JPS58176547A - Carrier for immunoaffinity-chromatography - Google Patents

Carrier for immunoaffinity-chromatography

Info

Publication number
JPS58176547A
JPS58176547A JP57059627A JP5962782A JPS58176547A JP S58176547 A JPS58176547 A JP S58176547A JP 57059627 A JP57059627 A JP 57059627A JP 5962782 A JP5962782 A JP 5962782A JP S58176547 A JPS58176547 A JP S58176547A
Authority
JP
Japan
Prior art keywords
carrier
antigen
antibody
immunoaffinity
chromatography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57059627A
Other languages
Japanese (ja)
Other versions
JPH0233094B2 (en
Inventor
Toshio Mihara
三原 敏夫
Hiroyasu Suzuki
弘康 鈴木
Kazuhiko Arai
一彦 新井
Yoshiaki Ishimatsu
石松 義章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP57059627A priority Critical patent/JPS58176547A/en
Publication of JPS58176547A publication Critical patent/JPS58176547A/en
Publication of JPH0233094B2 publication Critical patent/JPH0233094B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3255Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. heterocyclic or heteroaromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain a carrier for immunoaffinity-chromatography having no nonunique absorptivity for impurities, by activating a water-insoluble gel having OH groups with a bifunctional compd. having an epoxide group, and combining it with a specified polyethyleneglycol deriv. CONSTITUTION:Water-insoluble gel having OH groups, such as agalose or poval beads, is activated with a bifunctional compd., such as epihalohydrin or bisoxirane, and combined with one of polyethylene glycol derivs. represented by formulae I and II (n=2-3, m=1-10) to obtain an immunoaffinity chromatographic carrier. This carrier is especially suitable for separation and purification of biological active substances, and, for example, the carrier combined with an antibody combines with an antigen in an organism fluid antiquely without being affected other components, therefore, the purified antigen can be obtd. with high recovery yield by eluting the adsorbed antigen.

Description

【発明の詳細な説明】 本発明は生物学的活性を有する有用物質、特に抗体をリ
ガンドとして結合するイムノアフィニティークロマトグ
ラフィー用担体に関し、より詳しくは水酸基を有する水
不溶性ゲルをエポキシド活性化法により活性化し、次い
でポリエチレングリコール誘導体を導入することにより
抗体回収効率が向上し、非特異的吸着を防ぎ、繰返し使
用に耐え、かつ固定化効率の高いイムノアフィニティー
クロマトグラフィー用吸着体を得ることができるイムノ
アフィニティークロマトグラフィー用担体に関するO 近年、バイオテクノロジーの技術革新は目ざましく、遺
伝子組換え、細胞融合技術は微生物あるいは細胞の大量
培養により、ホルモン、酵素等の有用物質特にインター
7=ロン、ソマトスタチン、インシーリン等の微量有用
物質の生産を可能にした。又、ヒトのリンパ球の細胞融
合によるリンホカイン類の生産も抗腫瘍作用、免疫賦活
剤として注目され始めている。(Proc、 Natj
、 Acaa Sci。
Detailed Description of the Invention The present invention relates to a carrier for immunoaffinity chromatography that binds a useful biologically active substance, particularly an antibody, as a ligand. Immunoaffinity, which improves antibody recovery efficiency, prevents nonspecific adsorption, can withstand repeated use, and can obtain an adsorbent for immunoaffinity chromatography with high immobilization efficiency, by introducing a polyethylene glycol derivative. O Regarding carriers for chromatography In recent years, technological innovations in biotechnology have been remarkable, and genetic recombination and cell fusion technologies have been used to produce useful substances such as hormones and enzymes, especially inter-7-ron, somatostatin, and incilin, by mass culturing microorganisms or cells. This made it possible to produce trace amounts of useful substances such as Furthermore, the production of lymphokines by cell fusion of human lymphocytes is also beginning to attract attention as an antitumor effect and immunostimulant. (Proc, Natj
, Acaa Sci.

U、 S、 A、工8 7717(’81))これらの
生物学的に活性な有用物質には治療薬として期待される
ものが多く、その精製プロセスの良否が工業化の成否を
決定する程である。
U, S, A, Engineering 8 7717 ('81)) Many of these biologically active and useful substances are expected to be used as therapeutic agents, and the quality of their purification process will determine the success or failure of industrialization. be.

現在、分離精製手段としては、溶解度の差、電荷の差、
分子サイズ、形状の差、化学的又は物理的親和力の差な
どを利用する方法が広く用いられているが、これらの手
段はその分離原理が物質の物理的あるいは化学的特性の
差に基づいているため、分離の特異性が一般に低く、精
製純度を上げるためには数種の方法を組合せて使用せね
ばならず、精製効率が低いという欠点を有する。
Currently, separation and purification methods include differences in solubility, differences in charge,
Methods that utilize differences in molecular size, shape, chemical or physical affinity, etc. are widely used, but the separation principles of these methods are based on differences in the physical or chemical properties of substances. Therefore, the specificity of separation is generally low, and several methods must be used in combination to increase purification purity, which has the disadvantage of low purification efficiency.

一方、生伴高分子の生物学的親和力は、固有の特異的な
高次構造に起因して特異性が極めて高く、この生物学的
親和力を分離精製に利用するアフィニティークロマトグ
ラフィーは精製効率の高い優れた精製手段であり、特に
生物学的活性を有する微量有効成分の分離精製には好適
である。イムノアフィニティークロマトグラフィーは特
に微量で生物学的活性が高く、きびしい特異性を有する
抗体をリガンドとして使用するため、精製効率がきわめ
て高く、又抗原性を有するすべての物質の精製に利用で
きるという広′(・応用範囲を有している。
On the other hand, the biological affinity of bioaccompanying polymers is extremely specific due to their unique higher-order structure, and affinity chromatography, which utilizes this biological affinity for separation and purification, has high purification efficiency. It is an excellent means of purification, and is particularly suitable for separating and purifying trace amounts of active ingredients that have biological activity. Immunoaffinity chromatography uses a particularly small amount of highly biologically active and highly specific antibodies as ligands, so it has extremely high purification efficiency and can be used to purify all substances with antigenicity. (・It has a range of applications.

インターフェロンの精製においては、1回のイムノアフ
ィニティークロマトグラフィーで活性を5000倍に上
昇させることができた。(Nature。
In the purification of interferon, the activity could be increased 5000 times with one round of immunoaffinity chromatography. (Nature.

