compressor. Furthermore, it is ensured that the compressed exhaust gas flowing from the compressor to the pressure vessel is cooled in such a way that the temperature which has increased due to the heat of compression is reduced.

さら忙熱交換器Kal縮液rレンを備えることが提案さ
れる。この凝縮液ドレンは内燃機関とコンプレッサの間
に配置された熱交換器の場合、凝縮した水の取出に役立
ち、コンプレッサと圧力容器の間忙配置された熱交換器
の場合、凝縮した2酸化−炭素の取出に役立つ、大気圧
より高い内圧の場合、凝縮液ドレンがゲートとして形成
されていることは明らかである。
It is proposed to further include a heat exchanger Kal condensate. In the case of a heat exchanger located between the internal combustion engine and the compressor, this condensate drain serves to remove condensed water, and in the case of a heat exchanger located between the compressor and the pressure vessel, it serves to remove the condensed dioxide water. It is clear that the condensate drain is designed as a gate in the case of internal pressures higher than atmospheric pressure, which serve to remove the carbon.

さらにコンプレッサと圧力容器の間に圧力容器の方向に
開きうる逆止弁誉備えることが提案される。作業中たと
えば充てんした圧力容器の圧力が、始動するコンプレッ
サによって発生する圧力より大きい作業状態が生ずるこ
とは避けられない。この場合圧力容器の圧力がコンプレ
ッサへ作用すると、コンプレッサの始動は著し逆止弁圧
よりこれが避けられる。
Furthermore, it is proposed to provide a check valve between the compressor and the pressure vessel, which can open in the direction of the pressure vessel. During operation, it is unavoidable that operating conditions occur, for example, where the pressure in the filled pressure vessel is greater than the pressure generated by the starting compressor. In this case, if the pressure of the pressure vessel acts on the compressor, starting of the compressor is significantly prevented by the check valve pressure.

この方法りより内燃機関の排ガスを圧縮することができ
る。さらに適当な冷却によって水の大部分を凝縮除去す
ることができる。内燃機関をコンプレッサの駆動に使用
する提案忙よって、ゾ目パン、ベンジン、ティーゼル油
およヒ天然ガスのような高発熱量の燃料を使用する場合
、内燃機関の排ガスを全部捕そくしてこの排ガスなl 
Q ze−ルより高い圧力、多くは20〜25・セール
に圧縮するために十分な出力が得られることが明らかに
なった。意外な副次効果として系の高い固有の信頼性が
低い監視費用で得られる、圧縮は相当する排ガス発生が
前提となっているので、ン;活性ガス燃焼装置に必要な
フレーム監視を年月とすることができる。コンプレッサ
は不活性二戸スを排ガスとして発生する内燃機関で駆動
されるので、”・コンプレッサは電気的忙接続またはバ
断されない。
This method allows the exhaust gas of an internal combustion engine to be compressed. Furthermore, by suitable cooling, most of the water can be condensed out. Suggestions for using an internal combustion engine to drive a compressor When using fuels with high calorific values such as oil, benzene, teasel oil, and natural gas, all the exhaust gas from the internal combustion engine is captured and this exhaust gas is removed. Na l
It has been found that sufficient power can be obtained to compress pressures higher than the Qzeel, often 20 to 25 sails. An unexpected side effect is that the high inherent reliability of the system is obtained at low monitoring costs, since compression is predicated on a corresponding exhaust gas generation; can do. Since the compressor is driven by an internal combustion engine that produces inert gas as exhaust gas, the compressor is not electrically connected or disconnected.

圧縮前後υ排ガスの冷却とともに高い圧縮比によって、
水の大部分は凝縮除去される。不活性ガスは大気圧へ膨
張後、付加的収着乾燥器によってしか達成されない一2
0℃より低い一点を有する。
By cooling the exhaust gas before and after compression, and by using a high compression ratio,
Most of the water is condensed out. The inert gas, after expansion to atmospheric pressure, can only be achieved by an additional sorption dryer.
It has one point below 0°C.

