JPH04264506A - Optical multiplexer/demultiplexer - Google Patents

Optical multiplexer/demultiplexer

Info

Publication number
JPH04264506A
JPH04264506A JP2639091A JP2639091A JPH04264506A JP H04264506 A JPH04264506 A JP H04264506A JP 2639091 A JP2639091 A JP 2639091A JP 2639091 A JP2639091 A JP 2639091A JP H04264506 A JPH04264506 A JP H04264506A
Authority
JP
Japan
Prior art keywords
waveguide
waveguides
multiplexing
light
reciprocating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2639091A
Other languages
Japanese (ja)
Other versions
JP2683161B2 (en
Inventor
Hideaki Okayama
秀彰 岡山
Masato Kawahara
正人 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2639091A priority Critical patent/JP2683161B2/en
Publication of JPH04264506A publication Critical patent/JPH04264506A/en
Application granted granted Critical
Publication of JP2683161B2 publication Critical patent/JP2683161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the optical multiplexer/demultiplexer which facilitates optical axis alignment and has small light loss. CONSTITUTION:A slab type intermediate waveguide 10, channel type demultiplexing waveguides 12, multiplexing waveguides 13, and two-way waveguides 14 are provided on a substrate 16 in monolithic structure and the alignment of the optical axes is facilitated. The demultiplexing waveguides 12 and multiplexing waveguides 13 are provided on one side of the intermediate waveguide 10 and the two-way waveguides 14 are provided on the other side. A total reflecting surfaces 18 are provided on the opposite sides of the two-way waveguide 14 from the intermediate waveguides 10. When the difference (d) in length between adjacent two-way waveguides 14 is set to an optional suitable constant value, wavelength-multiplexed light can be converged on constant positions differing with the wavelength at the time of the incidence of the light on the intermediate waveguide 10 from the multiplexing waveguides 13 through the intermediate waveguide 10, two-way waveguides 14, and reflecting surfaces 18. The demultiplexing waveguides 12 are arranged at the convergence position of the light. The two-way waveguides 14 are arranged radially about the multiplexing waveguides 13f to narrow down the convergence area of the light by the wavelengths, thereby reducing the light loss.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は例えば波長多重光通信
に用いる光合分波器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical multiplexer/demultiplexer used, for example, in wavelength multiplexed optical communications.

【0002】0002

【従来の技術】従来より波長多重通信では、光を波長毎
に分離したり波長の異なる光を合波したりするために光
合分波器を用いている。光合分波器として、例えば文献
1:コヒーレント光通信  電子情報通信学会  19
88年10月15日  p.57〜59に提案されてい
る回折格子型のものがある。
2. Description of the Related Art Conventionally, in wavelength division multiplexing communications, optical multiplexers and demultiplexers have been used to separate light into wavelengths and to multiplex lights with different wavelengths. As an optical multiplexer/demultiplexer, for example, Document 1: Coherent optical communication Institute of Electronics, Information and Communication Engineers 19
October 15, 1988 p. There is a diffraction grating type proposed in 57-59.

【0003】図3は文献1の光合分波器の全体構成を概
略的に示す分解斜視図である。同図に示す光合分波器は
、ファイバアレイ10、レンズ12、回折格子14、ア
レー保持部16、格子ホルダー18及びハウジング20
から成る。ファイバアレイ10は複数の入出力用光ファ
イバ22をアレイ化したもので、アレー保持部16に固
定される。また回折格子14は格子ホルダー18に設け
られる。そしてアレー保持部16、レンズ12及び格子
ホルダー18をハウジング20に装着し、ファイバアレ
ー10、レンズ12及び回折格子14の光軸を合せる。
FIG. 3 is an exploded perspective view schematically showing the overall structure of the optical multiplexer/demultiplexer disclosed in Document 1. The optical multiplexer/demultiplexer shown in the figure includes a fiber array 10, a lens 12, a diffraction grating 14, an array holder 16, a grating holder 18, and a housing 20.
Consists of. The fiber array 10 is an array of a plurality of input/output optical fibers 22, and is fixed to an array holding section 16. Further, the diffraction grating 14 is provided on a grating holder 18. Then, the array holder 16, lens 12, and grating holder 18 are attached to the housing 20, and the optical axes of the fiber array 10, lens 12, and diffraction grating 14 are aligned.