イムノアフィニティークロマトグラフィーにおいて、リ
ガンドとして利用される抗体としては、従来免疫動物の
血清あるいは腹水を冷エタノール法等で精製したものを
使用していた。これらは特異性の異る抗体の混合物であ
り、抗原特異性、抗体力価環一定品質の抗体の産生は困
難であった。
In immunoaffinity chromatography, antibodies used as ligands have conventionally been purified from the serum or ascites of immunized animals using a cold ethanol method or the like. These are a mixture of antibodies with different specificities, and it has been difficult to produce antibodies with constant antigen specificity and antibody titer.

しかし、1975年にに3hlerとMilstein
により、リンパ球の細胞融合法が確立されて以来(Na
ture 256 495. (’75))、高い結合
特異性を有するモノクローナル抗体が、大量かつ均質に
調製可能になり、イムノアフィニティークロマトグラフ
ィーの工業的規模での利用の可能性が実現化した。
However, in 1975, 3hler and Milstein
Since the establishment of a cell fusion method for lymphocytes (Na
ture 256 495. ('75)), it became possible to prepare monoclonal antibodies with high binding specificity in large quantities and homogeneously, and the possibility of using immunoaffinity chromatography on an industrial scale was realized.

高純度の精製を要求されるイムノアフィニティークロマ
トグラフィーにおいては目的物資以外の不純物質の混入
を極力避ける必要があり、不純物質の非特異的な吸着の
抑制が重要な課題である。
In immunoaffinity chromatography, which requires high-purity purification, it is necessary to avoid contamination with impurities other than the target substance as much as possible, and suppressing nonspecific adsorption of impurities is an important issue.

更に実用的には抗体が高価なため、繰返し使用が必須条
件であり、調製された吸着体の安定性も重要である。
Furthermore, in practical terms, since antibodies are expensive, repeated use is an essential condition, and the stability of the prepared adsorbent is also important.

一般に水酸基を有する水不溶性ゲルにリガンド。Ligands to water-insoluble gels generally have hydroxyl groups.

を結合するにあたっては共有結合法が優れ、従来ハロゲ
ン化シアンを用いた水酸基を有する水不溶性ゲルの活性
化法が多用されてきたが、この方法は結合部分に荷電部
が導入され、非特異的吸着、リガンドの漏出といった問
題があった。
Covalent bonding is an excellent method for bonding, and the activation of water-insoluble gels with hydroxyl groups using cyanogen halides has been frequently used, but this method introduces a charged moiety into the binding moiety, resulting in non-specific There were problems such as adsorption and ligand leakage.

荷電部を導入しない活性化法としてはエポキシド活性化
法が挙げられ、この方法によれば担体とリガンドの架橋
部に化学的に安定なアルキルアミン結合及びエーテル結
合が形成され、静電的相互作用による非特異的吸着もな
く、工業的規模での使用にも適している。(J、 Ch
romatography。
An example of an activation method that does not introduce a charged moiety is the epoxide activation method. According to this method, chemically stable alkylamine bonds and ether bonds are formed at the bridge between the carrier and the ligand, resulting in electrostatic interaction. There is no non-specific adsorption due to oxidation, making it suitable for use on an industrial scale. (J, Ch.
romatography.

135.427(’77))  特公昭56−2358
8号公報には水不溶性ゲルをエポキシド活性化法を用い
て活性化し、酵素あるいは酵素抑制剤を結合させる方法
が開示されている。
135.427 ('77)) Special public service 1977-2358
Publication No. 8 discloses a method of activating a water-insoluble gel using an epoxide activation method and binding an enzyme or an enzyme inhibitor thereto.

本発明者らはこの方法を用いてイムノアフィニティーク
ロマトグラフィー用吸着体を得ようと試みたが、抗体の
結合量が低く、高−条件で長時間の反応を必要とし、抗
体活性が低下し、望ましい吸着体を得ることができなか
った。そこで更にスペーサーの導入を試み、一般によく
使用される−(C1h)n−構造を有するスペーサーを
用いたが、なお不純物の非特異的吸着を避けることはで
きなかった。
The present inventors attempted to obtain an adsorbent for immunoaffinity chromatography using this method, but the amount of antibody bound was low, the reaction required a long time under high conditions, and the antibody activity decreased. It was not possible to obtain the desired adsorbent. Therefore, an attempt was made to further introduce a spacer, and a commonly used spacer having a -(C1h)n- structure was used, but non-specific adsorption of impurities could not be avoided.

本発明者らは固定化効率が高く、非特異的吸着がなく、
抗原回収率が高(、しかも繰返し使用に耐えるイムノア
フィニティークロマトグラフィー用吸着体に望ましい担
体を得るべ(鋭意研究し、水酸基を有する水不溶性ゲル
をエポキシドにより活性化し、スペーサーとして一〇 
−(CH2−Cl−42−0−)m−構造を有するポリ
エチレングリコール誘導体を導入することによって本発
明を完成した。
The present inventors have found that the immobilization efficiency is high, there is no non-specific adsorption,
In order to obtain a carrier that has a high antigen recovery rate and is suitable for an adsorbent for immunoaffinity chromatography that can withstand repeated use, we conducted intensive research and developed a water-insoluble gel with hydroxyl groups that was activated with epoxide and used as a spacer.
The present invention was completed by introducing a polyethylene glycol derivative having a -(CH2-Cl-42-0-)m- structure.

すなわち本発明に係るスペーサーは親水性を有するため
不純物の非特異的吸着がなく、エポキシ活性化法と併用
することによって優れたイムノアフィニティークロマト
グラフィー用担体を得ることができる。
That is, since the spacer according to the present invention has hydrophilicity, there is no non-specific adsorption of impurities, and when used in combination with an epoxy activation method, an excellent carrier for immunoaffinity chromatography can be obtained.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

イムノアフィニティークロマトグラフィー用担体として
は水不溶性ゲルが使用され、例えば天然物としてはアガ
ロース(セファロース)、デキストラン、セルロース、
多孔性セルロースピーズ、合成高分子としてはポリアク
リルアミド、多孔性ガラス等が挙げられ、中でもリガン
ドである抗体の結合容量、非特異的吸着の排除等の観点
から、アガロースが優れている。更にポリビニルアルコ
ールを架橋して得られた水不溶性ゲル(以下ボッ々−ル
ビーズとする)はアガロースとほぼ同等の効果を有する
優れた素材である。
Water-insoluble gels are used as carriers for immunoaffinity chromatography, and examples of natural products include agarose (Sepharose), dextran, cellulose,
Examples of porous cellulose beads and synthetic polymers include polyacrylamide, porous glass, etc. Among them, agarose is excellent from the viewpoint of binding capacity for the antibody as a ligand, elimination of non-specific adsorption, etc. Furthermore, a water-insoluble gel obtained by crosslinking polyvinyl alcohol (hereinafter referred to as Botchi Beads) is an excellent material that has almost the same effect as agarose.

