JPS58175884A - Multiwavelength integration light source - Google Patents

Multiwavelength integration light source

Info

Publication number
JPS58175884A
JPS58175884A JP5726582A JP5726582A JPS58175884A JP S58175884 A JPS58175884 A JP S58175884A JP 5726582 A JP5726582 A JP 5726582A JP 5726582 A JP5726582 A JP 5726582A JP S58175884 A JPS58175884 A JP S58175884A
Authority
JP
Japan
Prior art keywords
optical
semiconductor
output
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5726582A
Other languages
Japanese (ja)
Other versions
JPS6366436B2 (en
Inventor
Masaru Nakamura
優 中村
Takeshi Koseki
健 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5726582A priority Critical patent/JPS58175884A/en
Publication of JPS58175884A publication Critical patent/JPS58175884A/en
Publication of JPS6366436B2 publication Critical patent/JPS6366436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To simply suppress the intensity deviation of the output of a wave collector as well as to contrive miniaturization and integration of the titled light source by a method wherein the deviation of output intensity of beams of light having different wavelengths is effectively cancelled each other out taking advantage of the loss difference existing between ports of the wave collector. CONSTITUTION:Taking advantage of the fact that both of the deviation in the intensity of output light of a plurality of semiconductor laser 22 having different optical wavelengths obtained by changing the distribution constant of a diffraction lattice 24 and the difference of the optical propagation losses existing between the ports of an optical wave collector 23 are independent on the structure of themselves, the semiconductor laser 22 which outputs beams of light having a high light intensity and the input port of the optical wave collector 23 having a larger loss are optically coupled, and in contrast with this, the semiconductor laser 22 which outputs a beam of light of low output light intensity and the input port of the optical collector 23 of smaller loss are optically coupled. Accordingly, a plurality of semiconductor lasers and the input port of the wave collector can be optically coupled respectively, thereby enabling to collectively suppress the output deviation of each optical wavelength in the output of the wave collector.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相互に波長の異なる複数の光の出力強度偏差の
小さい集積化された多波長集積化光源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an integrated multi-wavelength light source in which output intensity deviation of a plurality of lights having mutually different wavelengths is small.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

波長多重化技術は、光ファイバの有効利用とうに、中心
波長をλ1.λ3と異にする2つの光源1,2から発せ
られた光信号を合波器3にて合波し、これを光7アイ7
青・ケーゾル4を介して伝送し、分波器5によシ上記波
長λ!、λ層別に光信号を分波して受光器g、rにてそ
れぞれ受信するものである。従って波長OJ%なっ九2
つの光を信号伝搬媒体として2系統の光信号通信を同時
に行うことが可能となる。このような波長多重化通信を
行う場合、通信効率0点から上記光の波長間隔をできる
aシ狭くして、例えば101程度に定めて多くの光を多
重化することが望まれている。
Wavelength multiplexing technology allows the effective use of optical fibers by changing the center wavelength to λ1. Optical signals emitted from two light sources 1 and 2 with different wavelengths of λ3 are combined by a multiplexer 3, and this is combined into an optical 7 eye 7.
The above wavelength λ! is transmitted through the blue quesol 4 and sent to the demultiplexer 5. , the optical signal is demultiplexed for each λ layer and received by photoreceivers g and r, respectively. Therefore, the wavelength OJ% is 92
It becomes possible to perform two systems of optical signal communication simultaneously using one light beam as a signal propagation medium. When performing such wavelength multiplexed communication, it is desired to multiplex a large number of lights by narrowing the wavelength interval of the light as much as possible from the communication efficiency point of 0, for example, to about 101.

さて、光源として用いられる半導体発光素子の発光波長
を変える場合、従来一般にその組成を費えることによっ
て行われている0例えばムjGaAs系の半導体レーデ
の場合、第2図に示すようにムtとGaとの構成比を1
96程度変化させある。
Now, when changing the emission wavelength of a semiconductor light emitting device used as a light source, it has conventionally been generally done by changing its composition. The composition ratio with Ga is 1
There are about 96 changes.