【0004】0004

【発明が解決しようとする課題】しかしながら上述した
従来の光合分波器では、ファイバーアレー10、レンズ
12及び回折格子14の光軸を合せる作業が大変であり
、光合分波器の作成に手間が掛かるという問題点があっ
た。
However, in the conventional optical multiplexer/demultiplexer described above, it is difficult to align the optical axes of the fiber array 10, lens 12, and diffraction grating 14, and it takes time and effort to create the optical multiplexer/demultiplexer. There was a problem with the cost.

【0005】この発明の目的は上述した従来の問題点を
解決するため、スラブ導波路及びチャネル導波路をモノ
リシックに基板に設けて構成した光合分波器を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical multiplexer/demultiplexer in which a slab waveguide and a channel waveguide are monolithically provided on a substrate in order to solve the above-mentioned conventional problems.

【0006】[0006]

【課題を解決するための手段】この目的の達成を図るた
め、この発明の光合分波器は、スラブ型中間導波路、チ
ャネル型合波導波路、チャネル型分波導波路及びチャネ
ル型往復導波路を基板に設けて成り、中間導波路の一方
の側に少なくともひとつの合波導波路及び複数の分波導
波路を結合すると共に中間導波路の他方の側に複数の往
復導波路を結合し、往復導波路の中間導波路とは反対側
に反射面を設け、往復導波路を導波路間隔が中間導波路
から遠ざかるに従って広がるように放射状に配置し、隣
接する往復導波路の長さの差を一定とし、合波導波路か
ら出力される波長多重の光を、中間導波路を介して当該
合波導波路に対応する往復導波路へ入力させて反射面に
導き、反射面で反射され往復導波路から出力される、合
波導波路からの光を、中間導波路を介して波長毎に対応
する分波導波路に入力させることを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the optical multiplexer/demultiplexer of the present invention includes a slab-type intermediate waveguide, a channel-type multiplexer waveguide, a channel-type demultiplexer waveguide, and a channel-type reciprocating waveguide. A reciprocating waveguide is provided on a substrate, and has at least one multiplexing waveguide and a plurality of demultiplexing waveguides coupled to one side of the intermediate waveguide, and a plurality of reciprocating waveguides coupled to the other side of the intermediate waveguide. A reflecting surface is provided on the opposite side of the intermediate waveguide, and the reciprocating waveguides are arranged radially such that the waveguide spacing increases as the distance from the intermediate waveguide increases, and the difference in length between adjacent reciprocating waveguides is constant; The wavelength-multiplexed light output from the multiplexing waveguide is input to the reciprocating waveguide corresponding to the multiplexing waveguide via the intermediate waveguide, guided to the reflecting surface, reflected by the reflecting surface, and output from the reciprocating waveguide. , is characterized in that the light from the multiplexing waveguide is input to the corresponding demultiplexing waveguide for each wavelength via an intermediate waveguide.

【0007】[0007]

【作用】このようにこの発明の光合分波器は、スラブ型
中間導波路、チャネル型合波導波路、チャネル型分波導
波路及びチャネル型往復導波路を基板に設けて成る。こ
れら導波路の作成は公知の微細加工技術や導波路作成技
術等により行なうことができ従って導波路相互の光軸を
合せた状態の導波路パターンを描画するマスクを用いて
各導波路を作成できるので、これら導波路の光軸合せを
簡略化することができる。
As described above, the optical multiplexer/demultiplexer of the present invention includes a slab-type intermediate waveguide, a channel-type multiplexer waveguide, a channel-type demultiplexer waveguide, and a channel-type reciprocating waveguide on a substrate. These waveguides can be created using known microfabrication techniques, waveguide creation techniques, etc. Therefore, each waveguide can be created using a mask that draws a waveguide pattern with the optical axes of the waveguides aligned with each other. Therefore, alignment of the optical axes of these waveguides can be simplified.

【0008】また往復導波路を、導波路間隔(隣接する
往復導波路間の間隔)が中間導波路から遠ざかるに従っ
て広がるように放射状に配置する。従って、合波導波路
から出力される光を中間導波路を介し往復導波路へ入力
させる際の光損失を低減することができると共に、往復
導波路から出力される、合波導波路からの光を中間導波
路を介し分波導波路へ入力させる際の光損失を低減する
ことができる。
Further, the reciprocating waveguides are arranged radially such that the waveguide interval (the interval between adjacent reciprocating waveguides) increases as the distance from the intermediate waveguide increases. Therefore, it is possible to reduce the optical loss when the light output from the multiplexing waveguide is input to the reciprocating waveguide via the intermediate waveguide, and the light from the multiplexing waveguide output from the reciprocating waveguide can be It is possible to reduce optical loss when inputting to the demultiplexing waveguide via the waveguide.