水酸基を有する水不溶性ゲルを活性化するにあたっては
エポキシド基を有する2官能性化合物、例エバエビハロ
ヒドリン、ビスオキシランを用いる。前者としてはエピ
クロルヒドリンが望ましく、エポキシドが挙げられる。
In activating a water-insoluble gel having a hydroxyl group, a bifunctional compound having an epoxide group, such as shrimp halohydrin and bisoxirane, is used. The former is preferably epichlorohydrin, and includes epoxides.

これらの化合物は比較的緩和な条件で反応し、容易にエ
ポキシ基を導入することができる。
These compounds react under relatively mild conditions and can easily introduce epoxy groups.

スペーサーは立体障害による抗原回収率の低下を防止す
るために必要であり、本発明におl、1て(1次式の化
合物、 N1−12− (CH2)n−0−(C■z・CH20
)m−(CH2)n−NH2・・・(1) 又は NH2−NH・Co−(Q−b)n −0−(CX−1
2・CH20) m−(Q(2)。
The spacer is necessary to prevent a decrease in the antigen recovery rate due to steric hindrance, and the spacer is necessary for the present invention. CH20
)m-(CH2)n-NH2...(1) or NH2-NH・Co-(Q-b)n-0-(CX-1
2.CH20) m-(Q(2).

−CO11NH@NHz  ・・・(2)を使用する。-CO11NH@NHz (2) is used.

式中mは1〜10であり、立体障害の防止にはmは10
以下で充分であり、それ以上であっても効果が向上しな
いばかりか、却って抗原回収率が低下する。式中nは2
〜3が適当である。上記(1)、(2)の化合物はどの
ような方法で製造してもよく、例えばポリエチレングリ
コールに常法によりアミノ基又はヒドラジド基を導入す
る方法(’l”etrahedron Letters
 N131. P、 2839(’78))、又、市販
の中間体、例えば1,2−ビス(2−シアノエトキシ)
エタン(東京化成社製)を還元あるいは水和反応によっ
てアミン基又はヒドラジド基を導入する方法(シアン化
合物の化学と工業、岡田他、幸書房)などがあり、更に
rlJ販品を購入することもできる。例えば床束化学、
社製、α、ω−ビス(3−アミノプロピル)ポリエチレ
ンクリコールエーテルナトカアル。
In the formula, m is 1 to 10, and m is 10 to prevent steric hindrance.
The amount below is sufficient, and even if it is more than that, not only the effect will not improve but the antigen recovery rate will decrease. In the formula, n is 2
~3 is appropriate. The compounds (1) and (2) above may be produced by any method, for example, a method of introducing an amino group or a hydrazide group into polyethylene glycol by a conventional method ('l"etrahedron Letters
N131. P, 2839 ('78)), and also commercially available intermediates such as 1,2-bis(2-cyanoethoxy)
There is a method of introducing an amine group or hydrazide group by reduction or hydration reaction of ethane (manufactured by Tokyo Kasei Co., Ltd.) (Chemistry and Industry of Cyanide Compounds, Okada et al., Saiwai Shobo), and it is also possible to purchase products sold by RLJ. can. For example, floor chemistry,
α,ω-bis(3-aminopropyl)polyethylene glycol ether natocal, manufactured by Co., Ltd.

エポキシド活性化水不溶性ゲルへのポリエチレングリコ
ール誘導体の結合は強アルカリ性の条件下でエポキシ基
と反応させる。ポリエチレングリコール誘導体の使用量
は水不溶性ゲルに導入しているエポキシ基の10〜10
0倍モルテアル。
Attachment of polyethylene glycol derivatives to epoxide-activated water-insoluble gels is achieved by reacting with epoxy groups under strongly alkaline conditions. The amount of polyethylene glycol derivative used is 10 to 10 of the epoxy groups introduced into the water-insoluble gel.
0x morteal.

通常pH9〜j3.25〜75℃で3〜20時間反応さ
せる。
Usually pH 9-j3. React at 25-75°C for 3-20 hours.

抗体と本発明に保る担体との結合法はゲルタールアルデ
ヒドによる結合法、抗体の糖鎖部分のグリコール部を過
ヨウ素酸酸化して結合する方法などがあり、またN−ヒ
ドロキシコノ蔦り酸イミドニスデル化して結合する方法
も副反応の起きない結合法ではあるか、やや操作が煩雑
であり、□□□thodeEnzymal、 34.7
7 (’74 ) )その他の公知の結合法を使用する
ことができる。
Methods for binding the antibody to the carrier of the present invention include a binding method using geltaraldehyde, a method for binding by periodic acid oxidation of the glycol moiety of the sugar chain portion of the antibody, and a method for binding using N-hydroxyconotate. The method of binding by imidonidelization is also a binding method that does not cause side reactions, but the operation is somewhat complicated, □□□thodeEnzymal, 34.7
7 ('74)) and other known methods of attachment can be used.

グルタルアルデヒドによる結合法は担体なpH5〜9で
グルタルアルデヒド溶液と15〜60分反応させ充分に
洗滌する。グルタルアルデヒドは担体に結合しているア
ミノ基又はヒドラジド基の10〜100倍モル使用する
。次いで担体を抗体溶液とpi(6,5〜9、温度4〜
25°Cの条件下で3〜24時間反応させ、担体に結合
しているアルデヒド基と抗体分子中のアミノ基をシッフ
塩基反応で結合する0 また、抗体の糖鎖部分を過ヨウ素酸酸化する方法は先ず
、抗体を過ヨウ素酸又はその塩を用いて酸性条件下で酸
化する。このとき、酸化はグリコールの隣接ヒドロキシ
ル基間で起り、1モルのl04−がIO3−に還元され
ると同時に、この部位が分断され、2モルのアルデヒド
基が生成する。
In the binding method using glutaraldehyde, the carrier is reacted with a glutaraldehyde solution at pH 5 to 9 for 15 to 60 minutes and thoroughly washed. Glutaraldehyde is used in an amount of 10 to 100 times the molar amount of the amino group or hydrazide group bonded to the carrier. The carrier was then mixed with the antibody solution pi (6,5~9, temperature 4~
React for 3 to 24 hours at 25°C, and combine the aldehyde group bound to the carrier with the amino group in the antibody molecule using a Schiff base reaction.In addition, the sugar chain portion of the antibody is oxidized with periodate. The method first oxidizes the antibody using periodic acid or a salt thereof under acidic conditions. At this time, oxidation occurs between adjacent hydroxyl groups of the glycol, and at the same time 1 mole of 104- is reduced to IO3-, this site is cleaved and 2 moles of aldehyde groups are generated.

