JPS58176990A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS58176990A
JPS58176990A JP6015182A JP6015182A JPS58176990A JP S58176990 A JPS58176990 A JP S58176990A JP 6015182 A JP6015182 A JP 6015182A JP 6015182 A JP6015182 A JP 6015182A JP S58176990 A JPS58176990 A JP S58176990A
Authority
JP
Japan
Prior art keywords
layer
znse
semiconductor laser
buried layer
cap layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6015182A
Other languages
Japanese (ja)
Other versions
JPH0365669B2 (en
Inventor
Tatsuhiko Niina
新名 達彦
Keiichi Yoshitoshi
慶一 吉年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6015182A priority Critical patent/JPS58176990A/en
Publication of JPS58176990A publication Critical patent/JPS58176990A/en
Publication of JPH0365669B2 publication Critical patent/JPH0365669B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a long life semiconductor laser which does not show any thermal deterioration and crystal distortion due to difference of thermal expansion coefficients and also has excellent heat radiating characteristic, by forming a buried layer of cap layer with a Ca-doped ZnSe. CONSTITUTION:A buried layer 7 of a cap layer 6 in a semiconductor laser is composed of a Ca-doped ZnSe and therefore it has a lattice constant and thermal expansion coefficient which are almost equal respectively to that of an oscillating layer 2 consisting of GaAl As system material. Therefore, crystal distortion is not generated in the oscillating layer 2 and thermal deterioration is also not generated in the oscillating layer 2 because ZnSe can be grown even under a temperature as low as 400 deg.C by the molecular beam epitaxial growth method. Moreover, since ZnSe has a very high thermal conductivity, there is no fear of generating breakdown of semiconductor laser due to a heat generated during continuous oscillation. In addition, since a buried layer 7 consisting of ZnSe to which Ga is added is n type, electrode is respectively formed on the surface of cap layer 6 and rear side of substrate 1 and a forward bias is applied across these electrodes. As a resutl, the buried layer 7 substantially has a high resistance value. Therefore, an applied current is squeezed by the buried layer 7 and the main current path is formed just under the cap layer 6.

Description

【発明の詳細な説明】 本発明は半導体レーデ、特に発光再結合を生じる活性層
を含む発振層上に形成され、オーミック特性の優れた材
料からなるストライプ形状のキャップ層の両側が実質的
に高抵抗となる埋込み層で囲続されている半導体レーデ
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor radar, in particular, a striped cap layer formed on an oscillation layer including an active layer that causes radiative recombination, and which is made of a material with excellent ohmic characteristics and has substantially high This invention relates to a semiconductor radar surrounded by a buried layer serving as a resistor.

第1図は典型的なこの種レーデを示し、(IIは一生面
が(100)面であるntMGIAI  (ガリクム砒
素)基板、(2)は該基板上に形成された発振層であり
、該発振層はn型(、@ t −XAAXAII (ガ
リクムアルミ砒素)(0<X<1 )からなる第1クラ
ッド層(3)、Ga +−yjuyAs (0≦Y <
 1、x>Y)からなる活性層(4)、P型Gi 11
AAXAsからなる第2クラツドall(5)を順次エ
ピタキシャル成長させて積層する。
FIG. 1 shows a typical radar of this type, (II is an ntMGIAI (gallium arsenide) substrate whose entire surface is a (100) plane, (2) is an oscillation layer formed on the substrate, and the oscillation The layers are the first cladding layer (3) consisting of n-type (@ t -XAAXAII (gallium aluminum arsenide) (0<X<1), Ga + -yjuyAs (0≦Y<
1, x>Y) active layer (4), P-type Gi 11
The second cladding all (5) made of AAXAs is sequentially epitaxially grown and laminated.

祈る発振層(2)では活性層(4)の上下に位置する両
クラブト層(31(5)が活性層(4)よりhta度が
高いため、祈る活性層(4)よりバンドギャップが大で
、°かつ光屈折率が小となっているう従って活性層(4
)内に正孔と電子とが良好に閉じ込められ、かつ新る正
孔と電子との再結合により生じるレーデ光は活性層(4
)内に閉じ込められることとなるっ(6)は上記第2ク
ラッド層(5)上に形成された紙面垂直方向に延在する
ストライプ形状のキャップ層であり、該キャップ層(6
)は将来形成される電極とのオーミック接餉を良好とな
すために形成されたものでありP HMGaAsからな
るう(力は上記キャップ層(6)の両側を囲続する埋込
み層であり、該埋込み層は従来高抵抗材料、例えば5i
(hで構成されている。
In the praying oscillation layer (2), both the Crabstone layers (31 (5)) located above and below the active layer (4) have a higher hta degree than the active layer (4), so the band gap is larger than that of the praying active layer (4). , ° and the optical refractive index is small, so the active layer (4
Holes and electrons are well confined within the active layer (
) is a stripe-shaped cap layer formed on the second cladding layer (5) and extending in the direction perpendicular to the plane of the drawing.
) are formed to make a good ohmic connection with electrodes to be formed in the future, and are made of PHMGaAs. The buried layer is conventionally made of high resistance material, such as 5i.
(It is composed of h.

