JPS58175217A - Extrusion line control system for foamable insulated wire - Google Patents

Extrusion line control system for foamable insulated wire

Info

Publication number
JPS58175217A
JPS58175217A JP57040543A JP4054382A JPS58175217A JP S58175217 A JPS58175217 A JP S58175217A JP 57040543 A JP57040543 A JP 57040543A JP 4054382 A JP4054382 A JP 4054382A JP S58175217 A JPS58175217 A JP S58175217A
Authority
JP
Japan
Prior art keywords
control method
controlled
extruder
manipulated
variables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57040543A
Other languages
Japanese (ja)
Other versions
JPS6113330B2 (en
Inventor
勝久 古田
中村 佳則
朝香 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP57040543A priority Critical patent/JPS58175217A/en
Priority to US06/473,506 priority patent/US4585603A/en
Priority to EP83102559A priority patent/EP0089060B1/en
Priority to DE8383102559T priority patent/DE3382405D1/en
Publication of JPS58175217A publication Critical patent/JPS58175217A/en
Publication of JPS6113330B2 publication Critical patent/JPS6113330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92619Diameter or circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92933Conveying, transporting or storage of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Feedback Control In General (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、発泡絶縁電線の押出ライ/制御方式に関し、
特に、押出被覆された発泡絶縁体の外径および静電容量
のような制御量が多変数であるこの種電線の押出ライン
制御方式に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extrusion lie/control method for foam insulated wire,
In particular, it relates to an extrusion line control system for this type of electric wire, where control variables such as the outer diameter and capacitance of the extrusion-coated foam insulation are multivariable.

一般に、通信用ケーブルとしては、伝送損失を少なくす
るという電気的特性上の要請から、静電容It (C)
 、、従って誘電率が小さな絶縁物を導体上に押出被覆
しだものが用いられる。また、絶縁体はケーブルら支持
物である必要もある。このため通信ケーブルの絶縁体、
としては、ポリエチレンに多数の気泡金持たせた発泡ポ
リエチレン(PEF)が多用されている。
In general, for communication cables, due to the requirement of electrical characteristics to reduce transmission loss, capacitance It (C)
Therefore, an insulator with a small dielectric constant is extruded and coated onto the conductor. The insulator also needs to support the cable. For this reason, the insulation of communication cables,
Expanded polyethylene (PEF), which is polyethylene with a large number of bubbles, is often used.

このポリエチレンのような発泡絶縁ポリオレフ・1°ン
樹脂を用いた発泡絶縁電線の押出ライン1゜を第1〜2
図に示す。このライン1oにおいて、スタック10aか
ら引出された導体荒引線11は伸線機12によシ心線1
3へ細径化さjL、電流・焼鈍式のア二〜ラー14で焼
鈍される。
The 1° extrusion line for foamed insulated wires using foamed insulated polyolefin resin such as polyethylene is
As shown in the figure. In this line 1o, the conductor rough wire 11 pulled out from the stack 10a is passed through the wire drawing machine 12 to the core wire 1.
3, and annealed in an electric current annealing type annealer 14.

次に、心線13は、第1ダンサ−15を介して好ましく
は誘導加熱式のプレヒーター16へ導かれた後、押出機
17へ連続的に供給される。プレヒーター16は心a1
3を加熱することにより、均一な発泡を生ぜしめると共
に、絶縁体と心線との密着性を良好にする。また、押出
機へは、ポツパー18からポリオレフィン樹脂と有機発
泡剤を含む発泡絶縁体組成物が供給され、シリンダ19
内に設けられたスクリュー2oによりクロスヘッド21
へ押し込められる(第3〜4図)。スクリューはモータ
22によって回転泌動され、シリンダの外周にはシリン
ダヒータ部分23−1〜4に分割されて成るシリンダヒ
ータ23が設けられている。スクリュー2oの回転およ
び7リンダヒータ23の加熱並びにクロスヘッド21)
(おけるクロスへラドヒータ部分24−1〜2で構成さ
れたクロスへラドヒータ24の加熱により発泡剤の分解
湿+ff−以上の温度で、発泡絶縁体組成物はクロスヘ
ッドの絞り部25がら90’方向転換し、ニップル26
において心#s13上に押出被覆される。
Next, the core wire 13 is guided through a first dancer 15 to a preheater 16, preferably of an induction heating type, and then continuously supplied to an extruder 17. Preheater 16 is core a1
By heating 3, uniform foaming is produced and the adhesion between the insulator and the core wire is improved. Further, a foamed insulating composition containing a polyolefin resin and an organic foaming agent is supplied from a popper 18 to the extruder, and a cylinder 19
The cross head 21 is fixed by the screw 2o provided inside.
(Figures 3-4). The screw is rotated by a motor 22, and a cylinder heater 23 divided into cylinder heater parts 23-1 to 23-4 is provided on the outer periphery of the cylinder. Rotation of screw 2o, heating of 7 cylinder heater 23 and cross head 21)
(The foaming agent is decomposed by the heating of the cross-head heater 24 composed of the cross-head heater parts 24-1 and 24-2 at a temperature of +ff- or above, and the foamed insulating composition is heated in the 90' direction from the crosshead constriction section 25. Switch and nipple 26
is extrusion coated onto core #s13.

ここで押出機17内の高圧が負荷されていた発泡絶縁物
中の発泡ガスは大気中に押出されたときに、高圧から解
放されて樹脂中で膨張し、発泡した泡中の圧力が大気圧
と等しくなったとき最大となる。而して、この発泡絶縁
体を冷却すると、泡中の圧力が低下し、逆に収縮する傾
向を呈する。
Here, when the foaming gas in the foamed insulation material, which was loaded with high pressure in the extruder 17, is extruded into the atmosphere, it is released from the high pressure and expands in the resin, and the pressure in the foamed foam is reduced to atmospheric pressure. It becomes maximum when it becomes equal to . When this foamed insulator is cooled, the pressure within the foam decreases, and it tends to shrink.

