JPS58176858A - Magnifying lens system of electron microscope - Google Patents

Magnifying lens system of electron microscope

Info

Publication number
JPS58176858A
JPS58176858A JP5943282A JP5943282A JPS58176858A JP S58176858 A JPS58176858 A JP S58176858A JP 5943282 A JP5943282 A JP 5943282A JP 5943282 A JP5943282 A JP 5943282A JP S58176858 A JPS58176858 A JP S58176858A
Authority
JP
Japan
Prior art keywords
lens
lenses
image
energizing
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5943282A
Other languages
Japanese (ja)
Other versions
JPS6363107B2 (en
Inventor
Katsushige Tsuno
勝重 津野
Toshikazu Honda
本田 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP5943282A priority Critical patent/JPS58176858A/en
Priority to GB08309425A priority patent/GB2118771B/en
Priority to US06/482,880 priority patent/US4520264A/en
Publication of JPS58176858A publication Critical patent/JPS58176858A/en
Publication of JPS6363107B2 publication Critical patent/JPS6363107B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement

Abstract

PURPOSE:To allow the image to rotate with no change of magnifying power by setting an objective lens and a projection lens at a stationary state, setting two- stage intermediate lenses arranged between them at energizing states opposite to each other, and controlling the energizing strength at a specific level. CONSTITUTION:An objective lens 2 and a projection lens 3 are provided between a sample 1 and a screen 11, and two intermediate lenses 4, 5 are arranged between the lenses 2, 3 to form a four-stage lens system. Power supplies 6-9 of individual lenses are controlled by means of a control unit 10 such as a computer or the like, so that the lenses 2, 3 are fixed at a strong energizing state, the intermediate lenses 4, 5 are set at energizing states opposite to each other and the sum of their energizing strengthes is in proportion to the rotating angle of the image and the difference has a relation approximate to a quadratic curve relative to the rotating angle of the image. Therefore, the image can be rotated at low aberration with no change of magnifying power by using a conventional lens system.

Description

【発明の詳細な説明】 本発明は特別な像回転レンズを付加することなく倍率変
化を伴わず、且つ低収差で像回転可能な電子顕微鏡の拡
大レンズ系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnifying lens system for an electron microscope that can rotate an image without adding a special image rotation lens, without changing magnification, and with low aberrations.

従来より像の回転を行なわせるためのレンズ系は幾つか
考案されているが、その殆んどは磁極構造や励磁方法に
工夫をこらしたかなり人がかりな像回転のための特別な
レンズを付加するものである。然るに、像回転を行なわ
せることは電子顕微鏡による像観察における一つの要求
ではあるが、それによって新たな知見が得られるわけで
はなく、従って、ことさらに複雑なレンズを追加してま
で像′回転を行なわせる意義はない。むしろ、レンズの
追加なしに既設のレンズをそのまま使用して電気回路の
制御により像回転を行なわせる方が電子光学系に悪影響
を与えず、且つ経済的に有利であり、実現の可能性は大
きいわけである。
Several lens systems have been devised to perform image rotation, but most of them add special lenses for image rotation, which is a fairly labor-intensive process that involves devising magnetic pole structures and excitation methods. It is something to do. However, although performing image rotation is a requirement in image observation using an electron microscope, it does not lead to new knowledge, and therefore it is necessary to add a particularly complex lens to perform image rotation. There is no point in forcing them to do so. Rather, it is better to use the existing lens as is without adding an additional lens and rotate the image by controlling the electric circuit, which will not have a negative impact on the electron optical system and is economically advantageous, and has a high possibility of realization. That's why.