【0009】[0009]

【実施例】以下、図面を参照し、この発明の実施例につ
き説明する。尚、図面はこの発明が理解できる程度に概
略的に示してあるにすぎず、従ってこの発明を図示例に
限定するものではない。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the drawings are merely shown schematically to the extent that the invention can be understood, and therefore the invention is not limited to the illustrated examples.

【0010】図1はこの発明の一実施例の全体構成を概
略的に示す平面図である。この実施例の光合分波器は、
同図にも示すように、スラブ型中間導波路10、チャネ
ル型分波導波路12、チャネル型合波導波路13及びチ
ャネル型往復導波路14を基板16に設けて成る。中間
導波路10は平板状の導波路であり、分波導波路12、
合波導波路13及び往復導波路14は帯状(ストライプ
状)の導波路である。尚、図において分波導波路12、
合波導波路13及び往復導波路14を点を付して示した
FIG. 1 is a plan view schematically showing the overall configuration of an embodiment of the present invention. The optical multiplexer/demultiplexer of this example is
As shown in the figure, a slab-type intermediate waveguide 10, a channel-type branching waveguide 12, a channel-type multiplexing waveguide 13, and a channel-type reciprocating waveguide 14 are provided on a substrate 16. The intermediate waveguide 10 is a flat waveguide, and the branching waveguide 12,
The combining waveguide 13 and the reciprocating waveguide 14 are band-shaped (stripe-shaped) waveguides. In addition, in the figure, the branching waveguide 12,
The combining waveguide 13 and the reciprocating waveguide 14 are shown with dots.

【0011】そして中間導波路10の一方の側に複数の
分波導波路12及び少なくともひとつの合波導波路13
を光学的に結合すると共に、中間導波路10の他方の側
に複数の往復導波路14を光学的に結合する。この実施
例では、合波導波路13をひとつだけ設け、分波導波路
12及び合波導波路13の端面12a及び13aを中間
導波路10の一方の端面10aと接触させて光学的に結
合する。同様に往復導波路14の端面14aを中間導波
路10の他方の端面10bと接触させて光学的に結合す
る。そして分波導波路12及び合波導波路13の他方の
端面12b及び13bにそれぞれ光ファイバ22を結合
する。
A plurality of branching waveguides 12 and at least one multiplexing waveguide 13 are provided on one side of the intermediate waveguide 10.
are optically coupled, and a plurality of reciprocating waveguides 14 are optically coupled to the other side of the intermediate waveguide 10. In this embodiment, only one multiplexing waveguide 13 is provided, and end faces 12a and 13a of the splitting waveguide 12 and multiplexing waveguide 13 are brought into contact with one end face 10a of the intermediate waveguide 10 and optically coupled. Similarly, the end surface 14a of the reciprocating waveguide 14 is brought into contact with the other end surface 10b of the intermediate waveguide 10 and optically coupled. Optical fibers 22 are then coupled to the other end faces 12b and 13b of the branching waveguide 12 and the combining waveguide 13, respectively.

【0012】また往復導波路14の中間導波路10とは
反対側に反射面18を設ける。この実施例では、往復導
波路14よりも屈折率の低い反射層20を往復導波路1
4の端面14bと接触させて基板16に設け、これら往
復導波路14及び反射層20の界面に光を全反射する反
射面18を形成する。
Further, a reflecting surface 18 is provided on the opposite side of the reciprocating waveguide 14 from the intermediate waveguide 10. In this embodiment, the reflective layer 20 having a lower refractive index than the reciprocating waveguide 14 is attached to the reciprocating waveguide 14.
A reflective surface 18 is provided on the substrate 16 in contact with the end surface 14b of the waveguide 4, and a reflective surface 18 that totally reflects light is formed at the interface between the reciprocating waveguide 14 and the reflective layer 20.