祈る半導体レーデにおいてキャンプ層(6)表面及び基
板(1)裏面に電極を形成し両電極間に順方向バイアス
を印加すると印加電流は上記埋込み層(力によシ狭窄さ
れその通路は略キャップ層(6)の直下部分となるっ 従ってキャップ層(6)直下の活性層(4)において低
電流で単−横モードのレーデ光が発振することとなる。
In a praying semiconductor radar, electrodes are formed on the surface of the camp layer (6) and the back surface of the substrate (1), and when a forward bias is applied between both electrodes, the applied current flows through the buried layer (the path is narrowed by the force and the passage is approximately the cap layer). (6), therefore, single-transverse mode Radical light is oscillated at a low current in the active layer (4) directly under the cap layer (6).

ところが祈る埋込み層(7)を形成する5102の熱膨
張係数はα35X10″/’K であり、これに対して
第2クラッド層(5)を形成するG鳳AtAsのそれは
約6.OX 10 ’/’にであるので、斯る熱膨張係
数の違いにより第2クラッド層(5)等に結晶歪が生じ
るという問題がある。
However, the thermal expansion coefficient of 5102 forming the buried layer (7) is α35X10''/'K, whereas that of G-AtAs forming the second cladding layer (5) is approximately 6.OX10''/'K. Therefore, there is a problem that crystal distortion occurs in the second cladding layer (5) and the like due to such a difference in thermal expansion coefficients.

また通常半導体レーデは熱放欽を良好となすためにキャ
ップ層(6)側をヒートシンクに固着しているが5iC
hは熱伝導度がα014 W/m・℃と低い九め発振層
(2)で生じた熱がヒートシンクに伝達されず、レーザ
内に蓄積され半導体レーデの熱的破壊を招く原因となろ
う 断る問題を解決する方法としては実質的に高抵抗となる
G暑Asを壇込み層(7)材料として用いることも考え
られるが、GaAsの成長にあたっては最も低温で成長
可能な分子線エピタキシャル改長方法を用いたとしても
600℃の高温に半導体レーデを晒さねばならず、この
ような高温下では、一旦成長した活性層(4)41KM
的劣化が生じ寿命が低下するという問題がある。
In addition, normally in semiconductor radars, the cap layer (6) side is fixed to the heat sink in order to improve heat dissipation, but 5iC
h means that the heat generated in the ninth oscillation layer (2), which has a low thermal conductivity of α014 W/m・℃, will not be transferred to the heat sink and will accumulate in the laser, causing thermal damage to the semiconductor radar. One possible way to solve this problem is to use GaAs, which has a substantially high resistance, as the material for the layer (7), but when growing GaAs, the molecular beam epitaxial modification method, which can grow at the lowest temperature, is considered. Even if a semiconductor layer (4) is used, it is necessary to expose the semiconductor radar to a high temperature of 600°C, and at such high temperatures, the active layer (4) once grown is 41 km long.
There is a problem that physical deterioration occurs and the life span is shortened.