さて、電子顕微鏡における回転角θは θ= (e /8m Vr ) V2f:、’ Bz 
dzで与えられる。ここで、eは電子の電荷、mは電子
の静止質量、Vrは相対補正を行なった電子の加速電圧
、Blは軸上磁界強度である。この式において、(e 
/8RI Vr )  は一定であり、従って、θはB
zの20(試料面)からzi(像面)までの積分値によ
って決定されることがわかる。ここで、8ZのZOから
21までの積分値は試料から下の像面までの磁界分布の
全励磁〈アンペアターン(Nl))に等しく、従ってこ
のNlを変化させれば像の回転は生ずることになる。し
かし、通常Nlを変化すれば倍率が当然に変化するので
、像回転のみを目的にする場合には、この倍率の変化を
防ぐ方策が必要となる。今、2個のレンズを考えて、こ
のレンズの励磁の向きを逆にすれば(従って、像回転の
方向が互いに逆になる)、第ルンズの励磁NI+を増加
(又は減少)し、第2レンズの励磁NI2を減少(又は
増大)させれば、そのNI+ とNI2の差は増大又は
減少するが、倍率は変化しないという条件が存在する筈
である。
Now, the rotation angle θ in an electron microscope is θ= (e /8m Vr ) V2f:,' Bz
It is given in dz. Here, e is the electric charge of the electron, m is the rest mass of the electron, Vr is the acceleration voltage of the electron after relative correction, and Bl is the axial magnetic field strength. In this formula, (e
/8RI Vr ) is constant, therefore θ is B
It can be seen that it is determined by the integral value from z20 (sample surface) to zi (image surface). Here, the integral value of 8Z from ZO to 21 is equal to the total excitation (ampere turns (Nl)) of the magnetic field distribution from the sample to the image plane below, and therefore, if this Nl is changed, image rotation will occur. become. However, normally, changing Nl naturally changes the magnification, so if the sole purpose is image rotation, a measure to prevent this change in magnification is required. Now, considering two lenses, if the direction of excitation of these lenses is reversed (therefore, the directions of image rotation are opposite to each other), the excitation NI+ of the first lens will be increased (or decreased), and the excitation of the second lens will be increased (or decreased). If the excitation NI2 of the lens is decreased (or increased), the difference between NI+ and NI2 increases or decreases, but there should be a condition that the magnification does not change.

そこで、簡単に第1図に示す如く、第1のレンズの励磁
強度を直線Aのように、又第2のレンズの励磁強度を直
線Bのように、両者の強度の合計(絶対値の和)がCの
如く一定になるような条件で変化させた場合、像回転は
問題なく与えられるが倍率変化を伴ってしまうことがわ
かった。
Therefore, as shown in Fig. 1, the excitation intensity of the first lens is shown as a straight line A, and the excitation intensity of the second lens is shown as a straight line B. ) is changed under conditions such as C that is constant, image rotation can be applied without any problem, but it has been found that a change in magnification is accompanied.

而して、本発明は既存のレンズ系において、倍率変化を
伴うことなしに、且つ収差を増大させることなしに像回
転を与えることの可能な新規な拡大レンズ系を提供する
ことを目的とするもので、対物レンズ、投影レンズ及び
両者間に配置された少なくとも2段の中間レンズを有す
る4段構成以上のレンズ系であって、対物レンズと投影
レンズを固定状態となし、前記2段の中間レンズを互い
に逆励磁状態となし、両レンズの励磁強度の和(絶対値
の差)が像の回転角に関し比例関係を有し、且つその差
(絶対値の和)又はその平均値が像の回転角に関し2次
曲線に近似した関係をもつようになした電子顕微鏡の拡
大レンズ系に特徴がある。
Therefore, an object of the present invention is to provide a novel magnifying lens system that can impart image rotation to existing lens systems without changing the magnification and without increasing aberrations. A lens system having a four-stage or more structure including an objective lens, a projection lens, and at least two intermediate lenses disposed between the two, the objective lens and the projection lens are fixed, and the intermediate lens between the two stages is The lenses are mutually reverse excited, and the sum of the excitation intensities (difference in absolute values) of both lenses has a proportional relationship with respect to the rotation angle of the image, and the difference (sum of absolute values) or the average value is A magnifying lens system for an electron microscope is characterized by a relationship that approximates a quadratic curve with respect to rotation angle.

