JPS58176536A - Method for measuring nuclear magnetic resonance - Google Patents

Method for measuring nuclear magnetic resonance

Info

Publication number
JPS58176536A
JPS58176536A JP5943182A JP5943182A JPS58176536A JP S58176536 A JPS58176536 A JP S58176536A JP 5943182 A JP5943182 A JP 5943182A JP 5943182 A JP5943182 A JP 5943182A JP S58176536 A JPS58176536 A JP S58176536A
Authority
JP
Japan
Prior art keywords
pulse
nucleus
relaxation time
irradiating
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5943182A
Other languages
Japanese (ja)
Other versions
JPS6226706B2 (en
Inventor
Muneshiro Oouchi
宗城 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP5943182A priority Critical patent/JPS58176536A/en
Publication of JPS58176536A publication Critical patent/JPS58176536A/en
Publication of JPS6226706B2 publication Critical patent/JPS6226706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To enable indirect measurement, by utilizing the information on an intended nucleus and the other nucleus which is spin to spin coupled to said nucleus in measuring the relaxation time for the intended nucleus. CONSTITUTION:The 180 deg.x pulse of a <13>C nucleus is irradiated simultaneously with inrradiation of the first 180 deg.x pulse of a <1>H nucleus (the high frequency pulse applied with the time width for rotating the magnetization 180 deg. around the x axis) to eliminate the energy level of the <13>C nucleus, whereby the relaxation time of the <1>H nucleus can be measured. A 90 deg. pulse and 90 deg. pulse are irradiated at an interval of every tau second in this order to the non-observed nucleus after the irradiation (t) second of said 180 deg. pulse. A 180 deg. pulse and 90 deg. pulse are irradiated to the observation nucleus in synchronization respectively with said 180 deg. pulse and the 90 deg. pulse in succession to the same. The free induction attenuation signal of the observation nucleus after said pulse irradiation is obtained. The relaxation time is determined in accordance with plural pieces of the free induction attenuation signals F obtained by irradiating the above- mentioned pulses plural times by changing the (t).

Description

【発明の詳細な説明】 本発明は目的とする核の緩和時間を、該核とスピン−ス
ピン結合している他の核からの情報に基づいて間接的に
求めることを特徴とする核磁気共鳴(NMR>測定方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a nuclear magnetic resonance method characterized in that the relaxation time of a target nucleus is indirectly determined based on information from other nuclei that are spin-spin coupled to the target nucleus. (Regarding NMR>measurement method.

緩和時間の測定はNMR測定の中で大きな比重を占めて
おり、広く行われている。第1図は縦緩和時間(T1)
の測定に使用されるパルスシーケンスで、180’xパ
ルス(磁化をx軸の周りに180°回転させる時間幅が
与えられた^周波パルス)により磁化を180°回転さ
せ、T1なる時定数で元に戻って行く磁化のt秒後の値
M(t)を90″Xパルス(観測パルス)を印加して観
測し、下式からT1を求めるものである。
Measurement of relaxation time occupies a large part of NMR measurement and is widely performed. Figure 1 shows longitudinal relaxation time (T1)
In the pulse sequence used for the measurement of The value M(t) after t seconds of magnetization returning to is observed by applying a 90''X pulse (observation pulse), and T1 is determined from the following formula.

M(t)=Mo(1−28−t/T+)・・・(1)こ
こでMoは平衡状態での磁化である。
M(t)=Mo(1-28-t/T+) (1) where Mo is magnetization in an equilibrium state.

ところが例えば水素核 IHの場合はケミカルシフトが
110PP以下と狭く、しかも水素核同士のスピン−ス
ピン結合によりスペクトルが複雑に重なり合い、ピーク
が十分に分離できていない楊合が多く、そのような場合
には緩和時間の測定は不可能となっていた。
However, for example, in the case of hydrogen nuclei IH, the chemical shift is as narrow as 110 PP or less, and the spectra overlap in a complicated manner due to spin-spin coupling between hydrogen nuclei, and there are many cases where the peaks cannot be separated sufficiently. It was impossible to measure the relaxation time.