【0013】さらに往復導波路14を、導波路間隔(隣
接する往復導波路14の間隔)が中間導波路10から遠
ざかるに従って広がるように放射状に配置する。この実
施例では、往復導波路14を直線導波路としこの導波路
14の軸線T1の延長線が合波導波路13の端面13a
と交差するように、より好ましくは往復導波路14の軸
線T1の延長線が合波導波路13の端面13a及びその
軸線T2の交点Sを通るように、各往復導波路14を放
射状に配置する。
Furthermore, the reciprocating waveguides 14 are arranged radially such that the waveguide interval (the interval between adjacent reciprocating waveguides 14) increases as the distance from the intermediate waveguide 10 increases. In this embodiment, the reciprocating waveguide 14 is a straight waveguide, and the extension line of the axis T1 of the waveguide 14 is the end face 13a of the combining waveguide 13.
The reciprocating waveguides 14 are arranged radially such that the extension line of the axis T1 of the reciprocating waveguide 14 passes through the intersection S of the end surface 13a of the multiplexing waveguide 13 and its axis T2.

【0014】また隣接する往復導波路14の長さの差を
一定とする。往復導波路14を図の左側から順次に数え
た場合において第n番目及び第n+1番目の往復導波路
14の長さをそれぞれL(n)及びL(n+1)と表せ
ば(但しL(n)及L(n+1)はいずれも往復導波路
14に沿う方向の長さである)、第n番目及び第n+1
番目の往復導波路14の長さの差dはd=|L(n)−
L(n+1)|=const.であって、この実施例で
はd=const.かつL(n)>L(n+1)である
Further, the difference in length between adjacent reciprocating waveguides 14 is made constant. When the reciprocating waveguides 14 are counted sequentially from the left side of the figure, the lengths of the n-th and n+1-th reciprocating waveguides 14 are expressed as L(n) and L(n+1), respectively (where L(n) and L(n+1) are the lengths in the direction along the reciprocating waveguide 14), the n-th and the n+1-th
The difference d in the length of the second reciprocating waveguide 14 is d=|L(n)−
L(n+1)|=const. In this example, d=const. And L(n)>L(n+1).

【0015】そして合波導波路13から出力される波長
多重の光を、中間導波路10を介して当該合波導波路1
3に対応する往復導波路14へ入力させて反射面18に
導き、反射面18で反射され往復導波路14から出力さ
れる合波導波路13からの光を、中間導波路10を介し
て波長毎に対応する分波導波路12に入力させる。
Then, the wavelength-multiplexed light outputted from the multiplexing waveguide 13 is transmitted to the multiplexing waveguide 1 via the intermediate waveguide 10.
The light from the multiplexing waveguide 13 is input to the reciprocating waveguide 14 corresponding to 3 and guided to the reflecting surface 18, and the light from the multiplexing waveguide 13 is reflected by the reflecting surface 18 and output from the reciprocating waveguide 14. is input to the branching waveguide 12 corresponding to the waveguide.

【0016】図2はこの実施例における光の合分波の説
明に供する図であり、図中光の伝搬方向を実線及び破線
の矢印で表した。
FIG. 2 is a diagram for explaining the multiplexing and demultiplexing of light in this embodiment, and in the diagram, the propagation direction of light is indicated by solid lines and broken arrows.

【0017】まず、この実施例の光合分波器における光
の分波につき説明する。この実施例では、それぞれ波長
の異なる光λ1〜λ5を多重化して合波導波路13から
中間導波路10に入力する。多重化された光λ1〜λ5
は中間導波路10に入力すると、図中実線矢印で示すよ
うに放射状に広がりながら中間導波路10を導波して対
応する各往復導波路14に入力し、そして反射面18で
全反射され往復導波路14から中間導波路10へ再度入
力する。
First, the demultiplexing of light in the optical multiplexer/demultiplexer of this embodiment will be explained. In this embodiment, lights λ1 to λ5 having different wavelengths are multiplexed and input from a multiplexing waveguide 13 to an intermediate waveguide 10. Multiplexed light λ1 to λ5
When input to the intermediate waveguide 10, the wave spreads radially as shown by the solid line arrow in the figure and is guided through the intermediate waveguide 10 and input to each corresponding reciprocating waveguide 14, and is totally reflected at the reflecting surface 18 and reciprocated. The signal is input again from the waveguide 14 to the intermediate waveguide 10.