本発明は上記の諸点に鑑みてなされたもので、熱的劣化
及びam張係数の瀘いによる結晶歪が生じることがなく
、かつ放熱効果の優れ九半導体レーデを提供せんとする
ものであるっ 閃亜鉛鉱型のn−w化合物でめるZn5e (亜鉛セレ
ン)の格子定款、熱膨張係数は夫々5.667λ、7.
2 X 10−’10Kでsb、祈る数値はGaAtA
畠のそれらと略同じであるっ またZaSeを分子線エピタキシャル改良方法で成長さ
せる場合には400℃以下の低湿で形成可能であるう 更にZn5eに不純物としてGa  (ガリクム)を添
加するとその熱伝導度は上昇するということも見出され
ているっ具体的にはノンドープZn5eの熱伝導度は0
5〜0.6 W15N・℃であり、Gaを〈10 ”e
ta−”  程度添加したZn5eのそれは、t2W/
−・℃程度となるっ尚参考まで1cGaAsの熱伝導度
は0.54 W/cm・℃である。      ゛本発
明は祈る知見に基づいてなされたもので、その特徴は上
記埋込み層(力をGa を不純物としで含有するZn5
eで構成したことであるっ上記Zn5eからなる埋込み
層(7)の形成は分子線エピタキシャル成長方法で行え
、新る成長は真空度10 ’To rr以下に排気され
た真空容器内において基板温度350℃、Zn セル温
度300℃、Seセル温度210℃、Ga セル温度6
00℃の条件下で約30分間行った。この結果キャップ
層(6)及び第2クラッド層(5)表面上にキャリア濃
度がジ10へ  のZaSe層がα5μm厚程度成長し
た。
The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to provide a semiconductor radar which is free from thermal deterioration and crystal distortion due to a filtering of the AM tensile coefficient, and which has an excellent heat dissipation effect. The lattice incorporation of Zn5e (zinc selenium) made of a zinc blende type n-w compound, the coefficient of thermal expansion is 5.667λ, 7.
sb at 2 x 10-'10K, the praying value is GaAtA
They are almost the same as those of Hatake.Moreover, when ZaSe is grown by an improved molecular beam epitaxial method, it can be formed at low humidity below 400℃.Furthermore, when Ga (gallium) is added as an impurity to Zn5e, its thermal conductivity increases. It has also been found that the thermal conductivity of non-doped Zn5e increases.
5 to 0.6 W15N・℃, and Ga is <10”e
That of Zn5e added to the extent of ta-” is t2W/
For reference, the thermal conductivity of 1cGaAs is 0.54 W/cm·°C.゛The present invention was made based on this knowledge, and its feature is that the above-mentioned buried layer (Zn5 containing Ga as an impurity)
The buried layer (7) made of Zn5e can be formed by molecular beam epitaxial growth, and new growth is performed at a substrate temperature of 350°C in a vacuum chamber evacuated to a vacuum level of 10'Torr or less. , Zn cell temperature 300°C, Se cell temperature 210°C, Ga cell temperature 6
The test was carried out for about 30 minutes at 00°C. As a result, a ZaSe layer with a carrier concentration of about 5 μm was grown on the surfaces of the cap layer (6) and the second cladding layer (5).

上記キャップ層(6)上に形成されたZaSe層は不必
要であるので、上記成長後NiOH水溶液にてエツチン
グ除去する。
Since the ZaSe layer formed on the cap layer (6) is unnecessary, it is removed by etching with a NiOH aqueous solution after the growth.

尚上記Zn5eのキャリア濃度けGa セルの温度を上
げることにより高めることが可能である。
Note that the carrier concentration of Zn5e can be increased by increasing the temperature of the Ga cell.

本実施例半導体レーデにおけるキャップ層(6)の埋込
み層(7)FiGa  ドープのZn5eからなるため
、G1AtAs系材料からなる発振層(2)と格子定数
及び熱膨張係数が略同じであるので発振層(2)内に結
晶歪が生じることはなく、またZn5eは分子線エピタ
キシャル改長方法を用いれば400℃という低温で成長
可能であるので発振層(2)内に熱的劣化が生じること
もない。更にZn5eは熱伝導度が非常に高いため、連
続発振時に生じる熱による半導体レーデの破壊を生じる
危惧もない。
The buried layer (7) of the cap layer (6) in the semiconductor radar of this embodiment is made of FiGa-doped Zn5e, and has approximately the same lattice constant and thermal expansion coefficient as the oscillation layer (2) made of G1AtAs-based material. (2) No crystal strain occurs within the oscillation layer (2), and since Zn5e can be grown at a low temperature of 400°C using the molecular beam epitaxial modification method, no thermal deterioration occurs within the oscillation layer (2). . Furthermore, since Zn5e has extremely high thermal conductivity, there is no risk of damage to the semiconductor radar due to heat generated during continuous oscillation.

また、Gaが添加されたZn5eからなる埋込み層(力
はn型となるのでキャップ層(6)表面及び基板(1)
裏tfiK犬々電極を形成し所る電極間に、順方向バイ
アスを印加すると埋込み層(7)Vi実質的な高抵抗層
となる。従って印加電流は埋込み層(力により挟挿され
、従来と同様にキャンプ層(6)直下が主たる電流通路
となる。
In addition, a buried layer made of Zn5e doped with Ga (the force is n-type, so the cap layer (6) surface and the substrate (1)
When a forward bias is applied between the electrodes forming the back tfiK dog electrode, the buried layer (7) Vi becomes a substantially high resistance layer. Therefore, the applied current is inserted into the buried layer (by force), and the main current path is directly under the camp layer (6) as in the conventional case.