一方、近時 111と結合している130或いは15N
等の感度の悪い核種を観測する方法として、1n−se
ntive Nuclei Enhanced by 
 Po1arizationTransfer法(’I
 N E P T法)が提案されている。
On the other hand, recently 130 or 15N has been combined with 111.
As a method to observe nuclides with poor sensitivity such as
native Nuclei Enhanced by
Po1arization Transfer method ('I
N E P T method) has been proposed.

このINEPT法は、 1ト1の大きな分極(磁化)を
結合を通して13C或いは15N等の核へ移して該13
Gあるいは N等の核を観測するもので、これらの核の
感度を大幅に向上できるという大きな効果がある。第2
図はINEPT法の基本となるパルス系列を示し、’H
核にτ秒ずつの間隔を置いて900×パルス、180°
×パルス、90’ Vパルス(磁化をY軸の回りに90
”回転させる時間幅が与えられた高周波パルス)を順次
照射し、そのiso”xパルス及び90”yパルスに同
期して13c核の180’xパルスと90’Xパルスを
13G核へ照射し、これに□より IH核の大きな磁化
を13G核へ移し、90°Xパルス後の130核の自由
誘導減衰信号(F rD倍信号Fを観測するも本発明者
は、INEPT法がこの様に 1H核の磁化を13G核
へそのまま移して測定することに看目し、先に第1図を
用いて説明した測定法においては180°×パルス照射
を秒後の磁化を90″Xパルス(観測パルス)を照射し
て観測しているが、この観測パルスの代りに第2図のI
NEPT法のパルス系列を適用し、180°Xパルス照
射を秒後の Hの磁化をINEPT法で130核へその
まま移して観測すれば、ケミカルシフトの大きい13G
核を通して間接的に IH核の緩和時間を測定できるの
ではないかと考え、繰返し実験を行った。その結果、第
1図における90°Xパルスの代りに第2図に示される
INEPT法のパルス系列を用いると共に、第3図に示
す様に、 H核の最初の180’xパルス照射と同時に
130核の180°Xパルスを照射して、13c核のエ
ネルギ一単位をなくしておくことにより、IH核の緩和
時間を測定できることを見出した。
This INEPT method transfers a large polarization (magnetization) of 1 to 1 to a nucleus such as 13C or 15N through coupling.
It is used to observe nuclei such as G or N, and has the great effect of greatly improving the sensitivity of these nuclei. Second
The figure shows the pulse sequence that is the basis of the INEPT method.
900× pulses, 180° at intervals of τ seconds on the nucleus
× pulse, 90' V pulse (magnetization 90' around the Y axis
180'x pulse and 90'x pulse of the 13c nucleus are irradiated to the 13G nucleus in synchronization with the iso'x pulse and 90'y pulse, From this, the large magnetization of the IH nucleus is transferred to the 13G nucleus, and the free induction decay signal (F rD times signal F) of the 130 nucleus after the 90°X pulse is observed. Considering that the magnetization of the nucleus is directly transferred to the 13G nucleus and measured, in the measurement method explained earlier using Fig. 1, the magnetization after 180° x pulse irradiation is measured using a 90'' x pulse (observation pulse). ), but instead of this observation pulse, I
If we apply the pulse sequence of the NEPT method and observe the magnetization of H after seconds of 180°
We thought it would be possible to measure the relaxation time of an IH nucleus indirectly through the nucleus, and conducted repeated experiments. As a result, the pulse sequence of the INEPT method shown in FIG. 2 was used instead of the 90°X pulse in FIG. 1, and as shown in FIG. It was discovered that the relaxation time of an IH nucleus can be measured by irradiating the nucleus with a 180°X pulse and eliminating one unit of energy of the 13c nucleus.