これに対して組成の均一な基板上に回折格子を形成し、
そO格子定数を変化させることによって発光波長を可変
させた半導体レーデがある。
On the other hand, a diffraction grating is formed on a substrate with a uniform composition,
There is a semiconductor radar whose emission wavelength is varied by changing the O lattice constant.

この半導体レーデは、所@DFI(分布帰還)やDIR
(分布fうyグ反射)技術を利用したもので、例えば第
3図に示すように半導体レーデ8のレーデ活性層りの近
傍に凹凸状の回折格子10を形成して分布的な光共振器
を構成した構造を有するものである。このような構造の
半導体レーデの発光波長はその組成に依存することなく
、前記回折格子10の凹凸サイズだけによって決定され
、波長精度が高いと云う利点を有している。従って、集
積化波長多重光源として適していると考えられる。
This semiconductor radar is used for @DFI (distributed feedback) and DIR
(distributed optical resonator) technology, for example, as shown in FIG. It has a structure consisting of. The emission wavelength of a semiconductor radar having such a structure is determined only by the size of the unevenness of the diffraction grating 10 without depending on its composition, and has the advantage of high wavelength accuracy. Therefore, it is considered suitable as an integrated wavelength multiplexed light source.

ところが、その発振機構を考慮すると同時集□、憎に増
大する2このとき、上記半導体レーデが発振する場合に
は、上記利得が例えば自由キャリア吸収、散乱損失、反
射損失等の種々の損失より上回ることが必要である。一
般的なGaAjAm半導体において発振補値を与える利
得係数は約3001 であシ、第4図(、)に示す特性
から明らかなように注入キャリアを2.OX 1018
cx−5とした場合、約100大の範囲でレーデ発振光
を得ることができる。従って波長間隔10λで約10波
の光を多重発光する光源を形成することが可能となる。
However, when the oscillation mechanism is taken into account, the gain increases dramatically.2 At this time, when the semiconductor radar oscillates, the gain exceeds various losses such as free carrier absorption, scattering loss, reflection loss, etc. It is necessary. In a general GaAjAm semiconductor, the gain coefficient that provides the oscillation complementary value is approximately 3001, and as is clear from the characteristics shown in FIG. OX1018
In the case of cx-5, Rade oscillation light can be obtained in a range of about 100 degrees. Therefore, it is possible to form a light source that multiplexes light of approximately 10 waves with a wavelength interval of 10λ.

然し乍ら、このようにして得られる各波長の発振閾値電
流値が第4図(b)に示すように異なっており、同一電
流値で駆動した場合、出力強度偏差を有すると云う問題
がある。即ち、短波長側よ多波長をλ1.λ怠〜λ凰◎
としたとき、中心近傍の波長λ暴、λ6の出力強度が高
く、両端の波長側で出方強度が低くなると云う問題があ
る。
However, there is a problem in that the oscillation threshold current values for each wavelength obtained in this way are different as shown in FIG. 4(b), and that when driven with the same current value, there is an output intensity deviation. That is, the wavelengths on the shorter wavelength side are set to λ1. λlazy~λ凰◎
When this happens, there is a problem in that the output intensity of the wavelengths λ and λ6 near the center is high, and the output intensity is low on the wavelength sides at both ends.

結晶基板11上にTIを拡散して先導波路12t−形成
した先導波路型の光合波器を示すものであり、導波路寸
法は約5〜10Jm、導波路厚2〜3μm、導波路間隔
を50071111程度とし九構造を有し、全体として
1cm角程度の大きさを有する。
This shows a guided waveguide type optical multiplexer in which a leading waveguide 12t is formed by diffusing TI on a crystal substrate 11, the waveguide dimensions are approximately 5 to 10 Jm, the waveguide thickness is 2 to 3 μm, and the waveguide spacing is 50071111. It has a three-dimensional structure and has a total size of about 1 cm square.