【0018】これら光λ1〜λ5は、中間導波路10へ
再度入力するとき、光の回折作用によって各波長毎に異
なる方向に中間導波路10を伝搬し従って分波する。こ
のとき、隣接する往復導波路14の長さの差dを任意好
適な値Dに設定しておくことにより、各往復導波路14
から出力された光λ1〜λ5をそれぞれ一定の位置に収
束させ、しかもその収束位置を波長毎に異なる位置とす
ることができる。例えば光λ2が収束する様子を図中に
破線矢印で示す。光λ2は図中破線Pで示すように球面
状の波面を有する球面波となる。差dを任意好適な値D
とすることによって球面波を生じさせることができる。
When these lights λ1 to λ5 enter the intermediate waveguide 10 again, they propagate through the intermediate waveguide 10 in different directions for each wavelength due to the diffraction effect of the light, and are therefore demultiplexed. At this time, by setting the difference d between the lengths of adjacent reciprocating waveguides 14 to an arbitrary suitable value D, each reciprocating waveguide 14
It is possible to converge the lights λ1 to λ5 outputted from each wavelength at a fixed position, and to make the convergence position different for each wavelength. For example, the state in which the light λ2 converges is shown by a broken line arrow in the figure. The light λ2 becomes a spherical wave having a spherical wavefront as shown by a broken line P in the figure. Set the difference d to an arbitrary suitable value D
By doing so, a spherical wave can be generated.

【0019】光λ1〜λ5の各収束位置に分波導波路1
2の端面12aを配置し、例えば光λiを図の左から数
えて第i番目の分波導波路12で伝送して、各分波導波
路12毎に波長の異なる光を伝送する。
A branching waveguide 1 is provided at each convergence position of the lights λ1 to λ5.
For example, light λi is transmitted through the i-th branching waveguide 12 counting from the left in the figure, and each branching waveguide 12 transmits light having a different wavelength.

【0020】隣接する往復導波路14から出力される光
の間の位相差は、2・k0・n0・dと表せる。ここで
k0は真空における波数及びn0は往復導波路14の屈
折率を表す。
The phase difference between the lights output from adjacent reciprocating waveguides 14 can be expressed as 2.k0.n0.d. Here, k0 represents the wave number in vacuum, and n0 represents the refractive index of the reciprocating waveguide 14.

【0021】また合波導波路13から中間導波路10へ
入力した光L1の伝搬方向と、往復導波路14から中間
導波路10へ入力した光L2の伝搬方向とがなす角度Θ
は、次式(1)のように表せる。 Θ={2・N・d−m・(λ/np)・N}/(N・W
)  =(2・d)/W−(m/W)・(λ/np) 
       ……(1)ただし、Nは光L1が入力す
る往復導波路14の個数、mは光L2の次数、λは光L
2の波長及びnpは中間導波路10の屈折率を表す。ま
たすべての往復導波路14の幅は等しくこれら往復導波
路14の導波路幅をWで表す。
Furthermore, the angle Θ formed by the propagation direction of the light L1 input from the multiplexing waveguide 13 to the intermediate waveguide 10 and the propagation direction of the light L2 input from the reciprocating waveguide 14 to the intermediate waveguide 10
can be expressed as the following equation (1). Θ={2・N・dm・(λ/np)・N}/(N・W
) = (2・d)/W−(m/W)・(λ/np)
...(1) However, N is the number of reciprocating waveguides 14 into which the light L1 is input, m is the order of the light L2, and λ is the light L
2 and np represent the refractive index of the intermediate waveguide 10. Further, the widths of all the reciprocating waveguides 14 are equal, and the waveguide width of these reciprocating waveguides 14 is expressed as W.

【0022】光は直進する性質を有するので、Θ≒0と
なる伝搬方向に伝搬する光L2の光強度が最も強くなる
。光強度が最も強い光L2の次数mは次式(2)のよう
に表せる。 m=(np/λ0)・2・d        ……(2
)但し、λ0はΘ≒0となる伝搬方向に伝搬する光L2
の波長を表す。
Since light has the property of traveling in a straight line, the light intensity of the light L2 propagating in the propagation direction where Θ≈0 is the strongest. The order m of the light L2 with the highest light intensity can be expressed as in the following equation (2). m=(np/λ0)・2・d……(2
) However, λ0 is the light L2 propagating in the propagation direction where Θ≒0.
represents the wavelength of

【0023】ここで光L2の波長がλ0からλ0+Δλ
に変化した場合、光L1及びL2の伝搬方向がなす角度
はΘ(≒0)からΘ+ΔΘに変化する。この場合のΔλ
及びΔΘの関係は次式(3)のように表せる。 ΔΘ={m/(W・np)}・Δλ        …
…(3)(3)式からも理解できるように次数mが大と
なるほどΔΘが大きくなり、従って光合分波器の分解能
を高めることができる。次数mは隣接する往復導波路1
4の長さの差dを大きくすれば、大きくなる((2)式
参照)。
Here, the wavelength of the light L2 is from λ0 to λ0+Δλ
, the angle formed by the propagation directions of the lights L1 and L2 changes from Θ (≈0) to Θ+ΔΘ. Δλ in this case
The relationship between ΔΘ and ΔΘ can be expressed as in the following equation (3). ΔΘ={m/(W・np)}・Δλ...
...(3) As can be understood from equation (3), the larger the order m is, the larger ΔΘ becomes, and therefore the resolution of the optical multiplexer/demultiplexer can be improved. The order m is the adjacent reciprocating waveguide 1
If the difference d between the lengths of 4 and 4 is increased, the difference becomes larger (see equation (2)).