即ち、このパルス系列に基づいて求められた緩和時間を
T l(l N E P T )とすれば、T1 (I
NEPT)は双極子相互作用のみを考慮すると次のよう
に解析できる。′)]は第4図に示す様に12Cとも又
13cとも結合しているが、観測しているのは13Cと
結合しているIH(130サテライト)についてであり
、求められたT+  (INEPT)はこの13Gサテ
ライトの’H1!和時間Tt  (Sat)とみなすこ
とができる。従って T+  (Sat、)=Tt 、(INEPT) ・・
・(2)と仮定できる。
That is, if the relaxation time determined based on this pulse sequence is T l (l N E P T ), then T1 (I
NEPT) can be analyzed as follows by considering only the dipole interaction. ')] is bonded to both 12C and 13c as shown in Figure 4, but what we are observing is IH (130 satellite) that is bonded to 13C, and the obtained T+ (INEPT) 'H1' of this 13G satellite! It can be regarded as the sum time Tt (Sat). Therefore, T+ (Sat,)=Tt, (INEPT)...
・(2) can be assumed.

T+  (Saj)は IHの130サテライトの13
Gとの相互作用(第4図におけるa)に関連する H緩
和時間T 1(1−I C)と、隣り合う H同士の相
互作用(第4図におけるわ)に関連する1日緩和時間T
 I(1−I H)を合成したものとして次式で表わさ
れる。
T+ (Saj) is 13 of IH's 130 satellites.
The H relaxation time T 1 (1-I C) associated with the interaction with G (a in Figure 4) and the daily relaxation time T associated with the interaction between adjacent Hs (A in Figure 4)
It is expressed by the following formula as a synthesis of I(1-I H).

1、、/T+  (Sat) −1/T+  (HC)
+1/T+(Hト1 )  ・  ・  ・  (3)
ここで1/T+  (tlc)、1/Tt  (HH)
は夫々十式で表わされ、このうちT+  (HH)が通
常機われる Hの緩和時間である。
1,,/T+ (Sat) -1/T+ (HC)
+1/T+(Ht1) ・ ・ ・ (3)
Here 1/T+ (tlc), 1/Tt (HH)
are each represented by ten equations, of which T+ (HH) is the relaxation time of H, which is usually used.

又、 Cの緩和時間をT+  (CH)とす−れば、T
1 (CH)は下式で表わされる。
Also, if the relaxation time of C is T+ (CH), then T
1 (CH) is represented by the following formula.

(4)、(5)、(6)式においてへはブランク定数を
hとした時h/2πで表わされる定数、γ。、IHは夫
々13Cと IHの磁気回転比、roH。
In equations (4), (5), and (6), γ is a constant expressed as h/2π, where h is a blank constant. , IH are the gyromagnetic ratio of 13C and IH, roH, respectively.

r、Hは]1−0間、H−H間の距離、T0は自己相関
時間、ωC9ωHは夫々 Cと Hの共鳴角周波数、n
は/JCに結合している Hの数である。
r, H are the distances between 1-0 and H-H, T0 is the autocorrelation time, ωC9ωH are the resonance angular frequencies of C and H, respectively, n
is the number of H's connected to /JC.

lz 液体の場合には、ωdτ。、ωCr(、、(ωH−ωo
)2τ0′、(ωH+ωo)2τtはすべて1よりも十
分小さく、又13C@にはn個の11−1が結合してい
るが、 IH核には1個の130しか結合し−(いない
ため、(4)式と(6)式の間には上式が成立すると考
えられる。
lz For liquids, ωdτ. ,ωCr(,,(ωH−ωo
)2τ0', (ωH+ωo)2τt are all sufficiently smaller than 1, and n 11-1s are bound to 13C@, but only one 130 is bound to the IH nucleus. It is considered that the above equation holds true between equations (4) and (6).