ところが、このように集積化され九小瓜の合波器にあっ
ては、従来、個別部品を用いて構成された合波器におい
ては問題となることがなかつ光導波路の曲夛による伝搬
光の放射損失が大きな問題となる。このことは複数の入
力4−トと出力ポートとの間のそれぞれの光伝搬損失が
異なることを意味する。
However, in the case of such an integrated nine-small-melon multiplexer, there is no problem with conventional multiplexers constructed using individual parts, and the problem of propagating light due to the bending of the optical waveguide. Radiation loss becomes a major problem. This means that each optical propagation loss between the plurality of input ports and the output port is different.

このように集積化された小型の波長多重集積化光源を得
ようとする場合、上述しえように複数の半導体レーデが
出力する波長の異なつ走光の出力強度偏差の問題中1合
波器の入出力4−ト間の光伝搬損失の異なシ等の問題が
あった。
When trying to obtain a compact wavelength multiplexing integrated light source that is integrated in this way, there is a problem of output intensity deviation of light traveling at different wavelengths output by multiple semiconductor radars, as mentioned above, and one multiplexer. There were problems such as different optical propagation losses between the input and output ports.

この為、波長多重化通信に用いられる波長多重化光源と
しての実用性に問題があった。
For this reason, there was a problem in its practicality as a wavelength multiplexed light source used in wavelength multiplexed communication.

〔発明の目的〕 本発明は、このような事情を考慮してなされ九もので、
その目的とするところは、波長多重化して出力する相互
に波長の異なる光の出力光強度偏差を小さく抑えた小型
形状の実用性の高←多波長集積化光源を提供することに
ある。
[Object of the invention] The present invention has been made in consideration of the above circumstances, and
The purpose is to provide a compact and highly practical multi-wavelength integrated light source that suppresses the output light intensity deviation of wavelength-multiplexed light having different wavelengths to a small value.

〔発明の概要〕[Summary of the invention]

本発明は、回折格子の分布定数を変えて発光波長を異な
らせ九複数の半導体レーデの出力光強度の偏差および光
合波器の4−)間の光伝搬損失の差がその構造に依存し
ていることを利用し、出力光強度の高い波長の光を出力
する半導体レーデと、光合波器の損失の大なる入力4−
トとを光結合し、逆に出力光強度の低い光を出力する半
導体レーデと光合波器の損失の小さい入力−−トとを光
結合することによって、複数の半導体レーデと合波器の
入力/−)とをそれぞれ対応づけて光結合することによ
って総合的に合波出力における各波長光の出力偏差を抑
え〔発明の効果〕 従って本発明によれば、波長の異なる光の出力強度偏差
を合波器の4−ト関における損失差説明する。
In the present invention, the emission wavelength is varied by changing the distribution constant of the diffraction grating, and the deviation in the output light intensity of nine plurality of semiconductor radars and the difference in optical propagation loss between the optical multiplexers 4-) depend on the structure. A semiconductor radar that outputs light at a wavelength with high output light intensity and an optical multiplexer with high loss input 4-
By optically coupling the semiconductor rades that output light with low output light intensity and the low-loss input of the optical multiplexer, the input of multiple semiconductor rades and the multiplexer can be optically coupled. /-) and optically couple them to each other, thereby comprehensively suppressing the output deviation of each wavelength light in the combined output. [Effects of the Invention] Therefore, according to the present invention, the output intensity deviation of lights of different wavelengths can be suppressed. The loss difference between the four ports of the multiplexer will be explained.