生成したアルデヒド基を本発明担体のアミン基又はヒド
ラジド基と接触させてシッフ塩基反応で結合させる。
The generated aldehyde group is brought into contact with the amine group or hydrazide group of the carrier of the present invention and bonded by a Schiff base reaction.

シック塩基は酸性又はアルカリ性条件下では不安定であ
り、イムノアフィニティークロマトグラフィーにおいて
吸着タンノくり質の溶出を酸性又はアルカリ性で行う場
合にはシッフ塩基の安定化が望ましく、水素化ホウ素ナ
トリウム又はシアノ水素化ホウ素ナトリウムその他の還
元剤により、…5〜9、温度4〜25℃で数10分から
数10時間還元することにより容易に安定化させること
ができる。
Schiff bases are unstable under acidic or alkaline conditions, and in immunoaffinity chromatography, when elution of adsorbed tannochlorite is carried out under acidic or alkaline conditions, it is desirable to stabilize the Schiff base, and sodium borohydride or cyanohydride is preferred. It can be easily stabilized by reducing with sodium boron or other reducing agent at a temperature of 4 to 25° C. for several tens of minutes to several tens of hours.

以下、実施例を挙げてさらに具体的に説明するが、本発
明はこれによって制限されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

なお、以下の実施例において抗原回収率は下記の方法に
よって測定した。
In addition, in the following examples, the antigen recovery rate was measured by the following method.

■)抗原の放射性ヨウ素(1251識 クロラミ7T法(Nature、 194 ”495(
’ 62))により  Iで標識し、ゲル濾過により精
製した。
■) Antigen radioactive iodine (1251 identification Chlorami 7T method (Nature, 194 "495 (
'62)) and purified by gel filtration.

2)可溶性抗体の抗原結合量の測定 一定量の抗体溶液に  ■標識した抗原溶液の希釈系列
溶液を等量加7忙良く攪拌し、一定時間放置後遠心分離
し、上清又は沈降物の放射活性を測定し、結合し得る抗
原量の最大値を求めた。
2) Measurement of the amount of antigen binding of soluble antibodies Add an equal amount of diluted labeled antigen solution to a certain amount of antibody solution. Stir vigorously, leave for a certain period of time, centrifuge, and radiate the supernatant or precipitate. The activity was measured and the maximum amount of antigen that could be bound was determined.

(抗原濃度、抗体濃度及び放置時間は予備実験により決
定した。) 3)吸着体(固定化抗体)の抗原結合量の測定吸着体を
カラムに充填し、125Iで標識した抗原を供給してア
フィニティークロマトグラフィーを行い、吸着された抗
原の放射活性を測定して、吸着体の抗原結合量を求めた
(The antigen concentration, antibody concentration, and standing time were determined through preliminary experiments.) 3) Measurement of the amount of antigen binding of the adsorbent (immobilized antibody) The adsorbent was packed into a column, and the antigen labeled with 125I was supplied to increase the affinity. Chromatography was performed and the radioactivity of the adsorbed antigen was measured to determine the amount of antigen bound to the adsorbent.

4)抗原回収率の算出 実際のカラム反応において吸着された抗原量(3)と吸
着体の作製に使用した可溶性抗体が結合し得る抗原量の
最大値閑の比率で求めた。
4) Calculation of antigen recovery rate It was calculated from the ratio of the maximum amount of antigen adsorbed in the actual column reaction (3) to the amount of antigen that can be bound by the soluble antibody used to prepare the adsorbent.

すなわち、抗原回収率= y x 1o o %とじた
That is, antigen recovery rate = y x 1o o %.

グラスフィルター上でよく洗滌し、吸引濾過したセファ
ロース4B(ファルマシ71J:製)20Ji’\( (湿重量)を丸底フラスコに入れ蒸留水3omlと2 
M、Na01−113 ml、 xピクロルヒドリy 
3mlを順次加え、40’Cの恒温槽中で2時間振とう
した。
Wash well on a glass filter and suction-filter Sepharose 4B (manufactured by Pharmaci 71J) 20Ji'\( (wet weight) into a round-bottomed flask, add 30ml of distilled water and 20ml of distilled water.
M, Na01-113 ml, x Pichlorhydry
3 ml were added one after another and shaken in a constant temperature bath at 40'C for 2 hours.

次いでグラスフィルター上で蒸留水でよく洗浄して活性
化ゲルを得た。約500μmole/9(固形分)のエ
ポキシ基が導入された。エポキシ基の定量は塩酸による
滴定法(J、 Chromatogr、 90゜87 
(’74 ) )によった。(以下の実施例比較例にお
いても同じ) 実施例1−1で調製したエピクロルヒドリン活性化セフ
ァロース4B20g(湿重量)を丸底グラス:7 K 
入れ、蒸留水100 ml、  2 M、NaOH10
0me1 α、ω−ビス(3−アミノプロピル)−ジエ
チレングリコールエーテル(仏学化学社製)2゜yを加
え、40℃の恒温槽中で一晩振とうした。
Next, the activated gel was obtained by washing thoroughly with distilled water on a glass filter. Approximately 500 μmole/9 (solid content) of epoxy groups were introduced. The determination of epoxy groups was performed using a titration method using hydrochloric acid (J, Chromatogr, 90°87
('74)). (The same applies to the following Examples and Comparative Examples) 20 g (wet weight) of epichlorohydrin-activated Sepharose 4B prepared in Example 1-1 was placed in a round bottom glass: 7K.
Add 100 ml of distilled water, 2M NaOH10
0me1 α,ω-bis(3-aminopropyl)-diethylene glycol ether (manufactured by Fusugaku Kagaku Co., Ltd.) 2゜y was added, and the mixture was shaken overnight in a constant temperature bath at 40°C.

約450 μmole /’J (固形分)ノα、ω−
ビス(3−アミノプロピル)ジエチレングリコールエー
テルが結合した。なお、α、ω−ビス(3−アミノプロ
ピル)ジエチレングリコールエーテルの結合量はケルダ
ール法による窒素含量の分析法により求めた。(有機定
量分析、基礎分析化学講座11、共立出版)(以下の実
施例比較例においても同じ)。
Approximately 450 μmole/'J (solid content) α, ω-
Bis(3-aminopropyl) diethylene glycol ether was attached. The amount of α,ω-bis(3-aminopropyl)diethylene glycol ether bonded was determined by the nitrogen content analysis method using the Kjeldahl method. (Organic Quantitative Analysis, Basic Analytical Chemistry Course 11, Kyoritsu Publishing) (The same applies to the following Examples and Comparative Examples).

