JPS5817677B2 - Method for removing arsenic in aqueous solution - Google Patents

Method for removing arsenic in aqueous solution

Info

Publication number
JPS5817677B2
JPS5817677B2 JP53115278A JP11527878A JPS5817677B2 JP S5817677 B2 JPS5817677 B2 JP S5817677B2 JP 53115278 A JP53115278 A JP 53115278A JP 11527878 A JP11527878 A JP 11527878A JP S5817677 B2 JPS5817677 B2 JP S5817677B2
Authority
JP
Japan
Prior art keywords
arsenic
aqueous solution
added
liquid
ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53115278A
Other languages
Japanese (ja)
Other versions
JPS5541863A (en
Inventor
下飯坂潤三
松岡功
成田重雄
中沢広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP53115278A priority Critical patent/JPS5817677B2/en
Publication of JPS5541863A publication Critical patent/JPS5541863A/en
Publication of JPS5817677B2 publication Critical patent/JPS5817677B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 本発明は水溶液中に含有されている砒素を効果的に除去
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively removing arsenic contained in an aqueous solution.

砒素は毒性が強いために、これを含む排液の排出基準は
0.5m9/l以下と定められている。
Because arsenic is highly toxic, the discharge standard for wastewater containing arsenic is set at 0.5 m9/l or less.

水溶液中の砒素を除去する方法として、従来最も一般的
なのは、いわゆる共沈除去法であり、この共沈除去法に
よって、なんとか排出基準以下に砒素を除去している。
Conventionally, the most common method for removing arsenic from an aqueous solution is the so-called coprecipitation removal method, and by this coprecipitation removal method, arsenic can be removed to a level below the emission standards.

だが、この共沈除去法(水溶液に第2鉄イオンを添加し
たあと中和して水酸化第2鉄を生成させ、これに砒素を
共沈させる方法)は、水溶液中の砒素に対する第2鉄イ
オンの重量比(これを砒鉄比という)を、5価砒素に対
しては約10,3価砒素に対しては20〜30、のよう
に太きくしなければ、排出基準を満足する程度にまで砒
素を除去できない。
However, this coprecipitation removal method (a method in which ferric ions are added to an aqueous solution and then neutralized to produce ferric hydroxide, in which arsenic is coprecipitated) Unless the weight ratio of ions (this is called the arsenic ratio) is increased to approximately 10 for pentavalent arsenic and 20 to 30 for trivalent arsenic, it will not be possible to meet the emission standards. Arsenic cannot be removed until

砒鉄比を大きくしなければ所望の除去率が得られないと
いうことは、実操業上極めてやっかいな事態を生ずる。
The fact that the desired removal rate cannot be obtained unless the arsenic ratio is increased creates an extremely troublesome situation in actual operation.

すなわち、多量の第2鉄イオンを添加しなければならず
、その結果、砒素を含む水酸化第2鉄スラツジが多量に
生ずることになり、このスラッジの後処理に困窮してい
るのが実状である。
In other words, a large amount of ferric ions must be added, resulting in the production of a large amount of ferric hydroxide sludge containing arsenic, and the reality is that post-treatment of this sludge is difficult. be.

しかも、このスラッジを液から分離するさいにも、設備
が過大化し非能率的な操業を余儀なくされる。
Moreover, when separating this sludge from the liquid, the equipment becomes too large and inefficient operations are forced.

本発明は、生成するスラッジを従来法の1/10以下に
までも低下させることができかつ砒素の分離除去操作も
簡単な設備で実施できる非常に効果的な砒素の除去法を
提供するもので、その要旨と゛するところは、砒素を含
む水溶液中に第2鉄イオンを砒鉄比が0.5〜3の程度
で共存させ(被処理水溶液が第2鉄イオンを含まないと
きは、第2鉄イオンを添加し)、この第2鉄イオンが水
酸化第2鉄として沈殿する状態(好ましくはpH4〜5
)にまでこの水溶液を中和処理して砒素と鉄を含む微細
な沈殿を生成せしめ、この微細沈殿が生成した液に陰イ
オン系界面活性剤を添加し、次いでこの液を浮遊選鉱処
理して該微細沈殿を浮選分離する水溶液中の砒素の除去
法にある。
The present invention provides a highly effective arsenic removal method that can reduce the amount of sludge produced to less than 1/10 of the conventional method, and can also perform arsenic separation and removal using simple equipment. The gist of this is that ferric ions are allowed to coexist in an arsenic-containing aqueous solution at an arsenic ratio of about 0.5 to 3 (if the aqueous solution to be treated does not contain ferric ions, (adding iron ions) and a state in which the ferric ions precipitate as ferric hydroxide (preferably at pH 4 to 5).
), this aqueous solution is neutralized to produce fine precipitates containing arsenic and iron, an anionic surfactant is added to the liquid in which these fine precipitates are formed, and this liquid is then subjected to flotation treatment. A method for removing arsenic from an aqueous solution involves flotation separation of the fine precipitate.