第6図は第1の実施例を示す概略構成図であシ、xxF
i複数の半導体レーデ21a、21b〜12mt形成し
てなる第1の基板、22は光導波路からなる光合波器を
形成したts2の基板を示している。半導体レーデjj
m、21b〜221は、例えばGaAjム畠基板21上
に組成を同じくして形成され、Dll型の回折格子24
を設けて相互に発光波長を異ならせて同時集積化された
構造を有する。これらの各半導体レーデJ J a 、
 2 j b 〜J J nの発光波長間隔は、前記D
IR型の回折格子240分布定数を変えることによシl
Oλに設定されている。尚、これらの半導体レーデ2 
j a 、 J J b 〜J J !1は、光発振方
向を揃えて並列的に近接配置されている。。
FIG. 6 is a schematic configuration diagram showing the first embodiment, xxF
i A first substrate on which a plurality of semiconductor radars 21a, 21b to 12mt are formed, and 22 represents a ts2 substrate on which an optical multiplexer consisting of an optical waveguide is formed. semiconductor radar jj
m, 21b to 221 are formed, for example, on the GaAj substrate 21 with the same composition, and are Dll type diffraction gratings 24.
They have a structure in which they are simultaneously integrated by providing different emission wavelengths. Each of these semiconductor radars J J a ,
The emission wavelength interval of 2 j b to J J n is the same as the above D
By changing the distribution constant of the IR type diffraction grating 240,
It is set to Oλ. Furthermore, these semiconductor radar 2
J a, J J b ~ J J! 1 are arranged close to each other in parallel with the light oscillation directions aligned. .

一方、光合波器xsFi、その基板であるLiNb0゜
、・−1−トより出力するものである。
On the other hand, the light is output from the optical multiplexer xsFi and its substrate LiNb0°, -1-.

−しかして、各半導体レーデ21*、11b〜21M&
と金波器2Sの各人力/−)との光学的結合は次のよう
にして行われている。今、1゜波の光の波長を短波長側
よシλ1.λ3〜λl。
- Therefore, each semiconductor radar 21*, 11b to 21M &
The optical coupling between the and each human power /-) of the Kinpaki 2S is performed as follows. Now, change the wavelength of 1° light to the short wavelength side, λ1. λ3~λl.

としたとき、これらに対して光強度の大なるものより順
K111位を設定する。一方、光合波器2JKToって
は光伝搬損失の大なる特性を有する入力−−ト側よシ順
に順位を設定する。そしてこれらの順位に従って半導体
レーデ22a。
Then, these are ranked K111 in descending order of light intensity. On the other hand, the optical multiplexer 2JKTo is ranked in order from the input side, which has a characteristic of large optical propagation loss. Then, the semiconductor radar 22a is arranged according to these rankings.

xzb〜zznと入力4−トとを相互に対応付けして両
者を光学的に結合する。つまり、この場合には波長λ藝
、λ・の光を出力する半導体レーデを光合波器23の最
外側に位置する入力/−)にそれぞれ対向して設ける。
xzb to zzn and input 4-to are associated with each other to optically couple them. That is, in this case, semiconductor radars that output light with wavelengths λ and λ are provided opposite to the outermost inputs of the optical multiplexer 23, respectively.

そして、内側に内って、波長λ4.λTの光を出力する
半導体レーデ、波長λ畠、λ$の光を出力する半導体レ
ーデと云うようKIIIK入カポ−)K対向Lt、、f
yる。また、ここでは半導体レーデ22a〜221と光
合波器23とは、別の基板にそれぞれ形成し、これを近
接配置して上述した光学的結合を行った例を示している
が、これらを一枚の基板上に同時集積して形成すること
も勿論可能である。
Then, inside, the wavelength λ4. A semiconductor radar that outputs light with a wavelength of λT, a semiconductor radar that outputs light with a wavelength of λ$, and a semiconductor radar that outputs a light with a wavelength of λ$ are used.
Yes. Further, here, an example is shown in which the semiconductor radars 22a to 221 and the optical multiplexer 23 are formed on separate substrates, and placed close to each other to perform the above-mentioned optical coupling. Of course, it is also possible to simultaneously integrate and form them on the same substrate.

かくして、このように構成された多波長集積化光源によ
れば、出力強度偏差を以って各半導体レーデ21m、2
2b〜Jjnよシそれぞれ出力された波長を異にする光
は、損失特性の異なる入力/−)からそれぞれ入力され
て合波多重化されるととKなる。しかも出力強度の高い
波長光に対して大きな損失が与えられるようになってい
る。従って合波多重化された出力における各波長の光強
度が平均化され、その強度偏差が効果的に抑制されるこ
とになる。
Thus, according to the multi-wavelength integrated light source configured in this way, each semiconductor radar 21m, 2
The output lights 2b to Jjn, which have different wavelengths, are respectively input from inputs (/-) with different loss characteristics and are multiplexed into K. Moreover, a large loss is given to the wavelength light having high output intensity. Therefore, the light intensity of each wavelength in the multiplexed output is averaged, and the intensity deviation is effectively suppressed.