ケン化度99.5モル%、平均分子量6000のポバー
ル20gをトルエン300m1に溶解し、トリレンジイ
ソシアナートをポバールに対して1モル%加え、100
℃で激しく攪拌しながら5時間反応させた後、アセトン
で抽出し、蒸留水で洗滌し、架橋ポバールピーズを調製
した。
20 g of poval with a degree of saponification of 99.5 mol% and an average molecular weight of 6000 was dissolved in 300 ml of toluene, and 1 mol% of tolylene diisocyanate was added to the poval.
After reacting at a temperature of 5 hours with vigorous stirring, the mixture was extracted with acetone and washed with distilled water to prepare crosslinked poval peas.

セファロース4Bに代えて実施例2−1で得たポバール
ピーズを用い、エピクロルヒドリンの使用量を6mlに
した以外は実施例1−1と同様にしてポバールピーズを
活性化した。約300μmoleZg(固形分)のエポ
キシ基が導入された。
The poval beads obtained in Example 2-1 were used in place of Sepharose 4B, and the poval beads were activated in the same manner as in Example 1-1, except that the amount of epichlorohydrin used was 6 ml. Approximately 300 μmoleZg (solid content) of epoxy groups were introduced.

実施例2−2で得られたエヒリロルヒドリン活骨化ポバ
ールビーズを用いた他は実施例1−2と同様にしてポリ
エチレングリコールエーテル誘導体を結合し、本発明担
体を得た。約200μmo!e/g(固形分)のα、ω
−ビス(3−アミノプロピル)ジエチレングリコールエ
ーテルが結合した。
A carrier of the present invention was obtained by bonding a polyethylene glycol ether derivative in the same manner as in Example 1-2, except that the ehyrylohydrin activated ossified poval beads obtained in Example 2-2 were used. Approximately 200μmo! α, ω of e/g (solid content)
-bis(3-aminopropyl)diethylene glycol ether was attached.

実施例 3−1 抗ウシアルブミン抗体の結合実施例1
−2(セファロース使用)及び実施例2−3(ポバール
ビーズ使用)で調製した本発明担体各5g(湿重量)を
5%グルタルアルデヒド5omeで30分処理し、0.
01Mリン酸緩衝液(以下P 13 Sとする)(pi
−18,0)で充分洗滌した。
Example 3-1 Binding example 1 of anti-bovine albumin antibody
5 g (wet weight) of each of the carriers of the present invention prepared in Example 2-2 (using Sepharose) and Example 2-3 (using Poval beads) was treated with 5 ome of 5% glutaraldehyde for 30 minutes.
01M phosphate buffer (hereinafter referred to as P 13 S) (pi
-18,0) was thoroughly washed.

別に抗ウシアルブミン抗体をウサギの抗血清(富士臓器
社製)より硫安塩析及びDEAEセルロースカラムクロ
マトグラフィーにより調製した。この抗ウシアルブミン
抗体75m9を0.01gPBS(pH8,0) 50
mlに溶解し、グルタルアルデヒドで活性化した各相体
と4℃で一晩それぞれ反応させた。さらに0.2 Mエ
タノールアミン(p+(s、s)により室温で2時間処
理し、未反応のアルデヒド基をブロックした。次にNa
B8450■により、温度4℃で6時間反応させ、シッ
フ塩基を還元し、イムノアフィニティークロマトグラフ
ィー用吸着体を得た。この場合の抗原結合量を第1表に
示した。
Separately, an anti-bovine albumin antibody was prepared from rabbit antiserum (manufactured by Fuji Kinki Co., Ltd.) by ammonium sulfate precipitation and DEAE cellulose column chromatography. 0.01 g of this anti-bovine albumin antibody 75m9 in PBS (pH 8,0) 50
ml and reacted with each phase activated with glutaraldehyde overnight at 4°C. Further, unreacted aldehyde groups were blocked by treatment with 0.2 M ethanolamine (p+(s,s) for 2 hours at room temperature.Next, Na
B8450■ was reacted at a temperature of 4° C. for 6 hours to reduce the Schiff base and obtain an adsorbent for immunoaffinity chromatography. The amount of antigen binding in this case is shown in Table 1.

第1表 製 実施例3−1で調製した抗ウシアルブミン抗体結合セフ
ァロース4B及びポバールピーズ各51IItをそれぞ
れICInφのカラムに充填し、ウシ血清0.2゜me
をカラム上部より供給し、0.02Mホウ酸バッフーf
−(p118.0.  o、t 5M、Na(J含有)
を溶出液の01)280nmが0.005以下になるま
で流下させた。次に0.2Mグリシン−塩酸バッファー
(PH2,5)を通液して吸着されていたウシアルブミ
ンを溶出した。抗原回収率及び精製純度を第2表精製純
度はグリシン−塩酸バッファー溶出画分をSDSポリア
クリルアミド電気泳動後、クマジープリリアントプルー
染色し、島津二波長クロマトスキャナーC8−9to(
島津製作所製)により求めた。(以下の実施例比較例に
おいても同様とする。)またカラム反応における流速は
5ml/儂2・hであった。
Anti-bovine albumin antibody-conjugated Sepharose 4B prepared in Example 3-1 from Table 1 and 51 IIt of Povalpeas were each packed into an ICInφ column, and bovine serum 0.2°me
is supplied from the top of the column, and 0.02M boric acid buffer f
-(p118.0. o, t 5M, Na (containing J)
was allowed to flow down until the 01)280 nm of the eluate became 0.005 or less. Next, 0.2M glycine-hydrochloric acid buffer (PH2,5) was passed through the column to elute the adsorbed bovine albumin. Antigen recovery rate and purification purity are shown in Table 2. Purification purity is determined by subjecting the glycine-hydrochloric acid buffer elution fraction to SDS polyacrylamide electrophoresis, Coomassie Priliant Blue staining, and Shimadzu dual-wavelength chromatography scanner C8-9to (
(manufactured by Shimadzu Corporation). (The same applies to the following Examples and Comparative Examples.) The flow rate in the column reaction was 5 ml/2.h.