このため、押出ラインに移動可能な冷却器27が設けら
れている。この冷却部は例えば第1〜2図に示すような
移動水槽2Bを前段に摺動自在に設けた水槽29か、ら
成る。この移動水槽28のクロスヘッド21、特にニッ
プル26からの移動距離を調節して水冷で外周から化学
発泡の成長を抑制すると共に、樹脂外周面にバリヤー壁
を形成して内側の発泡を阻止することにより、発泡絶縁
体中の発泡ガスの発泡度を調節し、従ってその所望の外
径および静電容量を得るように制御することが要求され
る。
For this purpose, a movable cooler 27 is provided in the extrusion line. This cooling section comprises, for example, a water tank 29 as shown in FIGS. 1 and 2, in which a movable water tank 2B is slidably provided at the front stage. The movement distance of the moving water tank 28 from the crosshead 21, especially the nipple 26 is adjusted to suppress the growth of chemical foam from the outer periphery by water cooling, and at the same time, a barrier wall is formed on the outer peripheral surface of the resin to prevent foaming from the inside. This requires the degree of foaming of the foaming gas in the foamed insulation to be adjusted and thus controlled to obtain its desired outer diameter and capacitance.

なお、冷却器27は、移動可能とすることなく、1例え
ば水量、水温などが変えられるような形式のものに代え
ることができる。
Note that the cooler 27 does not need to be movable, and may be replaced with a type that allows the amount of water, water temperature, etc. to be changed, for example.

この外径および静電容量を測定する外径測定器30およ
び静電容量測定器31がライン1oにそれぞれ設けられ
ている。測定器3oは、安立電気株式会社製M 501
 B型レーザー外径測定器で、±1μmの精度を有する
An outer diameter measuring device 30 and a capacitance measuring device 31 for measuring the outer diameter and capacitance are provided on the line 1o, respectively. The measuring device 3o is M501 manufactured by Anritsu Electric Co., Ltd.
This is a B-type laser outer diameter measuring device with an accuracy of ±1 μm.

また、測定器31は英国Bucks、High Wyc
ombe在BETA社製KI−700CGA (センf
−KG500)で±0.1 PF/mの精度で発泡絶5
嘩電線の静電界1(PF/m)を測定することができる
In addition, the measuring device 31 is manufactured by Bucks, High Wyc, UK.
OMBE KI-700CGA manufactured by BETA (Sen f
-KG500) with an accuracy of ±0.1 PF/m5
The electrostatic field 1 (PF/m) of the electric wire can be measured.

なお、上記の両側定器に加えて、押出機1Tには、シリ
ンダ温度計TMi〜4が設けられ、またクロスヘッド2
1に樹脂温度計TM5、クロスヘッド温度計TM6およ
び樹脂圧力計(理化工業社製CZ−IP型)PMが設け
られている。
In addition to the above-mentioned both-side regulators, the extruder 1T is provided with a cylinder thermometer TMi~4, and a crosshead 2
1 is provided with a resin thermometer TM5, a crosshead thermometer TM6, and a resin pressure gauge (CZ-IP type manufactured by Rika Kogyo Co., Ltd.) PM.

発泡絶縁電線は引取機32によっ−C引取られ、第2ダ
ンサ33を介して巻取機34でドラムに巻取られる。
The foam insulated wire is taken off by a take-off machine 32, passed through a second dancer 33, and wound onto a drum by a take-up machine 34.

而して、前記の説明からも明らかなように、発泡絶縁電
線の製造において、′″*mの外径(、D)および絶縁
体の静電界it (C)が電線の長手方向に均一でなけ
ればならない。
As is clear from the above explanation, in the production of foam insulated wires, the outer diameter of '''*m (, D) and the electrostatic field it (C) of the insulator are uniform in the longitudinal direction of the wire. There must be.

従来から、所定の静電′容量および外径を得るよ。Conventionally, a given capacitance and outer diameter are obtained.

うに押出ライン10の押出制御を行なうにあたっては、
ライン系では引取機32の引取速度、即ちライン速度に
比例して押出機17のスクリュ20の回転数、プレヒー
タ16の印加電圧などを制御していた。
When controlling the extrusion of the sea urchin extrusion line 10,
In the line system, the rotation speed of the screw 20 of the extruder 17, the voltage applied to the preheater 16, etc. were controlled in proportion to the take-up speed of the take-off machine 32, that is, the line speed.

また、静電容量(C)は移動水槽28を移動せしめて制
御していた。外径(D)については手動で調整していた
。しかし、手動で外径を調整する場合(′こも、押出機
のスクリュー回転数や押出機温度を変えたりすることに
より調節し、いわゆる経験的に外径調整をするにすぎな
かった。しかしながら、実際には、移動水槽を動かせば
、静電容量が変わるのは勿論であるが、その場合外径も
同時に変化してしまうため、静電容量は制御できても外
径は制御できないこととなり、外径は所望の値から変動
してし゛まう。この結果、静電容量および外径をそれぞ
れ独立に制御して一定の高品質の電線を製造することは
極めて困難であった。
Further, the capacitance (C) was controlled by moving the moving water tank 28. The outer diameter (D) was adjusted manually. However, when adjusting the outer diameter manually (also by changing the extruder screw rotation speed and extruder temperature), the outer diameter could only be adjusted empirically. Of course, if you move the mobile aquarium, the capacitance will change, but in that case, the outer diameter will also change at the same time, so even if you can control the capacitance, you cannot control the outer diameter. The diameter varies from the desired value.As a result, it has been extremely difficult to independently control the capacitance and outer diameter to produce a wire of constant high quality.

要すれば、との種押出機ラインにおいては、押出機の押
出温度が一定のときスクリュー回転を減速するかまたは
ライン速度を増加させると電線外径が減少し、押出温度
が上がると発泡率が上がる一方、外径が増加し、さらに
ライン速度が上がると押出後冷却固化壕での時間間隔が
短かくなり発泡が早く停市して発泡率が下ると?うよう
に、各ファクターの間に深い関連性があり、これらの相
互関係を考慮しながら安定した外径と静電容量(発泡率
)の制御をする必要がある。
In short, in the extruder line, when the extrusion temperature of the extruder is constant, reducing the screw rotation or increasing the line speed will reduce the wire outer diameter, and when the extrusion temperature increases, the foaming rate will increase. On the other hand, as the outer diameter increases and the line speed increases, the time interval in the cooling and solidification trench after extrusion becomes shorter, and foaming stops early and the foaming rate decreases? As shown, there is a deep relationship between each factor, and it is necessary to stably control the outer diameter and capacitance (foaming rate) while taking these interrelationships into consideration.