1 /1− I  (CH) −さとn /T 1  
(ト1 C) ・ ・ ・  (7)従って(3)式は 1、/T+  (Saj)”1/ (n −TI  (
CH))+1/T+(HH)・・・(8) となる。これに(2)式を代入して整理すると、1/T
+  (HH)=1/T+  (INEPT)−17′
 (n  −T 1   (Cト1 )  )  ・ 
 ・  ・  (9)が得られる。
1 /1- I (CH) -Sato n /T 1
(T1 C) ・ ・ ・ (7) Therefore, equation (3) is 1, /T+ (Saj)”1/ (n −TI (
CH))+1/T+(HH)...(8) Substituting equation (2) into this and rearranging it, we get 1/T
+ (HH)=1/T+ (INEPT)-17'
(n −T 1 (Ct 1) ) ・
・ ・(9) is obtained.

〈9)式におけるTI(CH)即ち Cの緩和時間は、
第1図のパルス系列を用いた従来のT1測定法により容
易に求められ、れも他の方法により容易に決定できる。
TI(CH) in equation (9), that is, the relaxation time of C is
It is easily determined by the conventional T1 measurement method using the pulse sequence of FIG. 1, and can also be easily determined by other methods.

従って、第3図のパルス系列を用いて測定したTI(I
NEPT)と上記T>  (CH)とnから、(9)式
に従ッテT1(HH)即ち Flの緩和時間を測定する
ことができる。
Therefore, TI (I
NEPT), the above T> (CH), and n, the relaxation time of T1(HH), that is, Fl can be measured according to equation (9).

第5図は第3図のパルス系列を ’H核と130核に照
射してTI  (INEPT)を測定するための装置の
一例を示し、図中1は磁極2.2′間に形成される静磁
場中に配置されるNMRプローブである。該プローブ内
に挿入される試料管3の周囲にはIH核用照射コイル4
.′3C核用送信コイル5及びt核用受信コイル6が配
置されている。照射]イル4.送信コイル5には、′H
核用発振器7゜13c核用発振器8で生成される夫々の
核の共鳴周波数を持つ高周波が、4位相回路9,10、
選択回路11.12、ゲート回路13.14を介して夫
々高周波パルスとして供給され、試料に照射される。ゲ
ート回路13.14によってそのパルス幅を適宜設定す
れば IH核の90°パルス、180°ハルス、又13
CM(7)90°パルス、180’パルスを夫々作成で
きる。4位相回路9,10及び選択回路11.12はそ
の90°パルスあるいは180°パルス中の高周波の位
相を、0” 、 90°、180” 、270°のいず
れかにするためのものであり、0°に選べば添字が×の
パルス90°x、180°Xを作成でき、90°に選べ
ば添字がyのパルス90°yが作成できる。付は加えれ
ば、位相を1806に選ぶと添字が−Xのパルス、同じ
く270°に選べば添字が−Vのパルスを夫々作成でき
る。
Fig. 5 shows an example of a device for measuring TI (INEPT) by irradiating the pulse sequence shown in Fig. 3 to 'H nucleus and 130 nucleus, in which 1 is formed between the magnetic poles 2 and 2'. An NMR probe placed in a static magnetic field. An IH nuclear irradiation coil 4 is installed around the sample tube 3 inserted into the probe.
.. A transmitting coil 5 for '3C nucleus and a receiving coil 6 for T nucleus are arranged. Irradiation] Illumination 4. The transmitting coil 5 has 'H
Nuclear oscillator 7゜13c The high frequency having the resonance frequency of each nucleus generated by the nuclear oscillator 8 is transmitted through four-phase circuits 9, 10,
The pulses are supplied as high-frequency pulses via selection circuits 11.12 and gate circuits 13.14, respectively, and are irradiated onto the sample. If the pulse width is set appropriately by gate circuit 13.14, 90° pulse of IH nucleus, 180° Hals, or 13
CM (7) 90° pulse and 180' pulse can be created respectively. The four-phase circuits 9 and 10 and the selection circuits 11 and 12 are for setting the phase of the high frequency wave in the 90° pulse or the 180° pulse to 0", 90°, 180", or 270°, If 0° is selected, pulses 90°x and 180°X with the subscript x can be created, and if 90° is selected, the pulse 90°y with the subscript y can be created. In addition, if the phase is selected to 1806, a pulse with a subscript of -X can be created, and if the phase is also selected to 270°, a pulse with a subscript of -V can be created.