これ故、波長多重化通信における集積化光源化を図る場
合、半導体レーデO印加電流を変化させたり、あるいは
温度を肇えたシすればよいと云う考え方がある。然し乍
ら、上記の如く集積化された光源の寸法は、非常に小さ
いものであるから、個々の半導体レーデの−それぞれK
ついて上記制御を行うことは甚だ困難である。tた仮り
、このような制御が可能であるとしても、’Q’po制
御機構が非常に複雑になシ、例えば電流1僅の変化が温
度の変化としても現われる。これ、臘、このような制御
を行う為にはそれな〉の工夫が必要となシ、集積化・小
型化された多−波長集積化光源のメリットが失われてし
まう、従って、上記のように、半導体レーデと合波器の
入力/−)との光結合関係を、出力強度および入力l−
トの損失特性に対応付けして定めることが極めて大きな
利点を奏すると云える。
Therefore, there is a concept that when attempting to integrate a light source in wavelength multiplexed communication, it is sufficient to change the current applied to the semiconductor radar O or adjust the temperature. However, since the dimensions of the integrated light source as described above are very small, the -K
Therefore, it is extremely difficult to perform the above control. Even if such control were possible, the 'Q'po control mechanism would be very complicated, and for example, a slight change in current would appear as a change in temperature. However, in order to perform this kind of control, special measures are required, and the advantages of an integrated and miniaturized multi-wavelength integrated light source will be lost. The optical coupling relationship between the semiconductor radar and the input of the multiplexer (/-) is determined by the output intensity and the input l-
It can be said that it is extremely advantageous to define this in correspondence with the loss characteristics of the target.

さて、@7図は本発明の別の実施例を示す図であシ、合
波器26を回折格子2rを用いて構成した例を示す屯の
である。この場合、出力4−トよシ遠い側の入力−−ト
はど回折格子2rを通過する回数が増え、この結果損失
が増大するので、半導体レーデ22m、21b〜12m
の発光波長を、その出力強度の高いものから願に上記出
力/−)から遠い方の入力ポートに対して対向付けして
光学的結合を行わしめるようにすればよい。
Now, Figure 7 is a diagram showing another embodiment of the present invention, and is a diagram showing an example in which the multiplexer 26 is constructed using a diffraction grating 2r. In this case, the input side, which is farther from the output 4, passes through the diffraction grating 2r more times, and as a result, the loss increases.
Optical coupling may be effected by arranging the emission wavelengths of the input ports having the highest output intensity to face the input ports that are farthest from the output (-).

このようにしても前述した実施例と同様な効果が奏せら
れることは云うまでもない。
Needless to say, even in this case, the same effects as in the above-mentioned embodiment can be achieved.

以上説明したように本発明によれば、波長の具なる光を
同時集積された複数の半導体レーデより発振出力し、こ
れを強度偏差を抑制して合として、実用上多大なる効果
を奏する。
As described above, according to the present invention, light having a specific wavelength is oscillated and output from a plurality of semiconductor radars integrated simultaneously, and the intensity deviation is suppressed and the light is combined, thereby producing a great practical effect.