即ち、多数の制御il(本実施例の場合、1線の外径D
、絶縁体の静電容ftc)を含む多数の測定量(C,D
およびシリンダ温度計TM3〜4の表示温度C3、C4
、クロスヘッド温度計TM5の表示温度C6、樹脂温度
計TM5の表示温度C5、樹脂圧力計PMの表示圧力P
alが、多数の操作量(本実施例の場合、スクリュー2
0の回転数、プレヒータ16の印加電圧、シリンダヒー
タ23−3〜4の印加電圧、クロスへラドヒータ24−
1〜2の印加電圧、移動水槽28のクロスヘッドからの
移動量・)の何れかを操作したとき、変動する場合の制
御(多変数制御)において、測定量の測定により、各制
御量が所望の値になるようにそれぞれの操作量を同時に
、かつ自動的に制御することは、従来技術では極めて困
難であった。
That is, a large number of controls (in the case of this embodiment, the outer diameter D of one wire)
, the capacitance of the insulator ftc).
and the display temperatures C3 and C4 of cylinder thermometers TM3 and TM4.
, the displayed temperature C6 of the crosshead thermometer TM5, the displayed temperature C5 of the resin thermometer TM5, the displayed pressure P of the resin pressure gauge PM
al is a large number of manipulated variables (in the case of this example, screw 2
0 rotation speed, applied voltage to preheater 16, applied voltage to cylinder heaters 23-3 and 23-4, and cross-head heater 24-
In control (multivariable control) when any of the applied voltages 1 and 2 or the amount of movement of the moving water tank 28 from the crosshead is operated (multivariable control), each control amount is determined to be the desired value by measuring the measured amount. It has been extremely difficult in the prior art to simultaneously and automatically control the respective manipulated variables so that the value of .

また、このような多変数の制御量と操作量の相関関係で
、各対の制御量−操作量に依る制御方式だけでは、外乱
にすばやく対処できず、制御量の安定性が悪く、かつ応
答性に劣るという難点があった。
In addition, due to the correlation between the controlled variable and manipulated variable of multiple variables, a control method that relies on each pair of controlled variable and manipulated variable alone cannot quickly deal with disturbances, has poor stability of the controlled variable, and has poor response. It had the disadvantage of being inferior in gender.

さらに、こ9方式ではライン速度に応じて静電容量Cお
よび外径りを制御しているわけではないので、ライン速
度が定常になるまでの製品は屑になってしまい、しかも
通常運転になっても、樹脂温度などが温度上昇するまで
、CおよびDが一定値に入ってとないため、この間の製
品も屑となり、生産歩留まりが悪いという難点があった
Furthermore, in these 9 methods, the capacitance C and outer diameter are not controlled according to the line speed, so the product becomes scrap until the line speed reaches a steady state, and furthermore, the product becomes scrap until the line speed reaches a steady state. However, since C and D do not remain at a constant value until the resin temperature rises, the product during this time also becomes waste, resulting in a poor production yield.

従って、本発明の主目的は、発泡絶縁電線押出ラインの
多変数制御を行なうにあたり、電線外径と静電容量およ
びライン速度の制御量を含む測定1の検出要素により、
各制御量がそれぞれ所望の値(設定目標値)になるよう
に押出機、プレヒータ、冷却器の操作量を同時に、かつ
自動的に制御して生産歩留まりを向上せしめた発泡絶縁
電線の押出ライン制御方式を提供することである。
Therefore, the main object of the present invention is to perform multivariable control of a foam insulated wire extrusion line using the detection elements of Measurement 1, including control variables of wire outer diameter, capacitance, and line speed.
Extrusion line control for foam insulated wire that improves production yield by simultaneously and automatically controlling the operating variables of the extruder, preheater, and cooler so that each controlled variable reaches the desired value (set target value) The purpose is to provide a method.

本発明の他の目的は、かかる方式において安定性および
(または)応答性が一段と向上し、外乱に対してもすば
やく対処できる側柵手段を提供することである。
Another object of the present invention is to provide a side fence means in which stability and/or responsiveness are further improved in such a system, and which can quickly cope with disturbances.

以下、本発明による発泡絶縁電線の押出ライン制御方式
を、第1〜2図に示す押出ラインに適用した実施例につ
き図面に基づき詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The extrusion line control system for foam insulated wires according to the present invention will be described in detail below with reference to the drawings in an embodiment in which it is applied to an extrusion line shown in FIGS. 1 and 2.

第5図に示す制御方式においては、制御対象である発泡
絶縁電線押出機ライン10から押出された電線の制御量
(外径りおよび静電容量C)と、該制御量に影響を及ぼ
す状態変数(シリンダ温度C3およびC4、クロスヘッ
ド温度C6、樹脂温度C3および樹脂圧力P)とから成
る複数の測定量 が、前記制御量を変動させる入力パラメータとしての複
数の操作量(スクリュー2oの回転数、プレヒータ16
の電圧、シリンダヒータ23−3〜4の電圧、クロスへ
ラドヒータ24−1〜2の電圧、冷却器27における移
動水槽28のクロスヘッドからの移動距離) によって変動する場合に、前記制御量がその目標に調節
されるように操作量を制御せんとするものである。なお
、YLSOは設定されるべきライン速度の入力を表わす
In the control method shown in FIG. 5, the controlled variables (outer radius and capacitance C) of the wire extruded from the foam insulated wire extruder line 10, which is the controlled object, and the state variables that affect the controlled variables (cylinder temperatures C3 and C4, crosshead temperature C6, resin temperature C3, and resin pressure P), a plurality of manipulated variables (rotational speed of screw 2o, Preheater 16
(the voltage of the cylinder heaters 23-3 and 23-4, the voltage of the cross-head heaters 24-1 and 24-2, and the moving distance of the moving water tank 28 from the crosshead in the cooler 27), the control amount The purpose is to control the manipulated variable so that it is adjusted to the target. Note that YLSO represents the input of the line speed to be set.