【0024】次にこの実施例の光合分波器における光の
合波につき説明する。光の分波の場合の光路が可逆であ
ることから、光λiは第i番目の分波導波路12から中
間導波路10に入力し、放射状に広がりながら中間導波
路10を導波して対応する各往復導波路14に入力し、
そして反射面18で全反射され各往復導波路14から中
間導波路10へ再度入力する。
Next, the multiplexing of light in the optical multiplexer/demultiplexer of this embodiment will be explained. Since the optical path in the case of light demultiplexing is reversible, the light λi is input from the i-th demultiplexing waveguide 12 to the intermediate waveguide 10, and is guided through the intermediate waveguide 10 while spreading radially. input to each reciprocating waveguide 14,
Then, it is totally reflected by the reflecting surface 18 and inputted again from each reciprocating waveguide 14 to the intermediate waveguide 10.

【0025】光λiは中間導波路10に再度入力すると
き、その波長に応じた方向に回折して中間導波路10を
導波する。このとき、隣接する往復導波路14の長さの
差dを任意好適な特定の値Dに設定しているので、各往
復導波路14から出力された光λiは合波導波路13の
端面13aの位置に収束する。その結果、各分波導波路
12から出力された光λiをそれぞれ合波導波路13に
入力させて合波することができ、従って各分波導波路1
2からの光λiを多重化し多重化された光λ1〜λ5を
合波導波路13で伝送することができる。
When the light λi enters the intermediate waveguide 10 again, it is diffracted in a direction corresponding to its wavelength and guided through the intermediate waveguide 10. At this time, since the difference d between the lengths of adjacent reciprocating waveguides 14 is set to an arbitrarily suitable specific value D, the light λi output from each reciprocating waveguide 14 is Converge on position. As a result, the light λi output from each demultiplexing waveguide 12 can be input to the multiplexing waveguide 13 and multiplexed, and therefore each demultiplexing waveguide 1
It is possible to multiplex the light λi from 2 and transmit the multiplexed light λ1 to λ5 through the multiplexing waveguide 13.

【0026】上述のような構成の実施例の光合分波器に
おいては、往復導波路14を合波導波路13に対して放
射状に配置するので、合波導波路13からの光が分波導
波路12の端面12aの位置に収束するとき及び分波導
波路12からの光が合波導波路13の端面13aの位置
に収束するときに、各波長毎に光の収束領域が広がるの
を防止しより狭い領域に光を収束させることができる。
In the optical multiplexer/demultiplexer of the embodiment configured as described above, the reciprocating waveguide 14 is arranged radially with respect to the multiplexer waveguide 13, so that the light from the multiplexer waveguide 13 is transmitted to the multiplexer waveguide 12. When the light from the splitting waveguide 12 converges at the end face 12a position, and when the light from the splitting waveguide 12 converges at the end face 13a position of the multiplexing waveguide 13, the convergence region of the light is prevented from expanding for each wavelength and is narrowed to a narrower region. It can converge light.

【0027】またこの実施例の光合分波器では、中間導
波路10、分波導波路12、合波導波路13及び往復導
波路14を、公知の微細加工技術や導波路作成技術等に
より容易に作成することができ、従って導波路相互の光
軸を合せた状態の導波路パターンを描画するマスクを用
いて各導波路を作成できるので、これら導波路の光軸合
せを簡略化することができる。
In addition, in the optical multiplexer/demultiplexer of this embodiment, the intermediate waveguide 10, the demultiplexer waveguide 12, the multiplexer waveguide 13, and the reciprocating waveguide 14 can be easily created using known microfabrication techniques, waveguide fabrication techniques, etc. Therefore, since each waveguide can be created using a mask that draws a waveguide pattern with the optical axes of the waveguides aligned, alignment of the optical axes of these waveguides can be simplified.

