JPS58176505A - Non-contact displacement detector - Google Patents

Non-contact displacement detector

Info

Publication number
JPS58176505A
JPS58176505A JP5902082A JP5902082A JPS58176505A JP S58176505 A JPS58176505 A JP S58176505A JP 5902082 A JP5902082 A JP 5902082A JP 5902082 A JP5902082 A JP 5902082A JP S58176505 A JPS58176505 A JP S58176505A
Authority
JP
Japan
Prior art keywords
light
displacement
reflected
lens
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5902082A
Other languages
Japanese (ja)
Inventor
Seiji Yoshikawa
省二 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP5902082A priority Critical patent/JPS58176505A/en
Publication of JPS58176505A publication Critical patent/JPS58176505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure displacement with high accuracy by providing a light source and an objective lens which irradiates the light from the light source as a micro spot to the surface of an object to be measured of displacement and detecting the reflected luminous flux from the surface of said object. CONSTITUTION:The laser light emitted from a laser light source 1 is collimated to parallel light by a collimator lens 2. The parallel light passes through a polarization prims 3 having a polarization fiom, a 1/4 wavelength plate 4 and an objective lens 5, and the light reflected from the surface of a measuring object 6 is made incident through the lens 5 and the plate 4 to the prism 3 as parallel light. The light which is made incident to the prism 3 is deflected in the direction perpendicular to the plane of the figure by the plate 4; therefore, the above- mentioned incident light is reflected by the prism 3 and is made incident to a photodetector 7. The displacement is thus measured with high accuracy by detecting the luminous flux reflected from the surface of the object to be measured.

Description

【発明の詳細な説明】 本発明は対象物の変位を光学的手段を用いて非接触状態
で検出する非接触変位検出装置に係p%lll1K変位
測定性能の向上手段に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact displacement detection device for detecting displacement of an object in a non-contact state using optical means, and relates to means for improving displacement measurement performance.

従来のこの種の非接触変位測定装置は、単に汎用の近接
センサー郷を変位検出器として用いたものが殆んどであ
るφしかるに上記センサーは一般に分解能を高めるとり
ニアリティ測定範囲が劉〈なり、リニアリティ測定範囲
を拡げると分解能が低下する傾向を有している・たとえ
ば分解能を1.3j1m程度にすると、リニアリティ測
定範囲は89−@度となシ、リニアリティ測定範囲を2
−11度に拡げると、分解能は5〇−程度まで低下する
。こ〇九め、1〜2−11度の微小点の変位を1〜2−
程度のすxアリティ測定範囲で測定し九いという要望が
あっても、との要望を満たし得ゐ非接触変位測定装置は
これ壕でに存在しなかった。なお従来の非接触近接セン
ナ−のうち、うず電IIILrIJ1−1!!ンサーは
対象物が導電性材料である場合にしか使用できない欠点
があり、光学式センサーは対象物の表面反射率等によシ
影響を受ける丸め、測定誤差が介入し易い欠点があった
・ 本発明の目的は直径が1〜2輛程度の微小点の変位を、
1〜2−s度のりニアリプ4111定範凹にて測定でき
、しかも変位測定対象物の材料、反射率の如何を問わず
高精度な変位画定を安定に行なえる非接触変位測定装置
を提供することである。
Most conventional non-contact displacement measurement devices of this type simply use a general-purpose proximity sensor as a displacement detector. When the linearity measurement range is expanded, the resolution tends to decrease.For example, if the resolution is set to about 1.3m, the linearity measurement range will be 89-degrees, and if the linearity measurement range is expanded to 2
When expanded to -11 degrees, the resolution drops to about 50 degrees. 〇9th, the displacement of the minute point of 1-2-11 degrees is 1-2-
Even though there was a desire to be able to measure within a certain degree of accuracy measurement range, there was no non-contact displacement measuring device that could meet this requirement. Among the conventional non-contact proximity sensors, Uzuden IIILrIJ1-1! ! Sensors have the disadvantage that they can only be used when the object is a conductive material, and optical sensors have the disadvantage of being susceptible to rounding and measurement errors that are affected by factors such as the surface reflectance of the object. The purpose of the invention is to measure the displacement of minute points with a diameter of about 1 to 2 cars.
To provide a non-contact displacement measuring device capable of measuring 1 to 2-s degrees of linearity with a constant range concavity of 4111, and capable of stably defining highly accurate displacement regardless of the material or reflectance of the object to be measured. It is.