測定量としてのライン速度YLsがコントローラCRに
入力され、コントローラはライン速度に応じて操作量と
してのスクリュー回転数U1、ブレヒータ電圧U、を出
力せしめる。次に測定量Y1〜Yフ  はCPUによっ
て多変数制御されて操作量U1〜U6を出力せしめる。
The line speed YLs as a measured quantity is input to the controller CR, and the controller outputs the screw rotation speed U1 and the breaker voltage U as manipulated variables in accordance with the line speed. Next, the measured quantities Y1 to Yf are multivariably controlled by the CPU to output manipulated quantities U1 to U6.

これを第6図を参照して詳述するに、制御量Y1〜Y2
は、引出し点35から引出されて目標値YR,〜YR2
の差引きへ36へそれぞれ接続され、目標値と制御量の
差を得ている。
To explain this in detail with reference to FIG. 6, the control amounts Y1 to Y2
is drawn from the drawing point 35 to the target value YR, ~YR2
36 to obtain the difference between the target value and the control amount.

これらの差ε1、e2は、演算要素Cに印加される。要
素Cは の操作変数U’c、・・・U’c、  を線形処理によ
り与えるものである。これらの操作変数はそれぞれ積分
器、11〜I6に印加され、積分動作が遂行されて量U
C1〜Uc6  として各操作量U、〜U6に印加され
る。
These differences ε1 and e2 are applied to the calculation element C. Element C provides the manipulated variables U'c, . . . U'c, by linear processing. These manipulated variables are applied to integrators, 11 to I6, respectively, and an integration operation is performed to obtain the quantity U.
It is applied to each manipulated variable U, ~U6 as C1~Uc6.

この量Ucは、積分機能が遂行される結果、次のように
表わされる。
This quantity Uc is expressed as follows as a result of performing an integral function.

この積分動作とは、積分器による線形の積分機能のみな
らず、積分機能を含む、あるいはこれと類似する動作を
包含するものである。
This integral operation includes not only a linear integral function by an integrator but also an operation that includes or is similar to an integral function.

また、積分動作には、動的補償を含ませるようにしでも
よい。
Further, the integral operation may include dynamic compensation.

なお、演算要素Cの、 の各要素は、制御対象としての発泡絶縁電線押出ライン
10を自動制御する前に、予じめその制御対象をモデル
として最適制御理論と、目標値YR。
It should be noted that each element of the calculation element C is calculated based on the optimal control theory and the target value YR using the control object as a model before automatically controlling the foam insulated wire extrusion line 10 as the control object.

〜YR,を与えるときの、操作変数U’C,〜U’c6
、操作量U1〜U6、制御量Y1〜Y2の挙動のシュミ
レーションとにより求め、最も適切に定められるもので
ある。
Manipulated variable U'C, ~U'c6 when giving ~YR,
, the manipulated variables U1 to U6, and a simulation of the behavior of the controlled variables Y1 to Y2, and are determined most appropriately.

また、引出し点35は、フィードバック要素Fを介して
差引き点37に接続されている。これにより、制a W
k Y l〜Y2を含む中11定fLY+〜Y7にフィ
ードバック動作が線形処理により遂行され操作量U、〜
U6へ減算的に印加される。このフィードバック動作に
は、動的補償を含ませるようにしてもよい。フィードバ
ックの出力UFは、の各要素も、前述の最適制御理論と
、シュミレーションとにより予じめ求められるものであ
る。
Further, the extraction point 35 is connected to the subtraction point 37 via the feedback element F. As a result, the control a W
Feedback operation is performed by linear processing on the middle 11 constant fLY+~Y7 including k Y l~Y2, and the manipulated variable U, ~
Subtractively applied to U6. This feedback operation may include dynamic compensation. Each element of the feedback output UF is determined in advance by the aforementioned optimal control theory and simulation.

更に、引出し1点38は、フィードフォワード要素Nを
介して加合せ点37へ接続されている。これにより、目
標値YR,〜YR2にフィードフォワード動作即ち比例
動作が線形処理により遂行されて操作量U、 −U、へ
加算的に印加される。このフィードフォワード動作には
、動的補償を含ませるようにしてもよい。フィードフォ
ワードの出力UNである。
Furthermore, one drawer point 38 is connected to the summing point 37 via a feedforward element N. As a result, a feedforward operation, that is, a proportional operation is performed on the target values YR, to YR2 by linear processing, and is applied additively to the manipulated variables U, -U. This feedforward operation may include dynamic compensation. This is the feedforward output UN.

の各要素も、前述と同様に最適制御理論と、シュミレー
ションとによって予じめ求められるものである。
Each element is also determined in advance by optimal control theory and simulation, as described above.

このように、操作量Uには、3種類の操作入力が供給さ
れる結果、最終的には操作量Uは次のようになる。
In this way, as a result of three types of operation inputs being supplied to the manipulated variable U, the manipulated variable U finally becomes as follows.

U=Uc−OF  −ト UN 操作量へ供給されるこれらの和出力 Uc−UF+TJN が所定の範囲を越えるときに、前記積分動作を停正させ
るリミッタし、・・・L6が各操作ラインに介在されて
いる。
U=Uc-OF-TO UN When the sum output Uc-UF+TJN supplied to the manipulated variable exceeds a predetermined range, a limiter that stops and corrects the integral operation,...L6 is interposed in each operation line. has been done.

第6図において、点線で囲む部分は東京芝浦電気■社製
TO8BAC?/40型CPUを表わし、目標値YR,
〜YR2の入力インターフェースには入出力装置l10
−1、操作量U1〜U6の出力インターフェースにはD
/A変換のだめの入出力装置l10−2、制御量Y、〜
Y!を含む測定量Y、 −Y7の後向き径路への入力イ
ンターフェースにldA/D変換のための入出力装置l
10−3が介在されている。
In Figure 6, the part surrounded by the dotted line is TO8BAC made by Tokyo Shibaura Electric Company? /represents a 40-inch CPU, target value YR,
~The input interface of YR2 is the input/output device l10.
-1, the output interface of the manipulated variables U1 to U6 is D
/A conversion input/output device l10-2, control amount Y, ~
Y! Input/output device l for A/D conversion at the input interface to the backward path of the measured quantity Y, -Y7
10-3 is interposed.

このように構成されて成る多変数自動制御系は次のよう
に動作する。
The multivariable automatic control system configured as described above operates as follows.