実施例 3−3 繰返し使用によるアルブミンの精製 実施例3−2と同一のカラム操作を繰返し行ったところ
、実施例3−1で得られたイムノアフィニティークロマ
トグラフィー・用吸着体は抗ウシアルブミン結合セファ
ロース4B及びポバールピーズ共30回繰返し使用後も
抗原回収率、精製純度とも低下はみられなかった。この
結果を第1図に示した。
Example 3-3 Purification of albumin by repeated use When the same column operation as in Example 3-2 was repeated, the adsorbent for immunoaffinity chromatography obtained in Example 3-1 was obtained using anti-bovine albumin-bound Sepharose. No decrease in antigen recovery rate or purification purity was observed for both 4B and Povalpeas after repeated use 30 times. The results are shown in FIG.

精製抗ウシアルブミン抗体に代えて抗原結合力のないγ
−グロブリン(Bovine、  マイルス社製)を用
いた他は実施例3−1と同様にして吸着体を得た。担体
11湿重量)あたり1lIn9のγ−グロブリンが結合
した。
γ without antigen binding ability in place of purified anti-bovine albumin antibody
- An adsorbent was obtained in the same manner as in Example 3-1 except that globulin (Bovine, manufactured by Miles) was used. 1 lIn9 of γ-globulin was bound per carrier (11 wet weight).

実施例 4−2 非特異的吸着量の測定実施例・1−1
で調製した吸着体5mlを1crrLφのカラムに充填
し、牛血清アルブミン(BSA)5m9をカラム」二部
より供給し、002Mホウ酸バッファー(pl(8,0
,0,15M、NaC7含有)を流下させた。カラムか
らの溶出液のOD2 s o nmが0.005以下に
なるまで同一バノフ7−を通液後1.0.2Mグリシン
−塩酸バッファー(pH2,5)を通液した。このとき
のBSA回収率を第3表に示した。第3表より本発明に
よれば非特異的吸着がほとんど排除されていることが判
明する。
Example 4-2 Measurement example of non-specific adsorption amount 1-1
5 ml of the adsorbent prepared in above was packed into a 1 crrLφ column, 5 m9 of bovine serum albumin (BSA) was supplied from the second part of the column, and 002 M boric acid buffer (pl (8,0
, 0.15M, containing NaC7) was allowed to flow down. The same Banoff 7 solution was passed through the column until the OD2so nm of the eluate from the column became 0.005 or less, and then 1.0.2 M glycine-hydrochloric acid buffer (pH 2.5) was passed through the column. The BSA recovery rate at this time is shown in Table 3. Table 3 shows that according to the present invention, non-specific adsorption is almost eliminated.

第3表 なお、タンパク質の定量はLowryの方法によった。Table 3 Note that the protein was quantified by the method of Lowry.

(J、 Biol、 Chem、 193.256(+
51))。また、カラム反応における流速は5m/!/
CrrL2・hであった。
(J, Biol, Chem, 193.256(+
51)). In addition, the flow rate in the column reaction is 5 m/! /
It was CrrL2·h.

精製抗ウシアルブミン抗体を、ウサギの抗血清(富士臓
器株制)より硫安塩析により調製した。
Purified anti-bovine albumin antibody was prepared from rabbit antiserum (Fuji Organ Co., Ltd.) by ammonium sulfate precipitation.

この精製抗ウシアルブミン抗体40m9を、10m1の
0.1 M酢酸緩衝液(pH3,7)に溶解し、NaI
O41m9を添加して、室温で30分間反応させた。次
にエチレングリコールな最終濃度が0.1Mとなるよう
添加し、4°Cで4時間反応した。さらにこの反応液を
4℃で18時間o1M酢酸緩衝液(pH3,7)11に
対し透析した。
This purified anti-bovine albumin antibody 40m9 was dissolved in 10 ml of 0.1 M acetate buffer (pH 3,7), and NaI
041m9 was added and reacted for 30 minutes at room temperature. Next, ethylene glycol was added to give a final concentration of 0.1M, and the mixture was reacted at 4°C for 4 hours. Furthermore, this reaction solution was dialyzed against o1M acetate buffer (pH 3,7) 11 at 4°C for 18 hours.

実施例5−1で調製したアルデヒド基導入抗ウシアルブ
ミン抗体に、実施例1−2で調製したイムノアフィニテ
ィークロマトグラフィー用担体5g(湿重量)を添加し
、O,’1M炭酸ナトリウム緩衝液(pH9)により〆
(を6に調整した。4℃で一晩反応させた後、形成した
シッフ塩基にNaBH410m9を加え、4℃、5時間
、pH85の条件で処理して還元し安定化し、イムノア
フィニティークロマトグラフィー用吸着体を得た。この
場合の抗体結合量を第1表に示した。
5 g (wet weight) of the carrier for immunoaffinity chromatography prepared in Example 1-2 was added to the aldehyde group-introduced anti-bovine albumin antibody prepared in Example 5-1, and 1M sodium carbonate buffer (pH 9) was added. ) was adjusted to 6. After reacting overnight at 4°C, NaBH410m9 was added to the formed Schiff base and treated at 4°C for 5 hours at pH 85 to reduce and stabilize. An adsorbent for graphics was obtained.The amount of antibody bound in this case is shown in Table 1.

実施例5−2で調製したイムノアフィニティークロマト
グラフィー用吸着体を使用した他は実施例3−2と同様
にしてウシ血清中のアルブミンの精製を行った。抗原回
収率及び精製純度を第2表に示す。また繰返し30回使
用後も抗原回収率、精製純度共低下がみられなかった。
Albumin in bovine serum was purified in the same manner as in Example 3-2, except that the adsorbent for immunoaffinity chromatography prepared in Example 5-2 was used. The antigen recovery rate and purification purity are shown in Table 2. Further, no decrease in antigen recovery rate or purification purity was observed even after repeated use 30 times.

比較例 1 実施例1−1と同様の方法でエポキシ基を導入した七)
rロース4839 (湿重量)を、精製抗ウシアルブミ
ン抗体(実施例3−1)溶液3oml(1,5me)/
me )に分散させ、室温でゆるやかに振とうしながら
反応させた。得られた吸着体の抗体結合量m9/g(湿
重量)を第4表及び第1表に示1″°   第4表 また、実施例3−2と同様にしてウシ血清中のアルブミ
ンを精製し、抗原回収率及び精製純度を第2表に示した
Comparative Example 1) An epoxy group was introduced in the same manner as in Example 1-1.
r loin 4839 (wet weight) was mixed with purified anti-bovine albumin antibody (Example 3-1) solution 3 oml (1.5 me)/
me) and reacted at room temperature with gentle shaking. The antibody binding amount m9/g (wet weight) of the obtained adsorbent is shown in Table 4 and Table 1. The antigen recovery rate and purification purity are shown in Table 2.