以下、本発明の実施例を、図面を参照して説明する。第
1因は本発明の一実施例の構成を示す図で1はレーデ光
源であり、こ0レーデ光源1から発射したレーデ光はコ
リメータレンズ1によって平行光とされたのち、偏光膜
を有する偏光プリズム、9%1/4波長板4、対物レン
ズ5を介して測定対象物60表!にス/ y )径l〜
2#+1の微小スポットとして集束−射される・そして
上記対象物60表面で反射した光は対物レンズ5.1/
4i1長板4を経て偏光グリズム3に平行光として入射
するが、上記偏光グリズム3に入射する光は1/4波長
板4により紙面に対し垂直方向に偏向されているから1
上記入射光は偏光!リズム1で反射され光検出器7に入
射する。
Embodiments of the present invention will be described below with reference to the drawings. The first factor is a diagram showing the configuration of an embodiment of the present invention. Reference numeral 1 is a Rade light source, and the Rade light emitted from the Rade light source 1 is made into parallel light by a collimator lens 1, and then polarized by a polarizing film. 60 objects to be measured via prism, 9% 1/4 wavelength plate 4, and objective lens 5! Nis/y) diameter l~
The light is focused as a minute spot of 2#+1 and reflected on the surface of the object 60 through the objective lens 5.1/
4i1 The light enters the polarizing grism 3 as parallel light through the long plate 4, but since the light incident on the polarizing grism 3 is polarized by the 1/4 wavelength plate 4 in a direction perpendicular to the plane of the paper,
The above incident light is polarized! It is reflected at rhythm 1 and enters photodetector 7.

この光検出器1は光軸に対しθなる角度に傾けられ良状
態で対物レンズ5の儂酉から十分離れたファーフィール
ド中に設置されている。そしてこの光検出器7は第1図
中にその投影平面図を併せて示し九ように、光検出器1
0入射面を、光軸含金みかつ上記入射面および紙面に対
し喬直な面で二分割した二つの受光領域1人、FBを有
している。上記光検出1syの各受光領域7A。
The photodetector 1 is tilted at an angle θ with respect to the optical axis and is placed in a far field sufficiently far away from the focal point of the objective lens 5 in good condition. The photodetector 7 is shown in FIG. 1 as well as its projected plan view.
It has two light-receiving areas, FB, in which the 0-incidence plane is divided into two by a plane that includes an optical axis and is perpendicular to the above-mentioned incident plane and the paper plane. Each light receiving area 7A of the photodetector 1sy.

71に入射した光はそれぞれ電気信号に変換され差動増
幅器1へ入力する。上記差動増幅器1は上記二つの受光
領域1人、7Bからの信号の差出力を得、この出力をナ
ーがアンプ−に与える。サー?アングクは上記差出力を
増幅してサーI出力となし、これを対物レンズ駆動機構
10へ供給する。対物レンズ駆動機構10は、支持筒1
1の内部に一対の板ばね111,1:111.を介して
レンズ保持体13を弾持し、レンズ5が光軸方向に移動
可能なようになすと共に、上記レンズ保持体13の一部
に取付けられ、かつ駆動コイル14を巻装された磁性体
15の一部を、前記支持筒1ノ内に同定されている磁石
装置16のギヤ、f部G内にレンズ5の移動方向と同一
方向に移動口■能な如く挿設したものである。したがっ
てこのレンズ駆動機構10の駆動コイル14にサー+j
?アング出力が供給されると、磁性体J5と磁石装置1
6との間に働く電磁力により、レンズ保持体13、磁性
体15、レンズ5が一体的にレンズ5の光軸方向へ所定
量だけ線動制御される。
Each of the lights incident on 71 is converted into an electric signal and input to the differential amplifier 1. The differential amplifier 1 obtains the differential output of the signals from the two light receiving areas 7B, and supplies this output to the amplifier. Sir? Anguk amplifies the difference output to make it a sir I output, which is then supplied to the objective lens drive mechanism 10. The objective lens drive mechanism 10 includes a support tube 1
A pair of leaf springs 111, 1:111. A magnetic body is attached to a part of the lens holder 13 and is wound with a drive coil 14, and the lens 5 is movable in the optical axis direction. 15 is inserted into the gear f section G of the magnet device 16 identified in the support tube 1 so as to be able to move in the same direction as the moving direction of the lens 5. Therefore, the drive coil 14 of this lens drive mechanism 10 has a
? When the Ang output is supplied, the magnetic body J5 and the magnet device 1
Due to the electromagnetic force acting between the lens holder 13, the magnetic body 15, and the lens 5, the linear motion of the lens holder 13, the magnetic body 15, and the lens 5 is integrally controlled by a predetermined amount in the direction of the optical axis of the lens 5.