5価砒素を含む水溶液に、0.5〜3程度の小さな砒鉄
比となるように第2鉄イオンを共存させ、これにアルカ
リ中和剤例えば水酸化ナトリウムや消石灰を添加してp
Hを4〜6、好ましくは4〜5に調整すると、砒酸鉄と
、砒素を吸着した水酸化第2鉄と、からなる混合物であ
ろうと推察される沈殿が生ずる。
Ferric ions are made to coexist in an aqueous solution containing pentavalent arsenic so that the arsenic ratio is as small as 0.5 to 3, and an alkali neutralizing agent such as sodium hydroxide or slaked lime is added to this to make p.
When H is adjusted to 4 to 6, preferably 4 to 5, a precipitate is formed which is assumed to be a mixture of iron arsenate and ferric hydroxide adsorbing arsenic.

この沈殿は非常に微細でありかつ安定に分散しているか
ら、これを沈降分離することは実際上困難である。
Since this precipitate is very fine and stably dispersed, it is practically difficult to separate it by sedimentation.

本発明者らは、このような、砒酸鉄、砒素、水酸化第2
鉄が混在していると考えられる微細沈殿の分散液に、陰
イオン性界面活性剤、例えばドデシルベンゼンスルホン
酸塩好マしくはドデシルベンゼン硫酸ナトリウム、アル
キルベンゼンスルホン酸塩、などを添加したあと、この
液を浮選すると、微細に分散していた沈殿(固形物)は
非常に効率よく浮遊し、固液分離が簡単に実姉できるこ
とを見い出した。
The present inventors have discovered that iron arsenate, arsenic, and ferric hydroxide
After adding an anionic surfactant, such as dodecylbenzene sulfonate, preferably sodium dodecylbenzene sulfonate, or alkylbenzene sulfonate, to a dispersion of fine precipitates that are thought to contain iron, They discovered that when the liquid is flotated, the finely dispersed precipitates (solids) float very efficiently, making it easy to perform solid-liquid separation.

実施例に従い具体的に説明すると、第1図は比較例(曲
線a)と本発明例(曲線b)の試験結果を示したもので
、比較例(曲線a)の場合は、10Tn9/lの5価砒
素を含む水溶液に第2鉄イオンをその添加量を変えて添
加し、消石灰を加えてpHを5付近に調節し、その後1
時間静置して沈殿を沈降させたあとの上澄液をサンプリ
ングし、この液中の残留砒素濃度と第2鉄イオンの添加
量との関係を調べたものであり、本発明例(曲線b)の
場合は10■/lの5価砒素を含む同じ水溶液に、同じ
く第2鉄イオンをその添加量を変えて添加し、水酸化ナ
トリウムを加えてpHを5付近に調整し、次いでドデシ
ルベンゼン硫酸ナトl)ラムを7.5m9/l添加した
あと、この液をそのままデンバー型浮選機に入れ、3分
間の浮選処理を実姉し、その処理尾液中の残留砒素濃度
と第2鉄イオンの添加量との関係を調べたものである。
To explain in detail according to the examples, FIG. 1 shows the test results of the comparative example (curve a) and the present invention example (curve b). In the case of the comparative example (curve a), the Ferric ions were added in varying amounts to an aqueous solution containing pentavalent arsenic, slaked lime was added to adjust the pH to around 5, and then 1
The supernatant liquid after allowing the precipitate to settle for a period of time was sampled, and the relationship between the residual arsenic concentration in this liquid and the amount of ferric ion added was investigated. ), ferric ions are added in different amounts to the same aqueous solution containing 10 μ/l of pentavalent arsenic, sodium hydroxide is added to adjust the pH to around 5, and then dodecylbenzene is added. After adding 7.5 m9/l of sodium sulfate, this liquid was directly put into a Denver-type flotation machine and subjected to flotation treatment for 3 minutes, and the residual arsenic concentration and ferric iron concentration in the treated tail liquid were determined. This study investigated the relationship with the amount of ions added.