先ず押出機ライン10を働らかせて、制御量Y1〜Y2
  を含む測定量Y、〜Y7に応じて積分動作の初期値
を設定する(第7図)。次いで、CPUは目標値YR,
〜YR,、制御量Y、−Y2を含む測定量Y1〜Y7の
データを読み取る。CPUの演算要素C1フィードバッ
ク要素F1 フィードフォワード要素Nはそれぞれ前述
の行列式で表わされる値にを計算する。
First, the extruder line 10 is operated to control the control amount Y1 to Y2.
The initial value of the integral operation is set according to the measured quantities Y, -Y7 including (FIG. 7). Next, the CPU sets the target value YR,
~YR, Read data of measured quantities Y1 to Y7 including controlled quantities Y and -Y2. The calculation element C1 of the CPU, the feedback element F1, and the feedforward element N each calculate a value expressed by the above-mentioned determinant.

この操作量出力は、所定の範囲内に維持されて制御され
る必要がある。このため、各操作量出力値は、その範囲
にあるか否かが判断され、若しもその範囲内にあるとき
は、積分動作を遂行し、範囲を越えるときは、各リミッ
タL、〜L6を介して出力せしめる(第7図)。
This manipulated variable output needs to be controlled and maintained within a predetermined range. Therefore, it is determined whether each manipulated variable output value is within the range, and if it is within the range, an integral operation is performed, and if it exceeds the range, each limiter L, ~L6 (Figure 7).

このようにして、各操作変数U’c、・・・U’c6は
それぞれ積分器■、・・・I6が働らき、積分動作が遂
行さの積分出力を生じる。
In this way, each of the manipulated variables U'c, . . . U'c6 causes the integrators 2, .

このような機能を導入すれば、本実施例のように操作量
としての入力作動範囲があるにもかかわらず、動作開始
時から積分動作を遂行すれば、当初は操作量と目標値と
の差ε、・・・ε、が大きいので、操作量の値が事実上
不都合な操作量信号を発生するということが回避される
If such a function is introduced, even though there is an input operating range as the manipulated variable as in this embodiment, if the integral operation is performed from the start of the operation, the difference between the manipulated variable and the target value will initially be Since ε, .

こうして、積分器は目標値と制御量の差が零になるまで
積分動作を繰返し、制御量が目標値に可及的に接近する
ように制御ループを形成するものである。
In this way, the integrator repeats the integration operation until the difference between the target value and the controlled variable becomes zero, forming a control loop so that the controlled variable approaches the target value as much as possible.

而して、操作量U U=Uc−UF+UN が計算され、制御対象としての押出ライン10へ出力さ
れる。
Thus, the manipulated variable U U=Uc-UF+UN is calculated and output to the extrusion line 10 as a controlled object.

この場合、フィードバック要素Fのフイードバツク出力
UFは、制御系の固有の特性を安定化させる機能をもつ
ものである。
In this case, the feedback output UF of the feedback element F has the function of stabilizing the inherent characteristics of the control system.

一方、フィードフォワード要素N・の出力UNは、目標
値YRに制御量Yが迅速に接近するようにその立上りを
早めるもので、特に押出ラインの動作開始時に大きな効
果を有する。この要素Nにより制御系の応答性(レスポ
ンス)は一段と向ヒする。
On the other hand, the output UN of the feedforward element N. accelerates its rise so that the control amount Y quickly approaches the target value YR, and has a particularly great effect at the start of operation of the extrusion line. This element N further improves the responsiveness of the control system.

こうして、操作量Uが制御対象としての押出ライ/10
へ出力されると、次のサンプリングまで所定時間遅延さ
せ、再び次の動作が繰返される。
In this way, the manipulated variable U is the extrusion lie/10 as the controlled object.
When the signal is output to , the next sampling is delayed by a predetermined time and the next operation is repeated again.

本発明制御方法では、測定量、即ちライン速度YLs 
 に応じてコントローラC1(によって操作量U、〜U
、を発生するため、測定量Y、〜Y7によりCPU を
介して操作量U、 −06への多変数制御出力は、ライ
ンスピードに合った所望操作・量との偏差分を加えるこ
ととなり、両者は相補的働らきをもつことができるので
、静電容量Cと外径りはライン速度に応じて常に一定と
なるように制御される。このためライン速度の立上がり
から、CおよびDが一定の電線、ケーブルの製造が可能
となり、立上がりの際の屑が大幅に減少され、かつCお
よびDが規格に入った高品質の発泡絶縁電線の製造が可
能となる。
In the control method of the present invention, the measured quantity, that is, the line speed YLs
According to controller C1 (operated amount U, ~U
In order to generate can have complementary functions, so the capacitance C and the outer radius are controlled to always be constant depending on the line speed. This makes it possible to manufacture wires and cables with constant C and D from the start-up of the line speed, greatly reducing waste during start-up, and producing high-quality foam insulated wires with C and D within the standard. Manufacturing becomes possible.

と記実施例において、制御量、目標値は2個、操作変数
、操作量は6個、測定量は7個の場合について説明した
が、それぞれl、n、m個(l、n、mは正の整数で、
n、m≧l)の場合にも、本発明は等しく適用できるも
のである。
In the example described above, the case was explained in which there were two controlled variables and target values, six manipulated variables and manipulated variables, and seven measured quantities. A positive integer,
The present invention is equally applicable to cases where n, m≧l).

また、上記実施例においてライン速度を操作量の1つと
して加えることができる。
Furthermore, in the above embodiment, the line speed can be added as one of the manipulated variables.