従来の埋込6層tsi(h、GaAs等で構成した半導
体レーザの寿命が数千時間であったのに対して、本実施
例レーデの寿命は1万5千時間であったっ第2図は、本
発明の他の実施例を示し、その特徴は、C3P(チャネ
ル サブストレート ブレーナ)型の半導体レーザに本
発明を適応したことである。尚第1図と同一箇所に同一
符号が付されている。
While the lifespan of conventional semiconductor lasers made of buried six-layer TSI (h, GaAs, etc.) was several thousand hours, the lifespan of this example laser was 15,000 hours. , shows another embodiment of the present invention, and its feature is that the present invention is applied to a C3P (channel substrate brainer) type semiconductor laser.The same reference numerals are given to the same parts as in Fig. 1. There is.

祈る半導体レーザも第1の実施例と同様な効果が得られ
る。
The same effect as in the first embodiment can be obtained using a semiconductor laser.

尚、本発明は実施例に示し九構造の半導体レーザのみ適
応できるものではなく、TS(テラスサブストレート)
型の半導体レーデ等のよつに電極ストライプ型のものに
も適応可能である。
Note that the present invention is not applicable only to the nine-structure semiconductor laser shown in the embodiment, but is applicable to TS (terrace substrate)
It is also applicable to electrode stripe type devices such as semiconductor radars.

以上の説明から明らかな如く、本発明半導体レーザのキ
ャンプ層の埋込み層はGa  ドーグのZn5sからな
るため長寿命化がはかれる。
As is clear from the above description, since the buried layer of the camp layer of the semiconductor laser of the present invention is made of Zn5s of Ga dog, a long life can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は典型的な半導体レーデを示す断面図、第2図は
本発明の実施例を示す断面図で(1)・・・n型GaA
s  (半導体)基板、(2)・・・発振層、(6)・
・・キャップ層、(7)・・・埋込み層。 第1図 第2図
FIG. 1 is a sectional view showing a typical semiconductor radar, and FIG. 2 is a sectional view showing an embodiment of the present invention.
s (semiconductor) substrate, (2)... oscillation layer, (6)...
... Cap layer, (7) ... Buried layer. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  半導体基板、該基板上に積層されGaAtA
s材料からなる発振層、該発振層上に積層されオーミッ
ク特性の良好な半導体材料からなるストライプ形状のキ
ャップ層、該キャップ層の両側に配され九埋込み層から
なり上記埋込み層11Ga を不純物として含有するZ
n5eから々ることを特徴とする半導体レーザ。
(1) Semiconductor substrate, GaAtA layered on the substrate
an oscillation layer made of S material, a stripe-shaped cap layer laminated on the oscillation layer and made of a semiconductor material with good ohmic characteristics, and a buried layer arranged on both sides of the cap layer, consisting of nine buried layers 11 containing Ga as an impurity. Do Z
A semiconductor laser characterized by the characteristics of n5e.
JP6015182A 1982-04-09 1982-04-09 Semiconductor laser Granted JPS58176990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6015182A JPS58176990A (en) 1982-04-09 1982-04-09 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6015182A JPS58176990A (en) 1982-04-09 1982-04-09 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS58176990A true JPS58176990A (en) 1983-10-17
JPH0365669B2 JPH0365669B2 (en) 1991-10-14

Family

ID=13133863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6015182A Granted JPS58176990A (en) 1982-04-09 1982-04-09 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58176990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135086A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135086A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser

Also Published As

Publication number Publication date
JPH0365669B2 (en) 1991-10-14

Similar Documents

Publication Publication Date Title
US8148731B2 (en) Films and structures for metal oxide semiconductor light emitting devices and methods
US4212020A (en) Solid state electro-optical devices on a semi-insulating substrate
US4607369A (en) Semiconductor laser having a burying layer of a II-VI compound
US5163064A (en) Laser diode array and manufacturing method thereof
US4429397A (en) Buried heterostructure laser diode
JPH07202340A (en) Visible-light semiconductor laser
EP0945939A2 (en) Semiconductor light-emitting device
JPS58176990A (en) Semiconductor laser
US4206468A (en) Contacting structure on a semiconductor arrangement
JPH11340559A (en) Semiconductor light-emitting element
US5887011A (en) Semiconductor laser
JP3254812B2 (en) Semiconductor laser and manufacturing method thereof
JP2003008147A (en) Semiconductor laser device and its manufacturing method
JP2680804B2 (en) Semiconductor laser
JPH0416033B2 (en)
JPS58106885A (en) Semiconductor laser
JP2525618B2 (en) Semiconductor laser
JPS5871677A (en) 2-wavelength buried hetero structure semiconductor laser
JP3315378B2 (en) Semiconductor laser device
JP3196418B2 (en) Semiconductor device
JPS5871679A (en) Semiconductor light emitting element
Hsieh GaInAsP/InP lasers and detectors for fiber optics communications at 1.1-1.3 µm
JPH0559594B2 (en)
JPH0856047A (en) Semiconductor device and its manufacture
JPS6076184A (en) Semiconductor laser