本発明者はどのような条件の場合に倍率の変化を伴うこ
となく像回転を行わせ得るかを第2図に示すごとき4段
レンズ系を用い、コンピュータ実験を詳細に行った。尚
、第2図において1は試料、2は対物レンズ、3は投影
レンズであり、対物レンズと投影レンズの間に二つの中
間レンズ4と5が置かれている。6.7,8.9は夫々
のレンズの電源であり、コンピュータ等の制御装置1o
によって各供給電流値が制御される。11は像表示用の
スクリーンである。
The inventor conducted detailed computer experiments using a four-stage lens system as shown in FIG. 2 to determine under what conditions image rotation can be performed without a change in magnification. In FIG. 2, 1 is a sample, 2 is an objective lens, and 3 is a projection lens. Two intermediate lenses 4 and 5 are placed between the objective lens and the projection lens. 6.7 and 8.9 are power supplies for each lens, and a control device 1o such as a computer.
Each supply current value is controlled by 11 is a screen for displaying images.

この様なレンズ系において、対物レンズ2と2個の中間
レンズ4,5と1個の投影レンズ3との3群にレンズを
分け、対物レンズ2と投影レンズ3を強い励磁の状態に
固定(フォーカス合せ等による若干の可変を含む)して
おき、(従って高倍率観察のモード)2個の中間レンズ
を互いに逆励磁となし、その励磁電流IL+とIL2を
細かく変化させた場合の像回転角と倍率を求めたところ
第3図の曲線が得られた。同図中、横軸は像回転角θ、
縦軸は中間レンズ4.5の励磁強度J〈アンペアターン
)であり、曲線A群はレンズ4の励磁変化を、又曲線B
群は第2のレンズ5の励磁変化を示し、A1と81は5
000倍、A2と82は10000倍、A3とB3は2
0000倍、A4とB4は50000倍の場合である。
In such a lens system, the lenses are divided into three groups: the objective lens 2, two intermediate lenses 4 and 5, and one projection lens 3, and the objective lens 2 and the projection lens 3 are fixed in a strongly excited state ( image rotation angle when the two intermediate lenses are mutually reverse excited (including slight variations due to focus adjustment, etc.) and the excitation currents IL+ and IL2 are minutely changed (therefore, in high-magnification observation mode). When we calculated the magnification, we obtained the curve shown in Figure 3. In the figure, the horizontal axis is the image rotation angle θ,
The vertical axis is the excitation intensity J (ampere turns) of the intermediate lens 4.5, the curve A group represents the excitation change of the lens 4, and the curve B
The group shows the excitation change of the second lens 5, A1 and 81 are 5
000 times, A2 and 82 are 10,000 times, A3 and B3 are 2
0000 times, and A4 and B4 are 50000 times.

そして、その多対の曲線の交点a、b、c、dは両レン
ズの励磁強度が等しい場合である。尚、このデータを得
るときの投影レンズ励磁強度Jplは3500アンペア
ターンであった。このJl)lを変えた場合、各曲線の
交点a、b、c、d位置、つまり第ルンズ、第2レンズ
の励磁強度が等しくなるときの回転角θが異なる程度で
、曲線群A、Bの形態は第3図と似ている。
The intersection points a, b, c, and d of the multiple pairs of curves are the cases where the excitation intensities of both lenses are equal. Incidentally, the projection lens excitation intensity Jpl when obtaining this data was 3500 ampere turns. When this Jl)l is changed, the intersection points a, b, c, d of each curve, that is, the rotation angle θ when the excitation strength of the first lens and the second lens become equal, are different, and the curve groups A and B The form is similar to that shown in Figure 3.

第3図を良く検討することによって次のことが明らかに
なった。
A careful study of Figure 3 revealed the following.