意外にも注意深い冷却および多段圧縮の際、最近のオツ
ドエンジン忙より得られる出力は全排ガスを75−々−
ルより高く圧縮するために十分であることが明らか忙な
った。排ガスを2酸化炭素の臨界圧力より高く圧縮し、
最終的に臨界温度31℃より低く冷却する場合、排ガス
の2酸化炭素分が凝縮する。液体2酸化炭素は容易に第
2の圧力容器へ流れうるので、大部分チッ素からなる凝
縮しない不活性ガス力′を残される。
Surprisingly, with careful cooling and multi-stage compression, the power output from a modern hot engine can reduce the total exhaust gas by 75cm.
It was clear that Le was busy enough to compress higher. Compress the exhaust gas to a higher pressure than the critical pressure of carbon dioxide,
When the exhaust gas is finally cooled below the critical temperature of 31° C., the carbon dioxide content of the exhaust gas is condensed. The liquid carbon dioxide can easily flow to the second pressure vessel, leaving behind a non-condensing inert gas force consisting mostly of nitrogen.

次に側圧より本発明を説明する。自由内容積50ゼの容
器を不活性化するものとする。そのために必要な時間は
なるべく短く維持しなければならない゛。15分を超え
本時間はもはや許容されない。その結果1回の洗浄過8
にすでに200 m”/ hより大きい不活性ガス容量
が必要になる、しかし2回の不活化の間隔はプロセスに
よって3時間より早いことを必要としないので、膨張状
態でSodより大きい不活性ガス収容能力を有する貯蔵
容器を使用することができる。
Next, the present invention will be explained in terms of lateral pressure. A container with a free internal volume of 50 ml is to be inerted. The time required for this must be kept as short as possible. Time periods exceeding 15 minutes are no longer allowed. As a result, one wash after 8
already requires an inert gas capacity greater than 200 m”/h, but since the interval between two inertizations does not need to be earlier than 3 h depending on the process, an inert gas capacity greater than Sod in the expanded state Any storage container with this capacity can be used.

不活性ガス発生装置はその際2ow”/hの能力で設定
すれば十分である。
It is sufficient to set the inert gas generator at a capacity of 2 ow''/h.

不発明忙より燃料としてプロパンを使用する出力6に−
のオツドエンジンを選択し、この場合所要の不活性ガス
2om”/hが発生する。直結コンプレッサにより排ガ
スを約30ノセールに圧縮する。圧力容器は2W?の容
積しか有しない。
Output 6 using propane as fuel due to inventiveness -
In this case, the required inert gas of 2 om"/h is generated. The exhaust gas is compressed to about 30 nosails by a direct compressor. The pressure vessel has a volume of only 2 W?.

排ガスをエンジンとコンプレッサの間で間接冷却する。Exhaust gas is indirectly cooled between the engine and compressor.

圧縮の後もう1度管熱交換器で間接冷却する。冷却水所
要量はエンジンおよびコンプレッサ自体の冷却を含み約
1d/hである。エンジンおよびコンプレッサは圧力容
器がその最終圧力30/々−ルに達するまで連続的に運
転する。次に容器(som’)の1回の洗浄は圧力容器
からの迅速な放出によって数分間で実施可能である。
After compression, it is indirectly cooled once again using a tube heat exchanger. The cooling water requirement is approximately 1 d/h, including cooling of the engine and the compressor itself. The engine and compressor operate continuously until the pressure vessel reaches its final pressure of 30/m3. A single cleaning of the container (som') can then be carried out in a few minutes by rapid discharge from the pressure container.