ところで前記レンズ駆動機構10におけるレンズ保持体
13の頂部においてレンズ5の周囲を支えている保持枠
17には金属fllK尋をL字状に折曲し九変位標示用
のアーム1sが取付けである・このアーム18の近傍に
はレンズ5の動きに伴って移動する上記アーム1#の変
位を検出する如くたとえば、うず電流戴近接センサー1
9が設置されている。この近接センサー19の検出出力
は例えば指示計あるいは記録計等を含む変位表示器10
に与えられ変位量等の表示を行なうものとなっている。
By the way, on the holding frame 17 that supports the periphery of the lens 5 at the top of the lens holder 13 in the lens drive mechanism 10, an arm 1s for indicating nine displacements is attached, which is made by bending a piece of metal into an L shape. For example, an eddy current proximity sensor 1 is installed near the arm 18 to detect the displacement of the arm 1# that moves with the movement of the lens 5.
9 has been installed. The detection output of this proximity sensor 19 is transmitted to a displacement indicator 10 including, for example, an indicator or a recorder.
It is used to display the amount of displacement, etc.

なお上記センサー19としてはりニアリティ測定範囲が
例えば2gm5度の比較的大きなものを用いるものとす
る・次に上記の如く構成された本装置の作用を説明する
。今、対象物6が対物レンズ5に近づく方向すなわち矢
印a方向へ変位すると、光検出器1への入射光は受光領
域FAでは入射角がθよシ本小さくなシ、反対に受光領
域IBでは入射角がθよりも大きくなる・ま九対象物6
が対物レンズ5から遠ざかる方向すなわちb方向へ変位
すると、光検出器1への入射光は受光領域IAでは入射
角が−よシも大きくなシ、受光領域IBでは入射角が0
よ、0%小さくなる。
It is assumed that the sensor 19 has a relatively large beam linearity measurement range of, for example, 2 gm and 5 degrees.Next, the operation of the apparatus configured as described above will be explained. Now, when the object 6 is displaced in the direction approaching the objective lens 5, that is, in the direction of arrow a, the incident light on the photodetector 1 has an incident angle smaller than θ in the light receiving area FA, and on the contrary, in the light receiving area IB. The angle of incidence is larger than θ. Object 6
When is displaced in the direction away from the objective lens 5, that is, in the b direction, the incident light on the photodetector 1 has an incident angle that is much larger in the light receiving area IA, and an incident angle of 0 in the light receiving area IB.
Yo, it will be 0% smaller.

一般に光検出器の感度と入射角との関係は第2図に示す
ように入射角が大きくなるにつれて相対感度が減少する
傾向を示す・この九め対象物6の変位量a、bに対す為
受光領域1人の感度と受光領域IBの感度とは第5図に
示すような関係となる。すなわち対象物6がa方向へ変
位すると、受光領域7Aの感度は実線で示す如く受光領
域IBの感度よりも大きくなり、対象物6がb方向へ変
位すると、破線で示す如く逆の特性1示す・なお合焦状
態では受光領域1人の感度と受光領域7Bの感度とが等
しくなる。
In general, the relationship between the sensitivity of a photodetector and the angle of incidence shows a tendency for the relative sensitivity to decrease as the angle of incidence increases, as shown in Figure 2. The sensitivity of one person in the light receiving area and the sensitivity of the light receiving area IB have a relationship as shown in FIG. That is, when the object 6 is displaced in the direction a, the sensitivity of the light receiving area 7A becomes greater than the sensitivity of the light receiving area IB, as shown by the solid line, and when the object 6 is displaced in the direction b, the opposite characteristic 1 is exhibited as shown by the broken line. - In the focused state, the sensitivity of one person in the light receiving area and the sensitivity of the light receiving area 7B are equal.