〈1)多対の曲線(A 1とBl、A2と82・・・・
・)の交点a、b、c、dより^励磁側で曲線の勾配が
大きく、弱励磁側でその勾配は小さく、第ルンズの励磁
強度JIL+と第2のレンズの励磁強度JTL2との和
、つまり絶対値の差lJ[L+  l   1JIL2
 1は第4図に示す如く像回転角θに比例的に変化し、
しかも当然のことながら、その直線は倍率によらず一定
である。
<1) Many pairs of curves (A1 and Bl, A2 and 82...
・The slope of the curve is larger on the excitation side than the intersections a, b, c, and d of ), and the slope is small on the weak excitation side, and the sum of the excitation intensity JIL+ of the first lens and the excitation intensity JTL2 of the second lens, In other words, the difference in absolute values lJ[L+ l 1JIL2
1 changes proportionally to the image rotation angle θ as shown in FIG.
Moreover, as a matter of course, the straight line is constant regardless of the magnification.

(2〉第1のレンズの励磁強度JIL+ と第2のレン
ズの励磁強度JIL2の差、つまり絶対値の和、又はそ
の平均値(lJIL+  l+1JIL2+)/2は第
5図に示す如く、像回転角θに関し2次曲線に近似した
変化をとる。同図中り、は5000倍、D2は1ooo
o倍、DSは20000倍、D4は50000倍の場合
である。
(2> The difference between the excitation intensity JIL+ of the first lens and the excitation intensity JIL2 of the second lens, that is, the sum of absolute values, or its average value (lJIL+ l+1JIL2+)/2, is the image rotation angle as shown in Figure 5. Changes approximate to a quadratic curve with respect to θ. In the same figure, 5000 times, D2 is 1ooo
o times, DS is 20,000 times, and D4 is 50,000 times.

以上を総合すると、所定の倍率において、所望とする像
回転角を与えるには第ルンズと第2レンズの励磁強度の
絶対値の差が第4図に示す直線に沿って、且つ両レンズ
の励磁強度の絶対値の和又は平均値が第5図に示す曲線
に沿って与えられるようにすれば良いことになる。
Taking all the above into account, in order to obtain the desired image rotation angle at a given magnification, the difference in the absolute value of the excitation strength between the first lens and the second lens must be along the straight line shown in Figure 4, and the excitation of both lenses must be It is sufficient if the sum or average value of absolute values of intensity is given along the curve shown in FIG.

この様な条件は中間レンズとしてどのような形状のもの
を用いようとも全く関係なく成立する。
These conditions hold true regardless of what shape the intermediate lens is used.

所で、上記により像回転を行わせた場合、それに伴う各
種収差の増大が問題になる。第6図は1oooo倍にお
ける像回転に対する倍率色収差Cm (−)及び歪収差
Ds  (%)の変化を投影レンズの励磁強度Jl)l
をパラメータにして示したものである。図中Cut 1
.Ds 1はJpl=3200A丁の場合、C12,D
S2はJl)l=2300八Tの場合である。図から解
るように倍率色収差Cl11の変化は小さく、且つJl
)lが高い程小さくなる傾向にあり、本発明のように投
影レンズ3を強い励磁に固定して使用する場合、広い回
転角度範囲で全く問題を生じないことが解る。一方、歪
収差DSについてもJl)lが高い方が良い結果となっ
ている。しかし、この[)SはθL;120°で急激に
増大している。従って、とり得る像回転角度θはこのD
Sで決定されることになる。但し、θの大きい側ではD
sの増大はないのでこの方向への制約はない。しかし、
θが大きくなる方向は励磁を増加する方向であるので、
極端に大きくすることはできない。結局、θは120度
程度から220度程度までは問題なく変化し得ることに
なる。
However, when the image is rotated as described above, there is a problem in that various aberrations increase accordingly. Figure 6 shows the changes in the lateral chromatic aberration Cm (-) and distortion aberration Ds (%) with respect to image rotation at 1ooooo times the excitation intensity Jl)l of the projection lens.
This is shown using parameters. Cut 1 in the diagram
.. Ds 1 is C12, D when Jpl=3200A
S2 is the case where Jl)l=23008T. As can be seen from the figure, the change in lateral chromatic aberration Cl11 is small, and Jl
) The higher l tends to be, the smaller it becomes, and it can be seen that when the projection lens 3 is used with strong excitation as in the present invention, no problem occurs over a wide rotation angle range. On the other hand, regarding distortion aberration DS as well, the higher Jl)l is, the better the results are. However, this [)S increases rapidly at θL; 120°. Therefore, the possible image rotation angle θ is this D
It will be determined by S. However, on the large side of θ, D
Since there is no increase in s, there is no restriction in this direction. but,
The direction in which θ increases is the direction in which the excitation increases, so
It cannot be made extremely large. After all, θ can be changed from about 120 degrees to about 220 degrees without any problem.