以上の実施例からも明らかなように、本発明によれば、
制御対象としての発泡絶縁電線押出ラインの、Cおよび
Dの制御量を含む測定量が複数の操作量の何れによって
も変動する場合に、制御量をその目標値に調節されるよ
うに操作量を制御するにあたり、所定の操作量をライン
速度に比例して制御すると共に、制御量と目標値の差か
ら得られる操作変数のそれぞれに積分動作を遂行して各
   1操作量に印加するようにしたから、各操作量が
相互にかつ独立して機能を遂行し、外乱があったときに
も、制御量がそれぞれ目標値に接近するように多変数制
御されライン速度の立上がりから所望のCとDをもった
高品質の発泡絶縁電線が製造できる。
As is clear from the above examples, according to the present invention,
When the measured quantities including the controlled quantities C and D of the foam insulated wire extrusion line as the controlled object fluctuate due to any of a plurality of manipulated variables, the manipulated variables are adjusted so that the controlled variables are adjusted to their target values. For control, a predetermined manipulated variable is controlled in proportion to the line speed, and an integral action is performed on each manipulated variable obtained from the difference between the controlled variable and the target value, and the integral action is applied to each manipulated variable. Therefore, each manipulated variable performs its function mutually and independently, and even when there is a disturbance, multivariable control is performed so that each controlled variable approaches the target value, and the desired C and D are maintained from the rise of the line speed. It is possible to manufacture high-quality foam insulated wires with

また、この制御系に、フィードフォワード動作および(
または)フィードバンク動作を遂行させることにより、
レスポンスが向−ヒし、安定性が増大する。
In addition, this control system includes feedforward operation and (
or) by performing a feedbank operation;
Response is improved and stability is increased.

さらにまた、ライン速度を制御系に適用することにより
、ライン速度の上昇中でもCとDが規格内に入った電線
が製造でき、非規格品、即ち屑の発生を防止し、−止ま
シを向上することが、できる。
Furthermore, by applying the line speed to the control system, it is possible to manufacture wires with C and D within the specifications even when the line speed increases, preventing the generation of non-standard products, that is, scraps, and improving the -stopping strength. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は制御対象としての発泡絶縁電線の押出ライ
ンの説明図、 第3〜4図は該ラインに設けられた押出機の部分説明図
、 第5〜6図は該制御対象へ本発明を適用した自動制御方
式のブロックダイヤグラム、 第7図は該方式の動作フローチャートを示す。 10 ・・・・・・・・・・・押出ラインY1〜Y2・
・・・・・制御量 Y、−Y、・・・・・・測定量 YLs  ・・・・・・・・・ライン速度U1〜U6・
・・・・・操作量 YR,〜YR2・・・目標値 ε1〜ε2・・・・・・制御量と目標値の差U!c、〜
U’c6・・・操作変数 13・・・・・・・・・・・心線 16・・・・・・・・・・・・プレヒーター17・・・
・・・・・・・・押出機 19・・・・・・・・・・・シリンダ 20・・・・・・・・・・・スクリュー21・・・・・
・・・・・・クロスヘッド28・・・・・・・・・・・
・移動可能な冷却器23−3〜4・・・シリンダヒータ
ー 24−1〜2・・・クロスヘッドヒーター代理人 弁理
士  守 谷 −雄 #77 図 手続補正書(自発) 特許庁長官 若 杉 和 夫  殿 1、事件の表示 特願昭 57−40543  号 2、発明の名称 発泡絶縁電線の押出ライン制御方式 二3.補正をする者 事件との関係   特許出願人 古田勝久(ほか1名) 4、代理人〒103 東京都中央区日本橋本町3−9−5共同ビル(新本町通
番ハ各欄並びに図面 6、 補正の内容 (+)  明細書24頁IO行と 11行との間に次の
記載を加入する6 「以下1本発明制御方式の具体例を示す。 〈具体例〉 高密度ポリエチレン〔商品名:)Xイゼツクス5300
 E、 三井石油化学製、 d =0.95゜M、 I
 、 =o:4〕too  重量部と化学発泡剤アゾジ
カルボンアミド0.5  重量部を配合した化学発泡ポ
リエチレンコンパウンドから成るペレット状組成物を準
備した。 第1〜4図に示うようなシリンダ径65■φの押出機を
用い、 当初、シリンダの各温度C1=155℃C2=
175℃、 C3=190℃、C4=200℃クロスヘ
ッド湿度C6=200℃に昇温し、 前記組成物をホッ
パー18から押出機へ供給し、 一定の電圧を印加して
予熱された程0.4■φの心線を押出機のクロスヘッド
に連続供給した。 このとき、クロスヘッドにおける樹
脂温度C3=205℃、 樹脂圧力P=500kg/a
Jであった。 押出被覆された電線の外径の目標値を0
.580−φ、 静電容量の目標値を300PF/m設
定した。 ライン速度YLSに応じて、コントローラC
Rによってスクリュー回転数およびプレヒーター電圧を
操作すると共に、 電線の外径り。 介してプレヒータ印加電圧、 押出機のスクリュー回転
数、 各シリンダヒータ電圧、 クロス八ツ1−ヒータ
小。 圧、 移動水槽のクロスヘッドからの移動距離を操作し
て、 前記両目標値が得られるように多変数制御を1f
なった1、 その結果を第8図にボす。 同図において
、コンI・ローラCRによる操作社の1つ、即ち、スク
リュー同転数をも併記した。 リD#、ライン速度Y 
l−SをI−1させ、  a点においてライン速度製定
速とし、  コントローラCRとCP IJの制御を開
始し、  b点においてライン速度を再びl二昇させた
。  0点から定常ライン速度Yr−s oに達するH
′1.l;がり区間においてもダ径([〕)および静静
電容量0)は共にi;1述の11標値に調節でき、 高
、Il+質の発泡ポリエチレン電線を製造することがで
きた。」 (2) 同25頁 最下行の[を示す」を「第8図は該
方式によるライン速度および設定[]標値と、 その制
御結果値を示す」と補正する・ (3) 図面に第8図を追加する。
Figures 1 and 2 are explanatory diagrams of an extrusion line for foam insulated wire as a control target, Figures 3 and 4 are partial explanatory diagrams of an extruder installed in the line, and Figures 5 and 6 are explanatory diagrams of a line for extruding foam insulated wires as a control target. A block diagram of the automatic control system to which the invention is applied, FIG. 7 shows an operation flowchart of the system. 10 ・・・・・・・・・Extrusion line Y1~Y2・
...Controlled amount Y, -Y, ...Measurement amount YLs ......Line speed U1 to U6.
...Manipulated amount YR, ~YR2...Target value ε1-ε2...Difference U between control amount and target value! c, ~
U'c6... Operation variable 13... Core wire 16... Preheater 17...
......Extruder 19...Cylinder 20...Screw 21...
・・・・・・Crosshead 28・・・・・・・・・・・・
・Movable coolers 23-3 to 4...Cylinder heaters 24-1 to 2...Crosshead heater Agent Patent attorney Moritani-Yu #77 Amendment to figure procedure (voluntary) Commissioner of the Japan Patent Office Kazu Wakasugi Husband 1. Indication of the case Patent application No. 57-40543 2. Name of the invention Extrusion line control method for foam insulated wire 2.3. Relationship with the case of the person making the amendment Patent applicant Katsuhisa Furuta (and one other person) 4. Agent address: 3-9-5 Kyodo Building, Nihonbashi Honmachi, Chuo-ku, Tokyo 103 (Shinhonmachi serial number, each column and drawing 6, Amendment) Contents (+) Add the following statement between line IO and line 11 on page 24 of the specification 6 ``Below is a specific example of the control method of the present invention. <Specific example> High density polyethylene [Product name: )X Izzex 5300
E, Mitsui Petrochemical, d = 0.95゜M, I
, =o:4]too) and 0.5 parts by weight of a chemical blowing agent azodicarbonamide, a pellet-like composition was prepared consisting of a chemically foamed polyethylene compound. Using an extruder with a cylinder diameter of 65 mm as shown in Figures 1 to 4, initially, each cylinder temperature C1 = 155 °C C2 =
The temperature was raised to 175°C, C3 = 190°C, C4 = 200°C, crosshead humidity C6 = 200°C, and the composition was fed from the hopper 18 to the extruder, and a constant voltage was applied to the preheated temperature of 0. A core wire of 4 φ was continuously fed to the crosshead of the extruder. At this time, resin temperature C3 at the crosshead = 205°C, resin pressure P = 500 kg/a
It was J. Set the target value of the outer diameter of the extrusion coated wire to 0.
.. 580-φ, and the target value of capacitance was set to 300PF/m. Depending on the line speed YLS, controller C
Use R to control the screw rotation speed and preheater voltage, as well as adjust the outer diameter of the wire. Through the preheater applied voltage, extruder screw rotation speed, each cylinder heater voltage, cross eight 1-heater small. Multivariable control is performed at 1f to obtain both of the above target values by manipulating pressure and moving distance of the moving water tank from the crosshead.
1. The results are shown in Figure 8. In the same figure, one of the operating companies according to Con I and Roller CR, that is, the same number of screw rotations, is also shown. ReD#, line speed Y
l-S was changed to I-1, the line speed was made constant at point a, control of the controller CR and CP IJ was started, and the line speed was increased to l2 again at point b. H reaching steady line speed Yr-s o from 0 point
'1. Even in the l; edge section, both the diameter ([]) and electrostatic capacitance 0) could be adjusted to the 11 target value described in i;1, and a foamed polyethylene electric wire with high Il+ quality could be manufactured. ” (2) On page 25, the bottom line “indicates” is corrected to “Figure 8 shows the line speed and setting [ ] standard values according to the method, and their control result values.” (3) In the drawing, Add 8 figures.