かくして受光領域1人の出力と受光領域IBの出力との
差出力である差動増幅器8の出力は第4図に示す如きも
のとなる・すなわち対象物6がa方向へ変位したときは
、その変位量に応じた大きさの正極性出力信号となり、
一方向へずれたときは、その変位量に応じ九大きさの負
極性出力信号となる。つまシ差動増幅器Iからは対物レ
ンズ5の焦点のずれ方向と大きさ、すなわち対象物6の
変位の方向と大傘さを示すフォー力、シングエラー信号
が出力される・上記差動増幅器8の出力はナーlアング
9にてサー?出力に変換され、レンズ駆動機構10にお
ける駆動コイル14に供給される。そうすると、磁性体
15は第4図の差出力に見合った駆動力を受はレンズ5
が合焦状態となる位置まで駆動される。かくしてレンズ
5と対象物6との距離は常に一定となるように制御され
る。この場合、サー?系の利得は対象物σOtS動周波
数周波数0 Ha以下の場合、60dB以上の開ループ
利得があるように設定されているため、振れ幅2−の変
位を±2.amli度の誤差範囲で追従可能である。
Thus, the output of the differential amplifier 8, which is the difference output between the output of one light-receiving region and the output of the light-receiving region IB, becomes as shown in FIG. It becomes a positive polarity output signal whose size corresponds to the amount of displacement,
When shifted in one direction, a negative polarity output signal of magnitude 9 is generated depending on the amount of displacement. The differential amplifier I outputs a force and a sing error signal indicating the direction and magnitude of the focus shift of the objective lens 5, that is, the direction and magnitude of the displacement of the object 6. The output of is sir? It is converted into an output and supplied to the drive coil 14 in the lens drive mechanism 10. Then, the magnetic body 15 receives a driving force commensurate with the differential output shown in FIG.
is driven to a position where it is in focus. In this way, the distance between the lens 5 and the object 6 is controlled to always be constant. In this case, sir? The gain of the system is set to have an open loop gain of 60 dB or more when the object σOtS dynamic frequency is 0 Ha or less, so the displacement with an amplitude of 2- is ±2. Tracking is possible within an error range of amli degrees.

このような追従特性で動作するレンズ5の動きはこのレ
ンズ5と一体的に動作するアーム1Mの動きを検出して
いる近II竜ンサー1gによって検出される。そしてそ
の検出されたレンズ5の勅1色、つt〉変位は変位表示
@goにより表示される・なおセンサー1#はアーム1
1と非接触状態で検出を行なうものであるため、対物レ
ンISの動作が上、記センサー1#によ〉阻害されるお
それは全くない・またセンサー1gとしてリニアリティ
橢定範囲が2m@度の−0を用いているので、測定II
囲は十分大きい、一方、このセンサー1gの直接の検出
対象は微小スI、トでなくアーム18であるので、分解
能の点での問題もない、なお分解能に直接影響を及ばず
レーデビームスポットは、ス/、ト径が1〜2μm程度
であるため、微小部分の変位画定を高分解能で行なえる
The movement of the lens 5 operating with such follow-up characteristics is detected by the near II dragon sensor 1g which detects the movement of the arm 1M that operates integrally with the lens 5. Then, the detected displacement of the lens 5 is displayed by the displacement display @go.The sensor 1# is the arm 1
Since the detection is performed in a non-contact state with sensor 1, there is no possibility that the operation of objective lens IS will be hindered by sensor 1 -0 is used, so measurement II
On the other hand, since the direct detection target of this sensor 1g is the arm 18 rather than the minute spot I, there is no problem in terms of resolution. Since the diameter of the groove is approximately 1 to 2 μm, the displacement of minute portions can be defined with high resolution.

ところで、対物レンズ50焦点深度は比較的浅く、対象
物6の表面にのみ焦点を合わせることは容易である・ま
たフォーカス制御系は反射光束の集束位置の変化を受光
器rの受光領域1ム。
By the way, the depth of focus of the objective lens 50 is relatively shallow, and it is easy to focus only on the surface of the object 6.Furthermore, the focus control system controls changes in the focusing position of the reflected light beam within the light receiving area 1 of the light receiver r.

IBに対する入射角の変化として検出するものであり、
反射光束の反射量等には直接関係がない。したがって変
位測定対象物6としてはガラス郷の透明体であっても、
さらには黒色グラスチ、り等の非金属であっても、何ら
支障はなく、殆んどすべての対象物について高精度唖位
測飼能アあ6.′友 なお、本発明は上述した実施例に限定さバゐものではな
い。たとえば、前記実施例で−は変位検出手段としてう
ず電流減近接センサーを用いた場合を示したが、光学式
センす−あるいは磁気または静電式のセンサーを用いて
もよく、さらにはレンズlの動きを着しく阻害しないこ
とを条件にアーム11と接触する型式O−にンサー等を
用いてもよい、また前記実施例では光検出器として反射
光の集束位置の変化を光検出器への入射角の変化として
検出するものを示したが、反射光束の集束位置の変化を
光検出器への入射光束の形状変化として検出するように
したものであってもよい、このほか本発明の要旨を変え
ない範囲で種々変形実施可能である。
It is detected as a change in the angle of incidence with respect to IB,
There is no direct relationship with the amount of reflected light flux, etc. Therefore, even if the displacement measurement object 6 is a transparent object made by Garasugo,
Furthermore, there is no problem even with non-metallic objects such as black glass, glue, etc., and high-precision positioning is possible for almost all objects.6. Note that the present invention is not limited to the embodiments described above. For example, in the above embodiment, an eddy current reduction proximity sensor is used as the displacement detecting means, but an optical sensor, a magnetic sensor, or an electrostatic sensor may also be used. A sensor or the like may be used for the type O-type that contacts the arm 11 on the condition that the movement is not seriously obstructed.In addition, in the above embodiment, a photodetector is used to detect changes in the convergence position of the reflected light. Although the detection is shown as a change in the angle, it is also possible to detect a change in the focal position of the reflected light beam as a change in the shape of the light beam incident on the photodetector. Various modifications can be made within the same range.