【0028】この発明は上述した実施例にのみ限定され
るものではなく、従って各構成成分の形状、寸法、配設
位置、配設個数及びそのほかの条件を任意好適に変更す
ることができる。
The present invention is not limited to the above-described embodiments; therefore, the shape, size, arrangement position, number of arrangement, and other conditions of each component can be changed as desired.

【0029】例えば合波導波路を1個のみならず複数個
設けるようにしてもよい。また上述した実施例では合波
導波路及び分波導波路をアレイ状に配置しこれら導波路
から導波路アレイを構成しこの導波路アレイのほぼ中央
に合波導波路を配置するようにしたが、導波路アレイの
一番端に合波導波路を配置するようにしてもよい。
For example, not only one but a plurality of multiplexing waveguides may be provided. Furthermore, in the above embodiment, the multiplexing waveguide and the multiplexing waveguide are arranged in an array, a waveguide array is constructed from these waveguides, and the multiplexing waveguide is disposed approximately in the center of this waveguide array. A multiplexing waveguide may be placed at the end of the array.

【0030】[0030]

【発明の効果】上述した説明からも明らかなように、こ
の発明の光合分波器によれば、スラブ型中間導波路、チ
ャネル型分波導波路、チャネル型合波導波路及びチャネ
ル型往復導波路を、公知の微細加工技術や導波路作成技
術等により同一基板にモノリシックに作成することがで
きるので、これら導波路の光軸合せを簡略化することが
できる。
Effects of the Invention As is clear from the above description, the optical multiplexer/demultiplexer of the present invention allows a slab-type intermediate waveguide, a channel-type demultiplexing waveguide, a channel-type multiplexing waveguide, and a channel-type reciprocating waveguide. Since they can be monolithically fabricated on the same substrate using known microfabrication techniques, waveguide fabrication techniques, etc., alignment of the optical axes of these waveguides can be simplified.

【0031】またチャネル型往復導波路をチャネル型合
波導波路に対して放射状に配置するので、チャネル型合
波導波路からの光がチャネル型分波導波路の端面位置に
収束するとき及びチャネル型分波導波路からの光がチャ
ネル型合波導波路の端面位置に収束するときに、光の収
束領域が広がるのを防止しより狭い領域に光を収束させ
ることができるので、光損失を低減することができる。
Furthermore, since the channel type reciprocating waveguide is arranged radially with respect to the channel type multiplexing waveguide, when the light from the channel type multiplexing waveguide converges on the end face position of the channel type multiplexing waveguide, When the light from the waveguide converges at the end face position of the channel type multiplexing waveguide, it is possible to prevent the light convergence area from expanding and converge the light in a narrower area, reducing optical loss. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例の光合分波器の全体構成を概略的に示す
平面図である。
FIG. 1 is a plan view schematically showing the overall configuration of an optical multiplexer/demultiplexer according to an embodiment.

【図2】実施例の光合分波器における光の合分波の説明
に供する図である。
FIG. 2 is a diagram for explaining the multiplexing and demultiplexing of light in the optical multiplexer/demultiplexer of the embodiment.

【図3】従来の光合分波器の全体構成を概略的に示す分
解斜視図である。
FIG. 3 is an exploded perspective view schematically showing the overall configuration of a conventional optical multiplexer/demultiplexer.

【符号の説明】[Explanation of symbols]