Claims (1)

【特許請求の範囲】 1、 ポリオレフィン樹脂および発泡剤を含む発泡絶縁
体組成物を押出機に供給し、該押出機へ連続的に送給さ
れる心線上に前記組成物を前記発泡剤の分解温度以上の
温度で押出液種し、次いで冷却器を通過せしめることに
より発泡絶縁体の外径および静電容量をそれぞれ所定の
値に制御する発泡絶縁電線の押出ライン制御方式におい
て、前記外径および静電容量等の複数の制御量 と、該押出機のシリンダ温度、クロスヘッド温度、該ヘ
ッド中の樹11温度および樹脂圧力のような前記制御量
に影響を及ぼす状態変数とから成る複数のIII定量 が、前記押出ラインのライン速度、前記押出機の手前に
設けられたブレヒータの電圧、前記押出機のスクリュー
回転数、シリンダヒータ電圧、クロスへラドヒータ電圧
、前記冷却器の移動距離のような前記制御量を変動させ
る入カパラノ=夕としての複数の操作量 によって所定の相関関係で変動する場合に、前記制御量
がその目標値 に調節されるように前記操作量を制御するにあたり、前
記操作量のうちスクリュー回転数、プレヒータ電圧など
の操作量をライン速度に対応して制御すると共に、前記
目標値と前記制御量の差 から得られる操作変数 のそれぞれに積分動作を遂行した出力 を各操作量とすることを特徴とした発泡絶縁電線の押出
ライン制御方式。 2、 前記制御量を含む複数個の測定量にフィードバッ
ク動作を遂行した出力 を前記操作量へ印加することを特徴とする特許請求の範
囲第1項記載の制御方式。 3、前記目標値にフィードフォワード動作を遂行した出
力 を前記操作蓋へ印加することを特徴とする特許請求の範
囲第1項または第2項記載の制御方式。 4、前記操作量へ供給される、前記出力Uc −前記出
力UF+前記出力UNの和出力が所定の範囲を越えると
きに、前記積分動作を停止させることを特徴とする特許
請求の範囲第3項記載の制御方式。 5、前記測定量に応じて前記積分動作の初期値を設定す
ることを特徴とする特許請求の範囲第1項または第2項
記載の制御方式。 6、前記操作変数および前記積分動作は線形処理によっ
て得られることを特徴とする特許請1くの範囲第1項記
載の制御方式。 7、前記操作変数は動的補償を含むことを特徴とする特
許請求の範囲第1項記載の制御方式。 8、前記フィードバック動作は線形処理によって得られ
ることを特徴とする特許請求の範囲第2項記載の制御方
式。 9、前記フィードバック動作は動的補償を含むことを特
徴とする特許請求の範囲第2項記載の制御方式。 10、前記フィードフォワード動作は線形処理によつ−
C得られることを特徴とする特許請求の範囲第3項記載
の制御方式。 11、前記フィードフォワード動作は動的補償を含むこ
とを特徴とする特許請求の範囲第3項記載の制御方式。
[Claims] 1. A foamed insulating composition containing a polyolefin resin and a blowing agent is supplied to an extruder, and the composition is applied onto a core wire that is continuously fed to the extruder until the blowing agent is decomposed. In an extrusion line control system for foam insulated wire, the outer diameter and capacitance of the foamed insulator are controlled to predetermined values by seeding the extrusion liquid at a temperature higher than that temperature and then passing it through a cooler. a plurality of controlled variables, such as capacitance, and state variables that influence said controlled variables, such as cylinder temperature, crosshead temperature, tree 11 temperature in the head, and resin pressure of the extruder; Quantitative values include the line speed of the extrusion line, the voltage of a break heater provided before the extruder, the screw rotation speed of the extruder, the cylinder heater voltage, the cross-rad heater voltage, and the moving distance of the cooler. In controlling the manipulated variable so that the controlled variable is adjusted to its target value when the controlled variable fluctuates in a predetermined correlation due to a plurality of manipulated variables, Of these, manipulated variables such as screw rotation speed and preheater voltage are controlled in accordance with the line speed, and outputs obtained by performing integral operations on each manipulated variable obtained from the difference between the target value and the controlled variable are calculated as each manipulated variable. An extrusion line control system for foam insulated wire, characterized by: 2. The control method according to claim 1, wherein an output obtained by performing a feedback operation on a plurality of measured quantities including the controlled quantity is applied to the manipulated quantity. 3. The control method according to claim 1 or 2, characterized in that an output obtained by performing a feedforward operation to the target value is applied to the operation lid. 4. Claim 3, characterized in that the integral operation is stopped when the sum output of the output Uc - the output UF + the output UN supplied to the manipulated variable exceeds a predetermined range. Control method described. 5. The control method according to claim 1 or 2, wherein an initial value of the integral operation is set in accordance with the measured quantity. 6. The control method according to claim 1, wherein the manipulated variable and the integral operation are obtained by linear processing. 7. The control method according to claim 1, wherein the manipulated variable includes dynamic compensation. 8. The control method according to claim 2, wherein the feedback operation is obtained by linear processing. 9. The control method according to claim 2, wherein the feedback operation includes dynamic compensation. 10. The feedforward operation is performed by linear processing.
The control method according to claim 3, characterized in that C is obtained. 11. The control method according to claim 3, wherein the feedforward operation includes dynamic compensation.
JP57040543A 1982-03-15 1982-03-15 Extrusion line control system for foamable insulated wire Granted JPS58175217A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57040543A JPS58175217A (en) 1982-03-15 1982-03-15 Extrusion line control system for foamable insulated wire
US06/473,506 US4585603A (en) 1982-03-15 1983-03-08 Method for controlling an extrusion line for foamed insulation cables involving use of a plurality of generated and measured electrical signals
EP83102559A EP0089060B1 (en) 1982-03-15 1983-03-15 System for controlling an extrusion line for foamed insulation cables
DE8383102559T DE3382405D1 (en) 1982-03-15 1983-03-15 DEVICE FOR REGULATING AN EXTRUDING SYSTEM FOR SHEATING CABLES WITH PLASTIC FOAM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040543A JPS58175217A (en) 1982-03-15 1982-03-15 Extrusion line control system for foamable insulated wire