15は第3図に示されるパルス系列を発生するように選
択回路11.12及びゲート回路13゜14を制御する
パルスプログラマである。パルス系列の照射に伴なって
受信コイル6に生じた検出信号は、増幅器17を介して
復調回路18へ送られ、復調によりFID信号が取出さ
れる。コンピュータ16は該F I l)信号に基づき
緩和時間を求める。
15 is a pulse programmer that controls the selection circuits 11, 12 and gate circuits 13 and 14 to generate the pulse sequence shown in FIG. A detection signal generated in the receiving coil 6 due to the irradiation of the pulse sequence is sent to the demodulation circuit 18 via the amplifier 17, and the FID signal is extracted by demodulation. The computer 16 determines the relaxation time based on the F I l) signal.

上記構成において、前述したTI  (INEPT)は
以下の手順に従って求められる。即らパルスプログラマ
15は、第3図のパルス系列を十分な時間間隔を置き、
tを変えてに回作成して照射する。
In the above configuration, the above-mentioned TI (INEPT) is obtained according to the following procedure. That is, the pulse programmer 15 sets the pulse sequence of FIG. 3 at sufficient time intervals,
Create and irradiate twice by changing t.

そしてコンピュータ16は、k回の照射で得られたに個
のFID信号について、最初のデータ値(第6図におけ
るD点の信号強度M(t))を抜き出し、このY個のデ
ータから(1)式に基づいてT1を求める。これがT、
(INEPT)である。
Then, the computer 16 extracts the first data value (signal intensity M(t) at point D in FIG. 6) for the FID signals obtained by k irradiations, and extracts (1 ) is used to calculate T1. This is T.
(INEPT).

又(9)式におけるTI  (CH)は C核について
第1図のパルス系列を照射する従来のやり方で求めるこ
とができ、従って先に述べた通り(9)式からTI  
(HH)を求めることができる。
In addition, TI (CH) in equation (9) can be determined by the conventional method of irradiating the C nucleus with the pulse sequence shown in Figure 1, and therefore, as mentioned earlier, TI (CH) can be calculated from equation (9).
(HH) can be obtained.

本発明者は(9)式が成立することを1−フェニルプロ
パツールを試料とし、第5図の装置を用いて確認した。
The present inventor confirmed that the formula (9) holds true by using 1-phenylpropertool as a sample and using the apparatus shown in FIG.

即ち1−フェニルプロパツールは第7図に示す様な構造
を持ち、スペクトルが比較的単純であることから第1図
のパルス系列を使用した従来の測定法でTI  (HH
)を測定できる。
That is, 1-phenylpropertool has a structure as shown in Figure 7, and its spectrum is relatively simple, so it can be measured using the conventional measurement method using the pulse sequence shown in Figure 1 (TI (HH).
) can be measured.

第1表はその従来法で求めたTI  (HH>、TI(
CH)の値及びそのTI  (HH)、TI  (CH
)を(9)式に代入して計算したTI  (INFPT
)の値を示し、第2表は本発明にかかる第3図のバルス
列を照射して測定したTI  (INEPT)の実測値
を示す。尚、フェニル基についている3つの炭素原子を
、フェニル基に近いものからC1゜C2,C3と区別し
、TI  (HH)は各炭素原子についているものにつ
いて測定し、TI  (CH)は各炭素原子について測
定したものである。
Table 1 shows TI (HH>, TI(
The value of TI (CH) and its TI (HH), TI (CH
) calculated by substituting equation (9) into TI (INFPT
), and Table 2 shows the actual values of TI (INEPT) measured by irradiating the pulse train of FIG. 3 according to the present invention. The three carbon atoms attached to the phenyl group are distinguished from those closest to the phenyl group as C1, C2, and C3, and TI (HH) is measured for each carbon atom, and TI (CH) is measured for each carbon atom. The measurements were taken for