以上説明したように本発#4によれば、光源からの光を
対物レンズを通して変位測定対象物0表面に微小ス/、
)として照射し、その反射光束の集束位置の変化を分割
型光検出器で検出してフォーカスエラー信号を得、その
信号に基づきサー一手段により前記対物レンズを対象物
の一面に対し常に合焦状態になすと共に、上記対物レン
ズの動きを変位検出手段により検出するようにしたので
、直径が1〜2綿の微小点の変位を、1〜2−S度のり
ニアリティ測定範囲で測定でき、しか龜反射光量の大小
とは直接関係なく変位を検出できるので測定対象物の材
料中反射率の如何を問わず高精度な変位一定を行なえる
非接触変位測定装置を提供できる・
As explained above, according to the present invention #4, the light from the light source passes through the objective lens and hits the surface of the displacement measurement object 0,
), and a split-type photodetector detects changes in the focusing position of the reflected light beam to obtain a focus error signal, and based on the signal, the objective lens is constantly focused on one side of the object by means of a sensor. In addition to this, the movement of the objective lens is detected by the displacement detection means, so that the displacement of a minute point with a diameter of 1 to 2 mm can be measured within the linearity measurement range of 1 to 2-S degrees. Since displacement can be detected regardless of the amount of reflected light, it is possible to provide a non-contact displacement measuring device that can maintain highly accurate displacement regardless of the reflectance in the material of the object to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の一実施例を示す図で第1図は
構成図、第2図〜II4図はフォーカス制御系の動作説
明用の特性図である。 1・・・レーザ光源、2・・・コリメータレンズ、I・
・・偏光プリズム、4・・・1/4波長板、5・・・対
物レンズ、6・・・変位測定対′敷物、1・・・二分割
光検出器、8・・・差動増幅器、9・・・サーlアング
、10・・・対物レンズ駆動機構、18・・・変位標示
用のアーム、19・・・近接センサー、20・・・変位
表示し。 l      。 ゛ 出願人代理人  弁理士 −江 武 廖特許庁長官
 島田春樹 殿 1.事件の表示 特願昭57−59020  号 2、発明の名称 非接触変位検出装置 3、補IFをする者 事件との関係 特許出願人 (037)t I)ンノξス光学工業株式会社4、代理
人 住所 東京都港区虎ノ門1丁目部番5号 第17森ビル
〒105   電話03 (502) 3181 (大
代表)特許庁長官  若 杉 和 夫  殿 1、事件の表示 特に陥57−59020号 2、発明の名称 非接触変位検出装置 3、補正をする者 事件との関係    特許出願人 (037)  オリンパス光学工業株式会社4、代理人 5、自発袖止 7、補正の内容 +11  明細書菖9N第16行の「可能である。」の
次に下記の文章を挿入する。 記 次に本発明の他の実施例を説明する。第5図はフォーカ
ス制御系として臨界角方式のものを用いた実施例である
。wJ5図において21は偏光プリズム3の出射面を接
合された検出プリズムであり、その反射1t122を合
焦状態における入射光線に対して臨界角Iたはそれより
僅かに小さくなるように設定されてり、Nル。23Fi
上記検出プリズムり J O出射iI。 k対向配置された二分割光検出器である。上記以外Fi
前記実施例と同一構成である。 このように構成された本実施例においては、対物レンズ
5が対象物g!cm己合焦状態となっているときは偏向
プリズム3で反射された光!1は検出プリズム21の反
射向で全反射される。なお実際に祉反射向の状態が完全
ではないのでn方向へ若干の光が透過する。上記の如く
全反射された光束は光検出器23の二つの受光領域23
に、23BVこ対し均勢な光量で入射し受光されるので
差動増幅!!8へ入力する山号の大きさは相等しい。こ
のためサー&アンプ9の出力は零であり、対物レンズ5
Fi静止状態を保っている。対象物6が合焦状態からa
方向へ変位すると、偏光プリズム3で反射された光束は
、検出プリズム21の反射1k122Vこ対し、飯も外
髄の入射光−all、ml!’にて代表表示されている
ような傾きを吃って入射する。すなわち反射向2217
1人射する光束のうち中心光−より図中、)半分の光束
はallな亀頭として入射光−の入射角かすべて臨界角
より4小さくなる。 このため、土配下半分の光束KFi透過光が存在しit
Jからn、までを含む光線束か透過する。したがって上
記透過光の分だけ上記)半分の反射光束(arlから中
心光htで)の強F!i#i勃められる。蒙た反射面2
2に入射する光束のうち中心光−より図中、上半分の光
束はa12を亀頭として入射光線の入射角がす徒て臨n
角よりも太きくなる。このため、上1±半分の光束には
透過光が存在せず、入射光束のすべてが反射される。し
たがって上記上半分の反射光束(ar2から中心光線ま
で)の強ytt2sめられない。その結果、対象物6が
a方向へ変位したときは二分割光検出″tjZSの受光
領域23Aの受光量が減少し。 受jf:、領域23Bの受光量は減少しない、かくして
この場合は差動増幅器8から1方向への変位の大きさを
示すフォーカッレンズエラー信号が出力され、前記実施
例と同様に対物レンズ5の追従動作が行なわれ、この動
きが近接センサー19によって検出され、変位表示器2
0にて表示される。 これに対し、対象物6がn方向へ変位したときね、偏光
プリズム3で反射された光束に検出プリズム21の反射
面22に対し、勉も列側の入射光l1IIlbi1.b
12にて代表表示されているような傾きをもって入射す
る。すなわちこの場合の反射向22に入射する入射光束
の幼きの関係は、前述したa方向へ変位した場合と逆に
なる。したがって二分111ji検出器23の各受光領
域23人、23B(D受光量の関係も逆になる。この場
合の反射向22rcおける反射光および透過光をそれぞ
れ符号brl、br2およびbtzでホす。かくしてこ
の場@1ゴ差動増幅器8からn方向への変位の大きさを
示すフォーカッソングエラー48号が出力され前記実施
例と同様に対物レンズ5の追従動作が行なわれ、この動
きが近接センサー19によって検出され、変位表不器2
0にて表ン]スされる。 本実施例においては前記実施例と同様の作用効果を奏し
得る上、合焦状態から外れた場合VCは中心縁な境とし
て一方の側の光束が全反射され、他方の側の光束が極端
Kldi少するから、受光領域PCおける光量差が着し
くなり、高恩良な霊位検出を行なえる利点がある。 (2)  向11謝11¥4組8打の「釉性図である。 」を1特性図、第5図は本発明の他の実施例の構成を示
す図である。」と引止する。 (3)  回書第1】貴殿14行の「・・・変位表示器
、」を[・・・変位表示器、2)・・・検出プリズム、
22・・・反射(3)、23・・・二分割光検出器、」
と訂正する。 (4)  別絽区1iiiを「第5図」として追加する
1 to 4 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a configuration diagram, and FIGS. 2 to II4 are characteristic diagrams for explaining the operation of the focus control system. 1... Laser light source, 2... Collimator lens, I.
...Polarizing prism, 4...1/4 wavelength plate, 5...Objective lens, 6...Displacement measurement mat, 1...Two-split photodetector, 8...Differential amplifier, 9... Circular angle, 10... Objective lens drive mechanism, 18... Arm for displacement indication, 19... Proximity sensor, 20... Displacement indication. l.゛ Applicant's agent Patent attorney - Jiang Wu Liao Commissioner of the Patent Office Haruki Shimada 1. Indication of the case Patent application No. 57-59020 No. 2, name of the invention Non-contact displacement detection device 3, supplementary IF person Relationship with the case Patent applicant (037) t I) Nnosu Kogaku Kogyo Co., Ltd. 4, Agent Person Address: 17 Mori Building, 1-chome, Toranomon, Minato-ku, Tokyo, Part No. 5, 105 Telephone: 03 (502) 3181 (Main Representative) Commissioner of the Japan Patent Office Kazuo Wakasugi, 1, Indication of the case, especially No. 57-59020 2, Name of the invention Non-contact displacement detection device 3, Relationship with the person making the amendment Patent applicant (037) Olympus Optical Industry Co., Ltd. 4, Agent 5, Spontaneous armrest 7, Contents of amendment + 11 Specification Iris 9N No. 16 Insert the following sentence next to "It is possible." in the line. Next, other embodiments of the present invention will be described. FIG. 5 shows an embodiment using a critical angle type focus control system. In Fig. wJ5, 21 is a detection prism to which the output surface of the polarizing prism 3 is joined, and its reflection 1t122 is set so as to be at a critical angle I or slightly smaller than the critical angle I with respect to the incident ray in the focused state. , N. le. 23Fi