10:スラブ型中間導波路 12:チャネル型分波導波路 13:チャネル型合波導波路 14:チャネル型往復導波路 16:基板 18:反射面 10: Slab type intermediate waveguide 12: Channel type branching waveguide 13: Channel type multiplexing waveguide 14: Channel type reciprocating waveguide 16: Substrate 18: Reflective surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  スラブ型中間導波路、チャネル型合波
導波路、チャネル型分波導波路及びチャネル型往復導波
路を基板に設けて成り、前記中間導波路の一方の側に少
なくともひとつの合波導波路及び複数の分波導波路を結
合すると共に、前記中間導波路の他方の側に複数の往復
導波路を結合し、前記往復導波路の中間導波路とは反対
側に反射面を設け、前記往復導波路を、導波路間隔が中
間導波路から遠ざかるに従って広がるように放射状に配
置し、隣接する往復導波路の長さの差を一定とし、前記
合波導波路から出力される波長多重の光を、中間導波路
を介して当該合波導波路に対応する往復導波路へ入力さ
せて前記反射面に導き、前記反射面で反射され往復導波
路から出力される前記合波導波路からの光を、前記中間
導波路を介して波長毎に対応する分波導波路に入力させ
ることを特徴とする光合分波器。
1. A slab-type intermediate waveguide, a channel-type multiplexing waveguide, a channel-type splitting waveguide, and a channel-type reciprocating waveguide are provided on a substrate, and at least one multiplexing waveguide is provided on one side of the intermediate waveguide. and a plurality of branching waveguides are coupled together, a plurality of reciprocating waveguides are coupled to the other side of the intermediate waveguide, a reflecting surface is provided on the opposite side of the reciprocating waveguide to the intermediate waveguide, and the reciprocating waveguide is The waveguides are arranged radially such that the waveguide interval widens as the distance from the intermediate waveguide increases, the difference in length between adjacent round trip waveguides is constant, and the wavelength-multiplexed light output from the multiplexing waveguide is The light from the multiplexing waveguide is input to the reciprocating waveguide corresponding to the multiplexing waveguide through the waveguide and guided to the reflecting surface, and the light from the multiplexing waveguide is reflected by the reflective surface and output from the reciprocating waveguide. An optical multiplexer/demultiplexer characterized in that each wavelength is input to a corresponding demultiplexing waveguide via a wave path.
JP2639091A 1991-02-20 1991-02-20 Optical multiplexer / demultiplexer Expired - Lifetime JP2683161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2639091A JP2683161B2 (en) 1991-02-20 1991-02-20 Optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2639091A JP2683161B2 (en) 1991-02-20 1991-02-20 Optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JPH04264506A true JPH04264506A (en) 1992-09-21
JP2683161B2 JP2683161B2 (en) 1997-11-26

Family

ID=12192214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2639091A Expired - Lifetime JP2683161B2 (en) 1991-02-20 1991-02-20 Optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP2683161B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234030A (en) * 1995-01-02 1996-09-13 Koninkl Ptt Nederland Nv Integrated optical wavelength demultiplexer
US5627928A (en) * 1993-11-01 1997-05-06 Sumitomo Electric Industries, Ltd. Optical branching device
WO2005081022A1 (en) * 2004-02-19 2005-09-01 Keio University Array waveguide diffraction grating
JP2012208354A (en) * 2011-03-30 2012-10-25 Oki Electric Ind Co Ltd Optical waveguide device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627928A (en) * 1993-11-01 1997-05-06 Sumitomo Electric Industries, Ltd. Optical branching device
JPH08234030A (en) * 1995-01-02 1996-09-13 Koninkl Ptt Nederland Nv Integrated optical wavelength demultiplexer
WO2005081022A1 (en) * 2004-02-19 2005-09-01 Keio University Array waveguide diffraction grating
JP2012208354A (en) * 2011-03-30 2012-10-25 Oki Electric Ind Co Ltd Optical waveguide device

Also Published As

Publication number Publication date
JP2683161B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
EP1226461B1 (en) Phasar with flattened pass-band
US5748811A (en) Optical switch
EP0856755B1 (en) Optical waveguide coupler having low insertion loss
US6421478B1 (en) Tapered MMI coupler
JP5692865B2 (en) Wavelength cross-connect equipment
US6141467A (en) Wavelength-division-multiplexing programmable add/drop using interleave-chirped waveguide grating router
US20040036933A1 (en) Planar holographic multiplexer/demultiplexer
US6587615B1 (en) Wavelength multiplexer-demultiplexer having a wide flat response within the spectral passband
JPH08304664A (en) Wavelength demultiplexing element
JP2000171661A (en) Array waveguide diffraction grating type optical multiplexer/demultiplexer
US6766074B1 (en) Demultiplexer/multiplexer with a controlled variable path length device
US7003194B2 (en) Optical multiplexer and demultiplexer
JP2683161B2 (en) Optical multiplexer / demultiplexer
JP4350044B2 (en) Optical switch device
JPH03171115A (en) Optical multiplexer/demultiplexer
JP3029028B2 (en) Optical wavelength multiplexer / demultiplexer
JP3317312B2 (en) Integrated optical waveguide circuit
JP2833255B2 (en) Optical demultiplexer
JPH08234029A (en) Optical star coupler
JP3396477B2 (en) Integrated optical waveguide circuit
JPH03291603A (en) Optical multiplexer/demultiplexer
JPH103012A (en) Optical wavelength demultiplexing element
JPH1078515A (en) Optical multiplexer/demultiplexer
JPH10177113A (en) Array waveguide grating type band pass filter
JPS61284705A (en) Optical multiplexer and demultiplexer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 14