以上説明した如く、本発明は4段又はそれ以上の結像レ
ンズ系において、対物レンズと投影レンズとを固定状態
となし、2個の中間レンズを逆励磁となし、その励磁強
度(絶対値)の差を直線的に変化させて像回転を与える
ようになし、そのときの倍率変化を生じないように両レ
ンズの励磁強度(絶対値)の和文□は平均値を像回転角
θに関し2次曲線に近似して変化させるようになしであ
るので、何等のレンズの追加もなく既存のレンズ系で倍
率変化を伴わずに任意に像回転が可能となる。
As explained above, in the present invention, in a four-stage or more-stage imaging lens system, the objective lens and the projection lens are fixed, the two intermediate lenses are reversely excited, and the excitation intensity (absolute value) is The difference between the two lenses is changed linearly to give image rotation, and in order to prevent a change in magnification at that time, the average value of the excitation intensity (absolute value) of both lenses is quadratic with respect to the image rotation angle θ. Since the image is not changed so as to approximate a curve, it is possible to arbitrarily rotate the image using an existing lens system without adding any lenses and without changing the magnification.

又、回転角をそれ程大きくしなければ収差、特に倍率色
収差と歪収差の増大もなく、従って高分解能の像観察が
保証される。
Furthermore, unless the rotation angle is made that large, aberrations, especially chromatic aberration of magnification and distortion aberration, do not increase, thus ensuring high-resolution image observation.

尚、上記は本発明の一例であり、特にデータは使用レン
ズのディメンジョンや形状、更には他のレンズの励磁の
仕方等々によって変化することは当然である。しかし、
この場合においても第3図乃至第5図に示す様な傾向に
は変りはない。又、本発明は対物レンズと投影レンズと
その間に少くとも2段の中間レンズ(呼称には関係ない
)が存在すれば良く、従って全体として5段以上のレン
ズ系にも適用できること勿論である。
Note that the above is an example of the present invention, and it goes without saying that the data may vary depending on the dimensions and shape of the lens used, how other lenses are excited, etc. but,
Even in this case, the trends shown in FIGS. 3 to 5 remain unchanged. Further, the present invention only needs to have at least two stages of intermediate lenses (irrespective of the name) between the objective lens, the projection lens, and the present invention, and therefore it is of course applicable to a lens system having five stages or more as a whole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般に考えられるレンズの励磁可変を示す図、
第2図は本発明において使用するレンズ系の一例を示す
図、第3図乃至第5図は本発明を説明するための図、第
6図は本発明レンズ系における収差を示す図である。 1:試料、      2:対物レンズ、3:投影レン
ズ、  4,5:中間レンズ、6.7.8.9:電源、
 10:制御装置、11ニスクリーン。 特許出願人 日本電子株式会社 代表者 加勢 忠雄 第1図 区 □ 1゜ 1゛ 法            l 。 rつ
Figure 1 is a diagram showing the generally considered variable excitation of a lens.
FIG. 2 is a diagram showing an example of a lens system used in the present invention, FIGS. 3 to 5 are diagrams for explaining the present invention, and FIG. 6 is a diagram showing aberrations in the lens system of the present invention. 1: Sample, 2: Objective lens, 3: Projection lens, 4, 5: Intermediate lens, 6.7.8.9: Power supply,
10: Control device, 11 Niscreen. Patent applicant JEOL Ltd. Representative Tadao Kase Figure 1 Section □ 1゜1゛ method l. r one