もう1つの方法例により方法の第25J!施例を説明す
る。排気量1200 C1l!の対向シリンダ形の4気
筒4サイクルオツドエンジンを200 Orpmで運転
し、約15klの出力および標準状態の排ガス流約50
m”/hが得られた。燃料としてプロAン70%および
ブタン30%の組成を有する液化ガスを使用した。4段
、4気筒コンプレツサな減速ギヤを介して駆動装置と結
合し、駆動する内燃機関が2000fK達したとき、コ
ンプレッサは1500−の回転数を示した。エンジンの
排気口とコンプレッサの吸込口を大気へ開く室を介して
互い忙結合した。この室、コンプレッサおよび駆動装置
はブロアで空冷7した。4つの圧縮段のそれぞれは凝縮
液自動ドレンな備えた。最終段は20G /々−ル忙達
した。凝縮液ドレンから水および2酸化炭素が導出され
た。最終圧縮ガスは99.5容量%より多いチッ素から
なり、0.1容量5より低い21I化炭素が含まれた。
Method No. 25 J with another method example! An example will be explained. Displacement 1200 C1l! A 4-cylinder, 4-stroke engine with opposed cylinders is operated at 200 rpm, with an output of about 15 kl and an exhaust gas flow of about 50 kl under standard conditions.
m"/h was obtained. Liquefied gas having a composition of 70% ProA and 30% butane was used as fuel. It was connected to a drive device through a reduction gear of a 4-stage, 4-cylinder compressor, and was driven. When the internal combustion engine reached 2000 fK, the compressor had a rotational speed of 1500. The exhaust of the engine and the intake of the compressor were connected to each other via a chamber open to the atmosphere. This chamber, the compressor and the drive were connected to the blower. Each of the four compression stages was equipped with an automatic condensate drain. The final stage was busy at 20 G/ml. Water and carbon dioxide were drawn from the condensate drain. The final compressed gas was It consisted of more than 99.5% nitrogen by volume and less than 0.1% carbon 21I by volume.

このガスを逆止弁を介して各501の市販の鋼−741
0本からなる貯鼠所に送った。この圧力容器にはばチッ
素からなる標準状態に換算して1oo vr?の不活性
ガスを貯蔵した。
This gas is passed through a check valve to each 501 commercially available steel-741.
I sent it to a storage room consisting of 0 bottles. This pressure vessel contains 1oo vr in terms of standard conditions consisting of nitrogen. of inert gas was stored.

次に図面により装置の実施例を説明する。内燃機関2は
燃料タンクlからたとえば気化器または噴射タンクを介
して燃料を得る。燃料空気は吸気管3から吸入され、燃
焼室に供給される・エンジンの排ガスは導管4.1を介
してエンジンを去り、第1熱交換器5を貫流する。多く
の場合発生する凝縮液は熱交換器から凝縮液ドレン12
により【導出される。内燃機関2の機械的仕事は軸6を
介して、場合によりクラッチを中間に接続してコンプレ
ッサ7Kilされる。コンプレッサ7の吸込口は導管4
.2を介して熱交換器5の出口と係合する。コンプレッ
サ自体の吐出口は導管8゛を介しても51つの熱交換器
9に通ずる。冷却および圧縮されたガスは導管1Gを介
して圧力容器11に、またはただちに使用場所に供給さ
れる。凝縮液ドレン12から発生する凝縮液が取出され
る。逆止弁13により貯東容器11からコンプレッサへ
圧縮した不活性ガスが逆流することが防止され、それk
よってコンプレッサは背圧なしに始動することができる
。弁14を介して不活性ガスが使用のため取出される。
Next, embodiments of the apparatus will be described with reference to the drawings. The internal combustion engine 2 receives fuel from a fuel tank l, for example via a carburetor or an injection tank. Fuel air is drawn in through the intake pipe 3 and fed to the combustion chamber; the exhaust gases of the engine leave the engine via the conduit 4.1 and flow through the first heat exchanger 5; In many cases, the condensate that is generated is transferred from the heat exchanger to the condensate drain 12.
[Derived from. The mechanical work of the internal combustion engine 2 is transferred via the shaft 6 to the compressor 7, with optionally an intermediately connected clutch. The suction port of the compressor 7 is the conduit 4
.. 2 to the outlet of the heat exchanger 5. The outlet of the compressor itself also leads to 51 heat exchangers 9 via conduits 8'. The cooled and compressed gas is supplied via conduit 1G to pressure vessel 11 or immediately to the point of use. The condensate generated from the condensate drain 12 is removed. The check valve 13 prevents compressed inert gas from flowing backwards from the storage container 11 to the compressor.
The compressor can thus be started without back pressure. Inert gas is removed for use via valve 14.

エンジン冷却装置およびコンプレッサ冷却装置を備え【
いることは明らかである。さらに多段コンプレッサの場
合1つの段から次の段へ流れるガスを中間冷却すること
は明らかである。
Equipped with engine cooling system and compressor cooling system [
It is clear that there are. Furthermore, it is clear that in the case of multi-stage compressors the gas flowing from one stage to the next is intercooled.