第1表 第1表と第2表のTl  (”INEPT)値を比較す
れば、両者の違いはNMR測定で通常認められている1
0%程度の誤差範囲に含まれており、(9)式が成立す
ると考えて良いことが確認できる。従って、従来法によ
ってはTI  (HH)を測定することが困難な例えば
コレステロールのような試料について、第3図のパルス
系列を使用してTI  (INEPT)を測定すれば、
TI  (HH)を間接的に求めることができる。
Comparing the Tl ("INEPT) values in Table 1 and Table 2, the difference between them is 1, which is usually recognized in NMR measurements.
This is within the error range of approximately 0%, confirming that it is safe to assume that equation (9) holds true. Therefore, for a sample such as cholesterol, for which it is difficult to measure TI (HH) using conventional methods, if TI (INEPT) is measured using the pulse sequence shown in Figure 3,
TI (HH) can be determined indirectly.

尚、INEPT法では第2図のパルス系列を基本として
その後にいくつかのパルスを付は加えることが提案され
ており、それらのパルス系列を使用しても良いことは言
うまでもない。
Incidentally, in the INEPT method, it has been proposed to use the pulse sequence shown in FIG. 2 as a basis and add some pulses after that, and it goes without saying that these pulse sequences may be used.

又、上述した説明では 1日核と130核を例に挙げた
が、この2つの核に限らず結合関係にある核であればど
んな核の組合わせでも良い。
Further, in the above explanation, the 1 day nucleus and the 130 nucleus were taken as an example, but the combination is not limited to these two nuclei, but any combination of nuclei may be used as long as they are in a bonding relationship.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の緩和時間測定のためのパルス系列を示す
図、第2図はINEPT法の基本パルス系列を示す図、
第3図は本発明のパルス系列を示す図、第4図は%3C
サテライトを説明するための図、第5図は本発明にかか
る方法を実施するための装置の一例を示す図、第6図は
抜き出すデータを説明するための図、第7図は1−フェ
ニルプロパツールの構造を示す図である。 ’:NMRプローブ、4.5,6:コイル、7゜8:発
振器、9,10:4位相回路、11.12:選択回路、
13.14:ゲート回路、15:パルスプログラマ、1
6:コンピュータ、18:復調回路。 特許出願人 日本電子株式会社 代表者 加勢 忠雄
Fig. 1 is a diagram showing a pulse sequence for conventional relaxation time measurement, Fig. 2 is a diagram showing a basic pulse sequence of the INEPT method,
Figure 3 is a diagram showing the pulse sequence of the present invention, Figure 4 is %3C
Figure 5 is a diagram for explaining the satellite, Figure 5 is a diagram showing an example of an apparatus for carrying out the method according to the present invention, Figure 6 is a diagram for explaining the data to be extracted, and Figure 7 is a diagram for explaining the 1-phenylprop. FIG. 3 is a diagram showing the structure of the tool. ': NMR probe, 4.5, 6: coil, 7°8: oscillator, 9, 10: 4-phase circuit, 11.12: selection circuit,
13.14: Gate circuit, 15: Pulse programmer, 1
6: Computer, 18: Demodulation circuit. Patent applicant JEOL Ltd. Representative Tadao Kase

Claims (1)