Claims (1)

【特許請求の範囲】[Claims] 対物レンズ、投影レンズ及び両者間に配置された少なく
とも2段の中間レンズを有する4段構成以上のレンズ系
であって、対物レンズと投影レンズを固定状態となし、
前記2段の中間レンズを互いに逆励磁状態となし、両レ
ンズの励磁強度の和(絶対値の差)が像の回転角に関し
比例関係を有し、且つその差(絶対値の和)又はその平
均値が像の回転角に関し2次曲線に近似した関係をもつ
ようになしたことを特徴とする電子顕微鏡の拡大レンズ
系。
A lens system having a four-stage or more structure including an objective lens, a projection lens, and at least two intermediate lenses arranged between the two, the objective lens and the projection lens being in a fixed state,
The two stages of intermediate lenses are mutually reversely excited, and the sum of the excitation intensities (difference in absolute values) of both lenses has a proportional relationship with respect to the rotation angle of the image, and the difference (sum of absolute values) or its A magnifying lens system for an electron microscope, characterized in that the average value has a relationship approximating a quadratic curve with respect to the rotation angle of an image.
JP5943282A 1982-04-08 1982-04-08 Magnifying lens system of electron microscope Granted JPS58176858A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5943282A JPS58176858A (en) 1982-04-08 1982-04-08 Magnifying lens system of electron microscope
GB08309425A GB2118771B (en) 1982-04-08 1983-04-07 Electron microscope
US06/482,880 US4520264A (en) 1982-04-08 1983-04-07 Electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5943282A JPS58176858A (en) 1982-04-08 1982-04-08 Magnifying lens system of electron microscope

Publications (2)

Publication Number Publication Date
JPS58176858A true JPS58176858A (en) 1983-10-17
JPS6363107B2 JPS6363107B2 (en) 1988-12-06

Family

ID=13113100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5943282A Granted JPS58176858A (en) 1982-04-08 1982-04-08 Magnifying lens system of electron microscope

Country Status (1)

Country Link
JP (1) JPS58176858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241245A (en) * 1986-04-11 1987-10-21 Jeol Ltd Electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241245A (en) * 1986-04-11 1987-10-21 Jeol Ltd Electron microscope

Also Published As

Publication number Publication date
JPS6363107B2 (en) 1988-12-06

Similar Documents

Publication Publication Date Title
EP2662719B1 (en) Telephoto zoom lens system and photographing apparatus having the same
JP2007266008A (en) Correction method of image aberration of electron optical system
JP2002510431A (en) Device for correcting third-order aperture aberration of a lens, particularly an objective lens of an electron microscope
EP0068896B1 (en) Image distortion-free, image rotation-free electron microscope
JP2005173602A (en) Objective lens for observation device, microscope and adjusting method of objective lens
JPS58176858A (en) Magnifying lens system of electron microscope
US6720558B2 (en) Transmission electron microscope equipped with energy filter
US4520264A (en) Electron microscope
US5001345A (en) Transmission electron microscope
JPH05160012A (en) Electron beam reduced transfer device
JP2561739B2 (en) Lens device for electron microscope
JPH11135046A (en) Electron microscope
US4775790A (en) Transmission electron microscope
US6586737B2 (en) Transmission electron microscope equipped with energy filter
JPS5894745A (en) Multipole lens
JPH10106467A (en) Electron lens and nonrotating lens system
JP3234373B2 (en) Magnetic field type electron lens and electron beam device using the same
JPS58186146A (en) Magnifying lens system of electron microscope
JP3717202B2 (en) Electron microscope and alignment method thereof
JPS58186147A (en) Magnifying lens system of electron microscope
JPH09113805A (en) Finder optical system
JPH0234141B2 (en)
JP2822283B2 (en) Electron beam reduction transfer device
JPS61181052A (en) Electron microscope
JPS6241376B2 (en)