第1図の結果から明らかなように、比較例(曲線a)の
場合は、第2鉄イオンの添加量が10 am9/l (
砒鉄比10)でも排出基準の0.5m9.#の砒素濃度
にするには困難であるが、本発明例(曲線b)の場合は
、第2鉄イオンの添加量が107Q/7程度で急激に砒
素が除去され、砒鉄比が1〜2でも排出基準の0.5T
n9/l以下の砒素濃度にすることができる。
As is clear from the results in Figure 1, in the case of the comparative example (curve a), the amount of ferric ion added was 10 am9/l (
Even with an arsenic ratio of 10), the discharge standard is 0.5m9. Although it is difficult to achieve an arsenic concentration of Even in 2, the emission standard is 0.5T.
The arsenic concentration can be reduced to n9/l or less.

なお、この実姉例のほかに、陰イオン系界面活性剤の添
加量を変えた試験を行なったが、砒鉄比が小さい程、添
加する界面活性剤の量は少量でよいことがわかった。
In addition to this sister example, tests were conducted in which the amount of anionic surfactant added was varied, and it was found that the smaller the arsenic ratio, the smaller the amount of surfactant added.

また界面活性剤の種類としては、陰イオン系のものであ
れば、その効果に多少の変動があるが、浮選効率の向上
には十分に貢献することがわかった。
Furthermore, it was found that anionic surfactants contribute sufficiently to improving flotation efficiency, although their effects vary somewhat.

なお、被処理水溶液中に溶解している砒素が3価砒素の
場合には、5価砒素の場合よりも第2鉄イオン量を多く
しないと、高い除去率が得られないことがわかった。
It has been found that when the arsenic dissolved in the aqueous solution to be treated is trivalent arsenic, a high removal rate cannot be obtained unless the amount of ferric ions is increased compared to the case of pentavalent arsenic.

しかし、この3価砒素が存在する場合は、酸化剤例えば
さらし粉を添加して、これを5価砒素に酸化したあと、
本発明法を実施することにより、小さい砒鉄比のもとで
高い除去率で砒素を除去することができた。
However, if this trivalent arsenic is present, add an oxidizing agent such as bleaching powder to oxidize it to pentavalent arsenic, and then
By carrying out the method of the present invention, arsenic could be removed at a high removal rate under a small arsenic ratio.

このように、本発明法によると、従来の共沈除去法に比
べて、第2鉄イオンは1/10程度でよく、生成するス
ラッジの量も大巾に低下する。
As described above, according to the method of the present invention, compared to the conventional coprecipitation removal method, only about 1/10 of the amount of ferric ions is required, and the amount of generated sludge is greatly reduced.

しかも、沈降のための時間は不要で、固液分離槽も不要
化する。
Moreover, no time is required for sedimentation, and a solid-liquid separation tank is also not required.

このような操業上の利点のほかに、本発明法によると、
処理剤液の砒素濃度が従来法よりも一層低下するという
公害防止にとっては極めて意義のある効果を発揮する。
In addition to these operational advantages, the method of the present invention:
The arsenic concentration in the treatment solution is further reduced than in conventional methods, which is an extremely significant effect in preventing pollution.