The above detection prism JO output iI. This is a two-split photodetector arranged opposite to each other. Fi other than above
It has the same configuration as the previous embodiment. In this embodiment configured in this way, the objective lens 5 is directed toward the object g! cm When in self-focusing state, the light is reflected by the deflection prism 3! 1 is totally reflected in the reflection direction of the detection prism 21. In fact, since the state of the reflection direction is not perfect, some light is transmitted in the n direction. The totally reflected light beam as described above is transmitted to the two light receiving areas 23 of the photodetector 23.
Since the amount of light that enters and is received by the 23BV is evenly distributed, differential amplification is achieved! ! The sizes of the mountain numbers input to 8 are the same. Therefore, the output of the sir & amplifier 9 is zero, and the output of the objective lens 5
Fi remains stationary. When the object 6 is in focus a
When displaced in the direction, the light beam reflected by the polarizing prism 3 is reflected by the detection prism 21 at 1k122V, and the incident light of the outer medulla -all, ml! The incident angle is as shown in '. That is, the reflection direction 2217
Of the light beams incident on one person, half of the light beams (in the figure) are all glans, and the angle of incidence of the incident light beams is all 4 smaller than the critical angle. Therefore, there is a light beam transmitted through the lower half of the luminous flux KFi.
A bundle of rays containing J to n is transmitted. Therefore, the intensity of the reflected light flux (from arl to center light ht) is half of the above (above) by the amount of the transmitted light! i#i gets erect. Reflective surface 2
From the central light of the light flux incident on 2, the light flux in the upper half of the figure has a12 as the glans, and the angle of incidence of the incident light is all n.
It will be thicker than the corner. Therefore, there is no transmitted light in the upper half of the luminous flux, and all of the incident luminous flux is reflected. Therefore, the reflected light beam in the upper half (from ar2 to the center ray) is not intensified ytt2s. As a result, when the object 6 is displaced in the direction a, the amount of light received in the light receiving area 23A of the two-split light detection tjZS decreases. A focus lens error signal indicating the magnitude of displacement in one direction is output from the amplifier 8, and the objective lens 5 follows the same movement as in the previous embodiment. This movement is detected by the proximity sensor 19, and the displacement is displayed. Vessel 2
Displayed at 0. On the other hand, when the object 6 is displaced in the n direction, the light beam reflected by the polarizing prism 3 is reflected by the incident light l1IIlbi1. b
The light enters with an inclination as represented by 12. That is, in this case, the relationship of the magnitude of the incident light beam incident on the reflection direction 22 is opposite to that in the case of displacement in the a-direction described above. Therefore, the relationship between the amount of light received in each of the light receiving areas 23 and 23B (D) of the bisecting 111ji detector 23 is also reversed. In this case, the reflected light and the transmitted light in the reflection direction 22rc are denoted by the symbols brl, br2 and btz, respectively.Thus, At this time, focus song error No. 48 indicating the magnitude of the displacement in the n direction is output from the @1 differential amplifier 8, and the objective lens 5 follows the same way as in the previous embodiment, and this movement is detected by the proximity sensor. Detected by 19, displacement table Fuki 2
0). In this embodiment, the same effects as those of the previous embodiment can be achieved, and when the VC is out of focus, the luminous flux on one side is totally reflected as the boundary is at the center edge, and the luminous flux on the other side is reflected at the extreme Kldi. Since the amount of light is small, the difference in the amount of light in the light receiving area PC becomes more pronounced, which has the advantage of allowing highly accurate detection of the spiritual position. (2) ``Glaze characteristic diagram'' of Mukai 11 x 11 ¥ 4 set 8 strokes is one characteristic diagram, and Fig. 5 is a diagram showing the configuration of another embodiment of the present invention. ” he stopped. (3) Circular No. 1] Your line 14, “...displacement indicator,” [...displacement indicator, 2)...detection prism,
22... Reflection (3), 23... Two-split photodetector,
I am corrected. (4) Add Bessho Ward 1iii as “Figure 5”.