比較例 2 CNBr活性化セファロース4B(ファルマシア社製)
1g(乾重量)をll’l1g旧C1C15oに15分
浸漬し、カップリングバッファー(0,5M、NaC6
を含む0.2 M、NaHCO3ハノ7−r −pt(
’8.5)で洗浄した。抗原結合能力のないγ−グロブ
リン(Bovine、  −、イy、、、、<社製)1
 s omgヲ力y フ+) 7 ’グバツフt50m
eに溶解し、CNBr活性化セファロース・113を分
散させて、ゆるやかに振とうして4 ’Cで一晩反応さ
せた。担体1(湿重量)あたり6 m!7′のγ−グロ
ブリンが結合した。さらに0.2゜N1エタノールアミ
ン(pH8,5)により室温で2時間処理して活性基の
ブロックを行った。ここで得られた吸着体を用いて実施
例4−2と同一の方法で牛血清アルブミン(BSA)の
溶出試験を行った。ホウ酸バッフI−溶出画分及びグリ
シン塩酸バッファー溶出画分の回収率を第3表に示した
Comparative Example 2 CNBr-activated Sepharose 4B (manufactured by Pharmacia)
1 g (dry weight) was immersed in ll'l 1 g old C1C15o for 15 minutes, and coupled with coupling buffer (0.5M, NaC6
0.2 M, NaHCO3 containing 7-r-pt (
'8.5). γ-globulin without antigen-binding ability (Bovine, -, Iy,,, < manufactured by Co., Ltd.) 1
s omg wo power y fu +) 7 'Gubatufu t50m
CNBr-activated Sepharose 113 was dispersed in the solution and reacted overnight at 4'C with gentle shaking. 6 m per carrier (wet weight)! 7' γ-globulin was bound. Further, active groups were blocked by treatment with 0.2°N1 ethanolamine (pH 8.5) at room temperature for 2 hours. Using the adsorbent thus obtained, a bovine serum albumin (BSA) elution test was conducted in the same manner as in Example 4-2. Table 3 shows the recovery rates of the boric acid buffer I-eluted fraction and the glycine hydrochloride buffer eluted fraction.

比較例 3 精製抗つンアルプミン抗体を比較例2と同様の方法テC
Nl3r活性化セファロース4B()′アルマシア社製
)に結合した。1g(湿重量)当り5#iの抗体が結合
した。この数値を第1表に併記した。
Comparative Example 3 Purified anti-tunalpmin antibody was purified using the same method as Comparative Example 2.
It was bound to Nl3r-activated Sepharose 4B ()' manufactured by Almacia. 5 #i of antibodies were bound per gram (wet weight). These values are also listed in Table 1.

また、実施例3−2と同様にしてウシ血清中のアルブミ
ンを精製し、抗原回収率及び精製純度を第2表に示した
。更に同一カラムで繰返し試験を行ったところ、7回使
用後、ウシアルブミン吸着量の顕著な低下を示した。こ
の結果を第1図に示した。
Further, albumin in bovine serum was purified in the same manner as in Example 3-2, and the antigen recovery rate and purification purity are shown in Table 2. Furthermore, repeated tests using the same column showed a significant decrease in the amount of bovine albumin adsorbed after 7 uses. The results are shown in FIG.

比較例 4 実施例1−1で活性化したセファロース485g(湿重
量)をアンモニア水(25%)30ml中に分散し、4
0°C2時間反応させてアミン化した。
Comparative Example 4 485 g (wet weight) of Sepharose activated in Example 1-1 was dispersed in 30 ml of aqueous ammonia (25%).
Amination was carried out by reacting at 0°C for 2 hours.

ケルメール法によりアミノ基の定量を行ったところ、4
80 μmole /9 (固形分)ノアミノ基が導入
された。
When the amino group was quantified by the Kermer method, 4
80 μmole/9 (solid content) noamino groups were introduced.

このアミノ化セファロース4 B 5 、!i’ (湿
重1i)に実施例3−1と同様の方法で精製抗つシアル
ブミン抗体を結合させたところ、結合量はi(湿重量)
あたり10m9であった。(第1表に併記)また実施例
3−2と同様にしてウシ血清中のアルブミンを精製し、
抗原回収率及び精製純度を第2表に示した。
This aminated Sepharose 4 B 5 ,! When purified anti-sialbumin antibody was bound to i' (wet weight 1i) in the same manner as in Example 3-1, the bound amount was i (wet weight).
It was 10m9 per area. (Also listed in Table 1) Albumin in bovine serum was also purified in the same manner as in Example 3-2,
The antigen recovery rate and purification purity are shown in Table 2.

比較例 5 実施例1−1で活性化したセファロース4B5g(湿重
量)を円底フラスコ中で蒸留水25m1.2 M、Na
01125 m11ヘキサメチt/7ノアミン1,5I
と40℃−晩反応させ、1g(固形分)あたり400μ
moleのへキサメチレンジアミンを導入した。
Comparative Example 5 5 g (wet weight) of Sepharose 4B activated in Example 1-1 was added to 25 ml of distilled water 1.2 M, Na in a round bottom flask.
01125 m11 hexamethylene t/7 noamine 1,5I
400μ/g (solid content)
A mole of hexamethylene diamine was introduced.

このヘキサメチレンジアミン結合セファロース4 B 
s ji (湿重量)に実施例3−1と同様の方法で精
製抗ウシアルブミン抗体を結合させたところ、結合量は
1g(湿重量)あたり11m9であった。
This hexamethylenediamine-conjugated sepharose 4B
When purified anti-bovine albumin antibody was bound to s ji (wet weight) in the same manner as in Example 3-1, the bound amount was 11 m9 per 1 g (wet weight).