□図面の簡単な説明 第1図は、砒素含有水溶液に共存する第2鉄イオンの量
と処理後の液中の残留砒素濃度との関係図であり、曲線
aは従来法に従う比較例、曲線すは本発明法に従う実症
例結果を示している。
□Brief explanation of the drawings Figure 1 is a diagram showing the relationship between the amount of ferric ions coexisting in an arsenic-containing aqueous solution and the residual arsenic concentration in the solution after treatment. Curve a is a comparative example according to the conventional method; 1 shows actual case results according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 水溶液中に溶解している砒素を分離除去するにあた
り、該水溶液中の砒素量に対して重量比で砒鉄比(Fe
”/As)が03〜3となるように第2鉄イオンを共存
させ、次いでこの液にアルカリ剤を添加してpH4〜6
に中和処理することにより砒素と鉄を含む微細な沈殿を
液中に生成せしめ、この微細沈殿が分散生成した液に陰
イオン系界面活性剤を添加し、次いでこの液を浮遊選鉱
処理して該微細沈殿を浮遊分離することを特徴とする水
溶液中の砒素の除去法。
1 When separating and removing arsenic dissolved in an aqueous solution, the arsenic iron ratio (Fe
Ferric ions are allowed to coexist so that ``/As) is 03 to 3, and then an alkaline agent is added to this solution to adjust the pH to 4 to 6.
Fine precipitates containing arsenic and iron are generated in the liquid by neutralization treatment, an anionic surfactant is added to the liquid in which these fine precipitates are dispersed, and this liquid is then subjected to flotation treatment. A method for removing arsenic from an aqueous solution, which comprises floating and separating the fine precipitate.
JP53115278A 1978-09-20 1978-09-20 Method for removing arsenic in aqueous solution Expired JPS5817677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53115278A JPS5817677B2 (en) 1978-09-20 1978-09-20 Method for removing arsenic in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53115278A JPS5817677B2 (en) 1978-09-20 1978-09-20 Method for removing arsenic in aqueous solution

Publications (2)

Publication Number Publication Date
JPS5541863A JPS5541863A (en) 1980-03-24
JPS5817677B2 true JPS5817677B2 (en) 1983-04-08

Family

ID=14658692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53115278A Expired JPS5817677B2 (en) 1978-09-20 1978-09-20 Method for removing arsenic in aqueous solution

Country Status (1)

Country Link
JP (1) JPS5817677B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135475A (en) * 1984-12-04 1986-06-23 Tanaka Kikinzoku Kogyo Kk Production of compound material
CA2503431A1 (en) * 2002-10-24 2004-05-06 Teijin Fibers Limited Method for clarifying soil
JP4598415B2 (en) * 2004-02-27 2010-12-15 オルガノ株式会社 Organic arsenic compound processing method
JP4808093B2 (en) * 2006-06-27 2011-11-02 株式会社神戸製鋼所 Recycling method of iron powder for arsenic removal
JP4630237B2 (en) * 2006-06-27 2011-02-09 株式会社神戸製鋼所 Recycling method of iron powder for arsenic removal
CN102642974B (en) * 2012-05-07 2014-05-07 昆明理工大学 Method for treating high-acid high-chlorine waste water

Also Published As

Publication number Publication date
JPS5541863A (en) 1980-03-24

Similar Documents

Publication Publication Date Title
US3617559A (en) Neutralization of ferrous iron-containing acid wastes
CN102001734B (en) Heavy metal settling agent for treating mercury-containing wastewater
US5698107A (en) Treatment for acid mine drainage
US4201667A (en) Process for removing arsenic from aqueous mediums
JPS60143893A (en) Method of purifying aqueous solution
CN109292933A (en) It is a kind of for have in sewage treatment oxidation and flocculate complex function COD remover
US6110379A (en) Method for treating water containing sulfate
JPS56121685A (en) Treatment of liquid containing iron ion and manganese ion
JPS5817677B2 (en) Method for removing arsenic in aqueous solution
US3853980A (en) Ruthenium decontamination of solutions derived from the processing of irradiated fuels
JP4025841B2 (en) Treatment of wastewater containing arsenic and other heavy metals
JPH1147764A (en) Treatment of arsenic-containing waste water
JP4614093B2 (en) Arsenic wastewater treatment method
JPH0128633B2 (en)
US3694356A (en) Abatement of water pollution
JPH0130555B2 (en)
CN105293659A (en) Stabilization method for emergently treating sediment of heavy metal pollutants in water body
CN108558086A (en) A kind of group technology removing hexavalent selenium in water removal
US3414512A (en) Method of flocculating solids
CN111072123A (en) Method for removing complex lead by ferrous phosphate under anoxic condition
US4200528A (en) Removing metal ions from aqueous effluents
US4331551A (en) Method of removing ruthenium contamination from radioactive effluents
JP2718221B2 (en) Treatment method for arsenic-containing sulfuric acid wastewater
JPS59196796A (en) Treatment of liquid waste
JP3696943B2 (en) Treatment agent for heavy metal removal from wastewater and wastewater treatment method using the same