Claims (1)

【特許請求の範囲】[Claims] 光源と、この光源からの光を変位調定対象物の表面に微
小スポットとして照射する対物レンズと、この2」物レ
ンズを通して前記対象物の*mから到来する反射光束を
受光しこの反射光束の集束位置の変化を検出して電気信
号に変換する分割型光検出器と、この光検出器から04
s号を処理することによりフタ−カスエラー信号を出力
する信号処理手段と、この信号処理手段から出力される
フォーカスエラー信号に基いて前記対物レン)eを駆動
し上記レンズの焦点が前記対象物の表面に対し常に合焦
状態とな為如く制御するサーメ手段と、こOチー2手−
による前記対物レンズの動きから前記対象物の変位を検
出する変位検出手段とを具備したことを特徴とする非接
触変位検出装置。
A light source, an objective lens that irradiates the light from the light source as a minute spot on the surface of the object to be displaced, and receives the reflected light beam coming from *m of the object through the 2" object lens and calculates the amount of the reflected light beam. A split-type photodetector that detects changes in the focusing position and converts it into an electrical signal, and a 04
a signal processing means for outputting a focus error signal by processing the signal s; A therme means that controls the surface so that it is always in focus, and a two-hand method.
A non-contact displacement detection device comprising: displacement detection means for detecting displacement of the object from movement of the objective lens.
JP5902082A 1982-04-09 1982-04-09 Non-contact displacement detector Pending JPS58176505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5902082A JPS58176505A (en) 1982-04-09 1982-04-09 Non-contact displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5902082A JPS58176505A (en) 1982-04-09 1982-04-09 Non-contact displacement detector