(第1表に併記) また実施例3−2と同様にしてウシ血清中のアルブミン
を精製し、抗原回収率及び精製純度を第2表に示した。
(Also listed in Table 1) Albumin in bovine serum was purified in the same manner as in Example 3-2, and the antigen recovery rate and purification purity are shown in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカラム操作におけるウシアルブミン吸着量と繰
り返し回数との関係である。 特許出願人  電気化学工業株式会社 代理人 弁理士   鈴  木  定  子繰り返し回
数 手続補正書 昭和57年G月27日 特許庁長官 若杉和夫殿 ■、小事件表示 昭和57ガ、特許  願第59627号2、発明の名称
 イムノアフィニティークロマトグラフィー用担体3、
 補正をする者 事件との関係特許出願人 4、 代  理  人  〒  1505、 補正命令
の日付 自発 6、 補正により増加する発明の数、・  なしく1)
   明細書4頁、16行の「目的物資」を「目的物質
」に訂正する。 (2)   同1,9負、17行18行の「Me t 
hod (EnzymaIJを[1ethods En
LymolJに訂正する。 (3)   同、13頁、13行の「仏学化学社製」を
「床束化学社製」に訂正する。 (4)   同、15頁、10行の「・・・30分処理
し、」の後に「0.15M  N aclを含む」を挿
入する。 (5)   同、16頁、3行の1抗原結合量」を1抗
体結合蓋」に訂正する。 (以上)
FIG. 1 shows the relationship between the amount of bovine albumin adsorbed and the number of repetitions in column operation. Patent Applicant Denki Kagaku Kogyo Co., Ltd. Agent Patent Attorney Sada Suzuki Letter of Amendment to Repeated Number of Procedures August 27, 1980 Mr. Kazuo Wakasugi, Commissioner of the Patent Office ■, Minor Case Notification 1980, Patent Application No. 59627 2, Name of the invention: carrier for immunoaffinity chromatography 3,
Person making the amendment Relationship to the case Patent applicant 4, Agent 〒1505, Date of amendment order Voluntary 6, Number of inventions increased by the amendment, 1)
"Target substance" on page 4, line 16 of the specification is corrected to "Target substance." (2) “Me t
hod (EnzymaIJ [1methods En
Corrected by LymolJ. (3) In the same page, page 13, line 13, "manufactured by Budsugaku Kagakusha" is corrected to "manufactured by Tokotsuna Kagakusha." (4) Insert "Contains 0.15M NaCl" after "...processed for 30 minutes" on page 15, line 10. (5) Same, page 16, line 3, ``1 antigen binding amount'' is corrected to ``1 antibody binding lid''. (that's all)

Claims (1)

【特許請求の範囲】 エポキシド基を有する2官能性化合物で活性化された水
酸基を有する水不溶性ゲルに次式の化合物。 N112 − (CI−12)、−0−(CH2−CH
20)m−(CH2)−−Mklz・・・(1) 又は Nl2−N)(−Co −(CH2)n −o −(C
H2−CH20)−−(CH2)rl−CO−Nl−1
・N1(2・・・(2)(ただし、式中n = 2〜3
、m = 1〜10である)を結合してなるイムノアフ
イニテ(−クロマトグラフィー用担体。
[Claims] A compound of the following formula in a water-insoluble gel having a hydroxyl group activated with a difunctional compound having an epoxide group. N112-(CI-12),-0-(CH2-CH
20) m-(CH2)--Mklz...(1) or Nl2-N)(-Co-(CH2)n-o-(C
H2-CH20)--(CH2)rl-CO-Nl-1
・N1(2...(2) (where n = 2 to 3 in the formula)
, m = 1 to 10).
JP57059627A 1982-04-12 1982-04-12 Carrier for immunoaffinity-chromatography Granted JPS58176547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57059627A JPS58176547A (en) 1982-04-12 1982-04-12 Carrier for immunoaffinity-chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57059627A JPS58176547A (en) 1982-04-12 1982-04-12 Carrier for immunoaffinity-chromatography

Publications (2)

Publication Number Publication Date
JPS58176547A true JPS58176547A (en) 1983-10-17
JPH0233094B2 JPH0233094B2 (en) 1990-07-25

Family

ID=13118653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57059627A Granted JPS58176547A (en) 1982-04-12 1982-04-12 Carrier for immunoaffinity-chromatography

Country Status (1)

Country Link
JP (1) JPS58176547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002780A1 (en) * 1985-11-05 1987-05-07 Kanebo, Ltd. Method of immunoassay
JPH01229965A (en) * 1988-03-10 1989-09-13 Chisso Corp Carrier for affinity chromatography with immobilized antibodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492879B (en) * 2011-06-10 2015-04-01 松下健康医疗控股株式会社 Method for affixing antibodies to self-assembled monolayer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002780A1 (en) * 1985-11-05 1987-05-07 Kanebo, Ltd. Method of immunoassay
JPH01229965A (en) * 1988-03-10 1989-09-13 Chisso Corp Carrier for affinity chromatography with immobilized antibodies

Also Published As

Publication number Publication date
JPH0233094B2 (en) 1990-07-25

Similar Documents

Publication Publication Date Title
CA1320718C (en) Chromatographic material
Saleemuddin Bioaffinity based immobilization of enzymes
US5092992A (en) Polyethyleneimine matrixes for affinity chromatography
US4000098A (en) Separation of proteins by hydrophobic adsorption
US4874813A (en) Proteins bound to a marker or solid phase support matrix using a hydrazone linkage
CA2057926C (en) Chemical products
Wilson et al. The covalent coupling of proteins to periodate-oxidized sephadex: a new approach to immunoadsorbent preparation
JPS61181966A (en) Stabilizing antibody coupled by carboxyl group
JP2761881B2 (en) An antibody-immobilized carrier for affinity chromatography
Yarmush et al. Coupling of antibody-binding fragments to solid-phase supports: site-directed binding of F (ab') 2 fragments
JPS5853757A (en) Adsorbent for immuno-affinity chromatography and manufacture of same
Margel et al. Novel effective immunoadsorbents based on agarose-polyaldehyde microsphere beads: Synthesis and affinity chromatography
SE406913B (en) PROCEDURE FOR PURIFICATION OR PREPARATION OF AN ENZYME BY CONTACT WITH AFFINITRATOR MATERIALS
Loetscher et al. Immobilization of monoclonal antibodies for affinity chromatography using a chelating peptide
JPS58176547A (en) Carrier for immunoaffinity-chromatography
Zachariou et al. High-performance liquid chromatography of amino acids, peptides and proteins: CXXI. 8-Hydroxyquinoline-metal chelate chromatographic support: an additional mode of selectivity in immobilized-metal affinity chromatography
JPS61192342A (en) Adsorbent
US6251278B1 (en) Process for separating a substance from a mixture
Turkova et al. Carbohydrates as a tool for oriented immobilization of antigens and antibodies
Hinman et al. Isolation of brain tubulin by affinity chromatography
JPS62253396A (en) Affinity chromatography material and purification of proteinantigen of bordetella bacteria using said material
CA1332598C (en) Polyethyleneimine matrixes for affinity chromatography
US20220258130A1 (en) Chromatography Media
JP2947924B2 (en) Separating agent for optical isomers
JPS62259596A (en) Purification of hybrid protein