尚、本発明は上記実施例に限定されるものではない0例
えば複数の光の波長間隔や波長数等は仕様に応じて定め
ればよい。またDBR型の回折格子に代えてDPI型の
回折格子を用いて半導体レーデを構成することができる
。要するに本発明はその要旨を逸脱しない範囲で種々変
形して実施することができる。
It should be noted that the present invention is not limited to the above-mentioned embodiments; for example, the wavelength interval of a plurality of lights, the number of wavelengths, etc. may be determined according to specifications. Further, a semiconductor radar can be constructed using a DPI type diffraction grating instead of a DBR type diffraction grating. In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】 第1図は波長多重通信システムの概略図、第2図はAj
Gaムー半導体レーデの組成によるバンドゼヤッゾの変
化を示す図、第3図はDPI型牛型体導体レーデ造を示
す図、第4図(a) 、 (b)はAzGaAa半導体
レーデの利得特性と出力強度とを示す図、第5図は光導
波路型合波器の一例を示23・・・光合波器、24・・
・DIRfi回折格子、25・・・生部波路、2e・・
光合波器、21・・・回折格子。 出願人  工業技術院長 石 坂 絨 −第4凶 第5図
[Brief explanation of the drawings] Figure 1 is a schematic diagram of a wavelength division multiplexing communication system, and Figure 2 is a schematic diagram of a wavelength division multiplexing communication system.
Figure 3 shows the change in band width depending on the composition of the Ga-mu semiconductor lede, Figure 3 shows the DPI type cow-shaped conductor lede structure, and Figures 4 (a) and (b) show the gain characteristics and output intensity of the AzGaAa semiconductor lede. FIG. 5 shows an example of an optical waveguide type multiplexer 23... optical multiplexer, 24...
・DIRfi diffraction grating, 25... Raw wave path, 2e...
Optical multiplexer, 21...diffraction grating. Applicant: Director of the Agency of Industrial Science and Technology, Kei Ishizaka - Figure 4, Figure 5

Claims (1)

【特許請求の範囲】 (1)基板上に発振波長を相互に異ならせて同時集積し
て形成された同一組成からなる1個O半導体レーデと、
基板上に集積形成され上記各半導体レーデからそれぞれ
出力された、発振波長を相互に異にする光を合波する光
合波器とを備え、前記1個の半導体レーデの順位を各半
導体レーデの出力光強度の高いものから願に設定すると
共に、前記光合波器の鳳個の入力4−)の順位を各人力
4−.トと出力メートとO関の光伝播損失の高いものか
ら順に設定し、前記l個の半導体レーデと前記光合波器
の鳳個の入力ポートとの間を前記設定され九順位に従っ
てそれぞfI#対応させて光結合してなることを特徴と
する1番線長集積化光源。 (匂 半導体レーデを集積形成し九基板と光合波器を集
積形成し九基板とは同一基板であって、半導体レーデと
光合波器との光結合は、上記基板上に形成され圧覚導波
路を介して行われるものである特許請求の範囲lIg1
項記載の多波長集積化光源。 (3)  半導体シーft集積形成した基板と、光責波
器管集積形成した基板とは、相互に近接配置される2つ
の別基板からなシ、半導体レーデと光合波器との光結合
は、上記2つの別基板の対向配置された光入出力/−)
間に形成される光伝播路を介して行われるものである特
許請求の範囲第1項記載の多波長集積化光源。 (4)光合波器は、基板上に回折格子を形成し九構造か
らなるものである特許請求の範囲第1項記載の多波長集
積化光源。 (5)  光合波器は、LiNbO3結晶本板上にTI
を選択的に拡散して先導波路を形成した構造からなるも
のである特許請求の範囲第1項記載の多波長集積化装置
[Scope of Claims] (1) One O semiconductor radar of the same composition formed by simultaneous integration on a substrate with mutually different oscillation wavelengths;
an optical multiplexer that is integrally formed on a substrate and multiplexes light having different oscillation wavelengths output from each of the semiconductor rades, and the output of each semiconductor rader is determined by the order of the semiconductor rades. At the same time, the order of the inputs 4-) of the optical multiplexer is determined by each person's power 4-. fI# is set in descending order of the optical propagation loss between the output mate and the optical multiplexer, and between the l semiconductor radars and the input ports of the optical multiplexer according to the nine set orders. A first line length integrated light source characterized by being optically coupled in correspondence. (Oi) The semiconductor radar is integrated and the nine substrates and the optical multiplexer are integrated. Claim lIg1 which is made through
Multi-wavelength integrated light source as described in Section 1. (3) The substrate integrated with semiconductor sheets and the substrate integrated with optical waveguides are two separate substrates placed close to each other.The optical coupling between the semiconductor radar and the optical multiplexer is as follows. Opposed optical input/output of the above two separate boards/-)
The multi-wavelength integrated light source according to claim 1, wherein the multi-wavelength integrated light source is transmitted through a light propagation path formed between them. (4) The multi-wavelength integrated light source according to claim 1, wherein the optical multiplexer has a nine-structure structure with a diffraction grating formed on the substrate. (5) The optical multiplexer is made of TI on the LiNbO3 crystal main board.
2. The multi-wavelength integrated device according to claim 1, wherein the multi-wavelength integrated device has a structure in which a leading wave path is formed by selectively diffusing the .
JP5726582A 1982-04-08 1982-04-08 Multiwavelength integration light source Granted JPS58175884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5726582A JPS58175884A (en) 1982-04-08 1982-04-08 Multiwavelength integration light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5726582A JPS58175884A (en) 1982-04-08 1982-04-08 Multiwavelength integration light source