Publications (2)

Publication Number Publication Date
JPS58175217A true JPS58175217A (en) 1983-10-14
JPS6113330B2 JPS6113330B2 (en) 1986-04-12

Family

ID=12583357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040543A Granted JPS58175217A (en) 1982-03-15 1982-03-15 Extrusion line control system for foamable insulated wire

Country Status (1)

Country Link
JP (1) JPS58175217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310410A (en) * 1986-06-27 1988-01-18 日立電線株式会社 Manufacture of foam insulated wire
JP2016129972A (en) * 2015-01-14 2016-07-21 住友ゴム工業株式会社 Bead wire and its manufacturing method, bead core and its manufacturing method, and pneumatic tire
CN111993653A (en) * 2020-04-07 2020-11-27 德信线缆集团有限公司 Cable extrusion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310410A (en) * 1986-06-27 1988-01-18 日立電線株式会社 Manufacture of foam insulated wire
JP2016129972A (en) * 2015-01-14 2016-07-21 住友ゴム工業株式会社 Bead wire and its manufacturing method, bead core and its manufacturing method, and pneumatic tire
CN111993653A (en) * 2020-04-07 2020-11-27 德信线缆集团有限公司 Cable extrusion device

Also Published As

Publication number Publication date
JPS6113330B2 (en) 1986-04-12

Similar Documents

Publication Publication Date Title
JPS5857846B2 (en) Cybojiyouyoudentaizaiyonomonitor - Hohououyobisouchi
CN109814636A (en) The advanced control method of crosslinked cable production temperature based on predictive PI algorithm
JPS58175217A (en) Extrusion line control system for foamable insulated wire
KR20030048074A (en) High-speed processable cellular insulation material with enhanced foamability
US4359436A (en) Methods of and systems for controlling the expansion of cellular plastic insulation in the manufacture of insulated conductors
US4592881A (en) Method for controlling a foam resin cable coating extrusion process
JPS58175218A (en) Extrusion line control system for foamable insulated wire
Mitroshin System for distributed control of melt temperature of polymer in a screw extruder
US2961345A (en) Composite plastic film and a method of making the same in continuous form
CN104723581A (en) Preparation method of fluorine layer-containing polyimide composite material and equipment for method
EP0476798B1 (en) Method and apparatus for manufacturing a cross-linked thermoplastic resin foam
JP2000297172A (en) Norbornene resin foam, electrical insulating cable, and production of norbornene resin foam
JP2000094497A (en) Film thickness control device
US4150082A (en) Process for extruding polymer materials for high voltage cables
JPH07153330A (en) Core for coaxial cable, coaxial cable using it, and manufacture thereof
Li et al. The wire beltline diameter ACO-KF-PID contro research
CN204526188U (en) For the preparation of the equipment of fluorine-containing layer composite polyimide material
JPH05182544A (en) Manufacture of foam skin insulated wire and device therefor
Gardner et al. SIMULATION OF THE TELEPHONE WIRE INSULATION PROCESS IN CABLE MANUFACTURING USING ISIS
JPS5810309A (en) Method of controlling foaming rate of foamable polyethylene cable
JP2907719B2 (en) Method and apparatus for producing foamed insulated wire
Mitroshin et al. Automated control system for technological process of extrusion line for communication cables production
Bulsari et al. Nonlinear Models Speed Development of Cross-Linked Polyethylene Foam
CN113121094A (en) Arc voltage control method and system
Pulkkinen et al. Capacitance/Diameter (C/D) Control in telephone cable insulation process