その際発生する凝縮液も適当に取出される。The condensate that forms during this process is also appropriately removed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の装置のデpツク図である。 1・・・燃料タンク、2・・・エンジン、5.9・・・
熱交換器、7・・・コンプレッサ、11・・・貯蔵容器
/ 量
The drawing is a top view of the device of the invention. 1... fuel tank, 2... engine, 5.9...
Heat exchanger, 7...Compressor, 11...Storage container/Quantity

Claims (1)

【特許請求の範囲】 1、 内燃機関の排ガスの少なくとも1部を冷却し、コ
ンプレッサで圧縮し、その際−ンプレツサを内燃機関に
よって駆動することを特徴とする圧縮した不活性ガスを
製造する方法。 2、 排ガスなl Q tt−ルより高い圧力に圧縮し
、圧縮後+60℃より低い温度に冷却する特許請求の範
囲第1項記載の方法。 3、排ガスを圧縮後、不活性化媒体として使用する前に
圧力容器内に貯蔵する特許請求の範囲第1項または第2
項記載の方法。 4、排ガスを2酸化炭素の臨界圧力より高い圧力に圧縮
し、2酸化炭素の臨界温度より低い温度に冷却し、液化
した21I化炭素を凝縮しない残りの不活性ガスと分離
する特許請求の範囲第1項〜第3項の1つに記載の方法
。 翫 内燃機関の排ガスの少なくとも1部を冷却し1コン
ゾレツサで圧縮する、圧縮した不活性ガスを製造する装
置において、内燃機関とコンプレッサの間に、途中に熱
交換器を配置した導管を有することを特徴とする圧縮し
た不活性ガスを製造する装置。 6、 熱交換器が凝縮液ドレンを備えている特許請求の
範囲第5項記載の装置。 7、 コンプレッサと圧力容器の間忙、圧力容器の方向
へ開きうる逆止弁を備えている特許請求の範囲第5項ま
たは第6項記載の装置。 8、 内燃機関の排ガスの少なくとも1部を冷却し、コ
ンプレッサで圧縮する、圧縮した不活性ガスを製造する
装置において、コンプレッサ後方に圧力容器が配置され
、コンプレッサから圧力容器へ通ずる導管に蓄熱交換器
が配置されていることを特徴とする圧縮した不活性ガス
を製造する装置。 9、 熱交換器が凝縮液ドレンを備え【いる特許請求の
範囲第8項記載の装置。 10、  コンプレッサと圧力容器の間に、圧力容器の
方向へ開きうる逆止弁を備えている特許請求の範囲第8
項または第9項記載の装置。
Claims: 1. A method for producing compressed inert gas, characterized in that at least a part of the exhaust gas of an internal combustion engine is cooled and compressed in a compressor, the compressor being driven by the internal combustion engine. 2. The method according to claim 1, wherein the exhaust gas is compressed to a pressure higher than the exhaust gas, and after compression is cooled to a temperature lower than +60°C. 3. Claim 1 or 2, in which the exhaust gas is compressed and then stored in a pressure vessel before being used as an inertization medium.
The method described in section. 4. Claims for compressing the exhaust gas to a pressure higher than the critical pressure of carbon dioxide, cooling it to a temperature lower than the critical temperature of carbon dioxide, and separating the liquefied 21I carbon from the remaining inert gas that does not condense. The method according to one of paragraphs 1 to 3.翫 In an apparatus for producing compressed inert gas that cools at least a part of the exhaust gas of an internal combustion engine and compresses it with one consolerator, it is necessary to have a conduit between the internal combustion engine and the compressor with a heat exchanger disposed in the middle. A device that produces compressed inert gas. 6. The device according to claim 5, wherein the heat exchanger is equipped with a condensate drain. 7. The device according to claim 5 or 6, comprising a check valve that can be opened toward the pressure vessel between the compressor and the pressure vessel. 8. In an apparatus for producing compressed inert gas, which cools at least a part of the exhaust gas of an internal combustion engine and compresses it with a compressor, a pressure vessel is arranged behind the compressor, and a heat storage exchanger is installed in a conduit leading from the compressor to the pressure vessel. An apparatus for producing compressed inert gas, characterized in that: 9. The apparatus according to claim 8, wherein the heat exchanger is provided with a condensate drain. 10. Claim 8, comprising a check valve that can be opened toward the pressure vessel between the compressor and the pressure vessel.
The device according to paragraph 9 or paragraph 9.
JP9859582A 1981-06-13 1982-06-10 Method and apparatus for producing compressed inert gas Pending JPS5817832A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19813123530 DE3123530A1 (en) 1981-06-13 1981-06-13 "Method and appliance for preparing and compressing an inert gas"
DE31235301 1981-06-13
DE32105436 1982-03-23