Publications (2)

Publication Number Publication Date
JPS58175884A true JPS58175884A (en) 1983-10-15
JPS6366436B2 JPS6366436B2 (en) 1988-12-20

Family

ID=13050690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5726582A Granted JPS58175884A (en) 1982-04-08 1982-04-08 Multiwavelength integration light source

Country Status (1)

Country Link
JP (1) JPS58175884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242686A (en) * 1984-05-17 1985-12-02 Nec Corp Semiconductor laser array
JPS6396607A (en) * 1986-10-07 1988-04-27 エヌ・ヴエー・フイリツプス・グリユイランペンフアブリーケン Optical star coupler
US5233187A (en) * 1991-01-22 1993-08-03 Canon Kabushiki Kaisha Multi-wavelength light detecting and/or emitting apparatuses having serially arranged grating directional couplers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242686A (en) * 1984-05-17 1985-12-02 Nec Corp Semiconductor laser array
JPS6396607A (en) * 1986-10-07 1988-04-27 エヌ・ヴエー・フイリツプス・グリユイランペンフアブリーケン Optical star coupler
US5233187A (en) * 1991-01-22 1993-08-03 Canon Kabushiki Kaisha Multi-wavelength light detecting and/or emitting apparatuses having serially arranged grating directional couplers

Also Published As

Publication number Publication date
JPS6366436B2 (en) 1988-12-20

Similar Documents

Publication Publication Date Title
US6744943B2 (en) Add-drop filter utilizing chiral elements
EP0978740B1 (en) Wavelength division multi/demultiplexer
JPH07109447B2 (en) Optical devices and filters
TW200415873A (en) Optical device with slab waveguide and channel waveguides on substrate
US20160079735A1 (en) Laser comb generator
US6993217B2 (en) Optical switch device
US7031355B2 (en) High efficiency single and multiple wavelength stabilized systems
JPS58175884A (en) Multiwavelength integration light source
JP2001166160A (en) Optical waveguide, light source and optical multiplexer
JPS61284707A (en) Optical multiplexer and demultiplexer
JPH11109147A (en) Array waveguide grating element
JPS62123411A (en) Grating optical coupler
JP2002082241A (en) Optical multiplexer/demultiplexer
JP2009198826A (en) Optical signal processor
JPS5851249B2 (en) Optical wavelength selective coupling device
JPH08195720A (en) Wavelength selection filter for pill box type optical resonator
JP4484021B2 (en) Multi-wavelength light source
JPS6023809A (en) Optical multiplexer-demultiplexer
JPS5966236A (en) Wavelength multiplex communicating method
JP2000292633A (en) Light wave length multiplex communication module
JPS62127806A (en) Optical multiplexer and demultiplexer for single mode
JP2658114B2 (en) Wavelength conversion switch
JPS6178188A (en) Multi-wave laser beam source
JPH04264506A (en) Optical multiplexer/demultiplexer
JPH103012A (en) Optical wavelength demultiplexing element