【特許請求の範囲】 (a)観測線及び該観測線と結合関係にある被観測核に
同時に夫々の核の180°パルスを照射すること、 (b)該180°パルスの照射を秒後から非観測核にτ
秒ずつの間隔を置いて90°パルス、1806パルス、
90°パルスをこの順序で照射すること、 (C)上記(b )における180°パルス及びそれに
続く90°パルスに夫々同期して観測線へ180°パル
ス及び90’パルスを照射すること、(d )上記(C
)によるパルス照射後観測線の自由誘導減衰信号を取得
すること、 (e )上記(a )、  (b )、  (c )の
パルス照射を1を変えて複数回行って得た複数個の自由
誘導減衰信号に基づき緩和時間を求めること、J、り成
る核磁気J(鳴測定り払。
[Claims] (a) Simultaneously irradiating an observation line and the observed nucleus connected to the observation line with a 180° pulse of each nucleus; (b) Irradiating the 180° pulse a second later; τ in the unobserved nucleus
90° pulse at intervals of seconds, 1806 pulses,
irradiating the 90° pulse in this order; (C) irradiating the observation line with the 180° pulse and the 90' pulse in synchronization with the 180° pulse and the subsequent 90° pulse in (b) above; (d) ) Above (C
) to obtain a free induction attenuation signal of the observation line after pulse irradiation, (e) to obtain a plurality of free induction decay signals obtained by performing the pulse irradiation of (a), (b), and (c) above multiple times with different 1. Determining the relaxation time based on the induced decay signal.
JP5943182A 1982-04-08 1982-04-08 Method for measuring nuclear magnetic resonance Granted JPS58176536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5943182A JPS58176536A (en) 1982-04-08 1982-04-08 Method for measuring nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5943182A JPS58176536A (en) 1982-04-08 1982-04-08 Method for measuring nuclear magnetic resonance

Publications (2)

Publication Number Publication Date
JPS58176536A true JPS58176536A (en) 1983-10-17
JPS6226706B2 JPS6226706B2 (en) 1987-06-10

Family

ID=13113069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5943182A Granted JPS58176536A (en) 1982-04-08 1982-04-08 Method for measuring nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS58176536A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364954B2 (en) * 2008-09-19 2013-12-11 株式会社 Jeol Resonance NMR measurement method

Also Published As

Publication number Publication date
JPS6226706B2 (en) 1987-06-10

Similar Documents

Publication Publication Date Title
US4297637A (en) Method and apparatus for mapping lines of nuclear density within an object using nuclear magnetic resonance
Mueller Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence
Bodenhausen et al. Multiple quantum spin-echo spectroscopy
US10145915B2 (en) SNMR pulse sequencing methods and apparatus
US4318043A (en) Method and apparatus for rapid NMR imaging of nuclear densities within an object
JP3168045B2 (en) Magnetic resonance imaging of short T2 species with improved contrast
Baltisberger et al. Communication: Phase incremented echo train acquisition in NMR spectroscopy
US6304084B1 (en) Method of improved magnetic resonance spectroscopic localization using spectral-spatial pulses
Lee et al. Homonuclear J‐refocused spectral editing technique for quantification of glutamine and glutamate by 1H NMR spectroscopy
JPS6046447A (en) Nmr projected image forming method and projected image forming device used for said method
JPS618650A (en) Method of operating nuclear magnetic resonance spectrometer
Turner Determination of molecular structure by carbon-13 autocorrelation NMR
Tugarinov et al. 1 H, 13 C-1 H, 1 H dipolar cross-correlated spin relaxation in methyl groups
JPH01113033A (en) Method for determining nuclear magnetic distribution
Emsley et al. Simplification of deuterium spectra of liquid crystals by the refocussing of proton–deuterium dipolar couplings
JPS58176536A (en) Method for measuring nuclear magnetic resonance
US4712066A (en) Method for the selective excitation of a volume in an object
US5189370A (en) Chemical shift imaging
US3753081A (en) Gyromagnetic resonance method and apparatus for obtaining spin-spin coupling constants
JPS60209155A (en) Method for measuring nuclear magnetic resonance
JPS6325298B2 (en)
Niccolai et al. The derivation of carbon–proton internuclear distances in organic natural products from 13 C relaxation rates and nuclear overhauser effects
Emsley et al. Selective detection of the proton NMR spectra of molecules containing rare spins at natural abundance in liquid crystalline samples
US4873487A (en) Method and arrangement for suppressing coherent interferences in magnetic resonance signals
Gillies et al. The application of Fourier transformation to high resolution nuclear magnetic resonance spectroscopy