Publications (1)

Publication Number Publication Date
JPS5817832A true JPS5817832A (en) 1983-02-02

Family

ID=6134661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9859582A Pending JPS5817832A (en) 1981-06-13 1982-06-10 Method and apparatus for producing compressed inert gas

Country Status (2)

Country Link
JP (1) JPS5817832A (en)
DE (1) DE3123530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122637U (en) * 1987-02-02 1988-08-09

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3627763A1 (en) * 1986-08-16 1988-02-18 Alban Puetz AGGREGATE FOR CREATING AN OXYGEN-FREE WORKING ATMOSPHERE
DE3936018A1 (en) * 1989-03-29 1990-10-04 Erich Schulz METHOD FOR APPLYING AT LEAST ONE METAL, METAL OXIDE, NITRIDE AND / OR CARBIDE AND DEVICE FOR IMPLEMENTING THE METHOD
DE10116703A1 (en) * 2001-03-29 2002-10-10 Francotyp Postalia Ag Method for recording a consumption value and consumption counter with a sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122637U (en) * 1987-02-02 1988-08-09
JPH053216Y2 (en) * 1987-02-02 1993-01-26

Also Published As

Publication number Publication date
DE3123530A1 (en) 1982-12-30

Similar Documents

Publication Publication Date Title
JP4677375B2 (en) How to use gas
US5459994A (en) Gas turbine-air separation plant combination
CA1207541A (en) Method for reducing the amount of no.sub.x and for raising the output of a gas turbine power station of the type utilizing an air reservoir, and a gas turbine power station of this type, operating in accordance with this method
US6293086B1 (en) Power generation equipment
US20050028529A1 (en) Method of generating energy in a power plant comprising a gas turbine, and power plant for carrying out the method
US20070089423A1 (en) Gas turbine engine system and method of operating the same
JP3455765B2 (en) Method and apparatus for storing and transporting liquefied natural gas
JPS58113536A (en) Method and device for utilizing evaporated gas of low-temperature liquid for duplex gas/oil combustion diesel engine
JP2001248977A (en) Apparatus for reliquefying compressed vapor
US3433026A (en) Staged isenthalpic-isentropic expansion of gas from a pressurized liquefied state to a terminal storage state
KR20140043745A (en) Process for liquefaction of natural gas
US4677827A (en) Natural gas depressurization power recovery and reheat
EP0160032A1 (en) Method and apparatus for separating gases and liquids from well-head gases
US6085545A (en) Liquid natural gas system with an integrated engine, compressor and expander assembly
CA2112831A1 (en) Production process and facility of at least one pressure gaseous product and at least one liquid by air distillation
US4261169A (en) Method for converting thermal energy into mechanical energy and a machine for carrying out said method
JPS5817832A (en) Method and apparatus for producing compressed inert gas
GB2129055A (en) Supercharger system for an internal combustion engine
NO311453B1 (en) Method and device for energy development
US20110297120A1 (en) RAKH Cycle, Boilerless, Airless, Hydrogen Fueled, Closed Cycle, Steam Engine
US4392809A (en) Method and plant for recovering heat from smoke gases
KR101665495B1 (en) BOG Re-liquefaction Apparatus and Method for Vessel
US1809409A (en) Power generating and converting systems
FR2774159A1 (en) COMBINED INSTALLATION OF AN OVEN AND AN AIR DISTILLATION APPARATUS AND METHOD OF IMPLEMENTING IT
US2895291A (en) Recycling method of operating for power plants