Publications (1)

Publication Number Publication Date
JPS58176505A true JPS58176505A (en) 1983-10-17

Family

ID=13101183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5902082A Pending JPS58176505A (en) 1982-04-09 1982-04-09 Non-contact displacement detector

Country Status (1)

Country Link
JP (1) JPS58176505A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197505A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Shape detector
DE3536700A1 (en) * 1985-10-15 1987-04-16 Ulrich Breitmeier DEVICE FOR DETERMINING THE LOCAL DISTANCE OF A TEST AREA FROM A REFERENCE AREA
EP0258588A2 (en) * 1986-09-04 1988-03-09 Feinprüf Perthen GmbH Feinmess- und Prüfgeräte Optical surface-measuring device
DE3817337A1 (en) * 1987-05-21 1988-12-01 Anritsu Corp SYSTEM FOR MEASURING SURFACE PROFILES
US4971445A (en) * 1987-05-12 1990-11-20 Olympus Optical Co., Ltd. Fine surface profile measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197505A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Shape detector
JPH0550682B2 (en) * 1984-10-19 1993-07-29 Hitachi Ltd
DE3536700A1 (en) * 1985-10-15 1987-04-16 Ulrich Breitmeier DEVICE FOR DETERMINING THE LOCAL DISTANCE OF A TEST AREA FROM A REFERENCE AREA
EP0258588A2 (en) * 1986-09-04 1988-03-09 Feinprüf Perthen GmbH Feinmess- und Prüfgeräte Optical surface-measuring device
US4971445A (en) * 1987-05-12 1990-11-20 Olympus Optical Co., Ltd. Fine surface profile measuring apparatus
DE3817337A1 (en) * 1987-05-21 1988-12-01 Anritsu Corp SYSTEM FOR MEASURING SURFACE PROFILES

Similar Documents

Publication Publication Date Title
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
US4017188A (en) Surface profile measuring device and method
US5982494A (en) Non-contact position sensor
JPS6048949B2 (en) A device that reads information using a light beam
US4748322A (en) Apparatus for determining the distance between a measuring surface and a reference surface
JPS61128105A (en) Edge detector of optical measuring instrument
EP0234562B1 (en) Displacement sensor
JPS58176505A (en) Non-contact displacement detector
US5886787A (en) Displacement sensor and method for producing target feature thereof
US6515754B2 (en) Object-displacement detector and object-displacement controller
JPS63120201A (en) Optical-fiber movement measuring device
US5636189A (en) Astigmatic method for detecting a focussing error in an optical pickup system
JPS6125011A (en) Optical distance measuring device
JPH01143908A (en) Thin film thickness measuring instrument
Johnson Focus error detection in optical data storage systems
JPS6266111A (en) Optical distance detecting device
JPH03252513A (en) Parabolic antenna surface measuring instrument
JP2609606B2 (en) Optical pickup objective lens position detector
US5497228A (en) Laser bevel meter
SU1582039A1 (en) Device for determining position of focal plane of lens
RU2142126C1 (en) Device designed to reveal defects of moving flexible material surface
CA1055688A (en) Surface profile measuring device and method
JPS6129745A (en) Detecting device for pinhole defect
JPH045556A (en) Method and device for flaw inspection of surface of sphere
KR880004297Y1 (en) Optical sensor for focusing control