JP2000094497A - Film thickness control device - Google Patents

Film thickness control device

Info

Publication number
JP2000094497A
JP2000094497A JP10269521A JP26952198A JP2000094497A JP 2000094497 A JP2000094497 A JP 2000094497A JP 10269521 A JP10269521 A JP 10269521A JP 26952198 A JP26952198 A JP 26952198A JP 2000094497 A JP2000094497 A JP 2000094497A
Authority
JP
Japan
Prior art keywords
control
thickness
film
control device
convergence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10269521A
Other languages
Japanese (ja)
Other versions
JP3874943B2 (en
Inventor
Takeya Nohira
剛也 野平
Kohei Endo
浩平 遠藤
Tsukasa Nishimura
司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP26952198A priority Critical patent/JP3874943B2/en
Publication of JP2000094497A publication Critical patent/JP2000094497A/en
Application granted granted Critical
Publication of JP3874943B2 publication Critical patent/JP3874943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92438Conveying, transporting or storage of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Abstract

PROBLEM TO BE SOLVED: To provide a film thickness control device for converging the thickness profile into the stabilized stationary control state efficiently in a short time. SOLUTION: A film thickness control device is provided with a plurality of operation ends for adjusting the thickness of a die in each of respective given widths provided all over the whole width of the die for molding a film from molten resin, a thickness indicator for measuring the film thickness on respective measuring ends corresponding at least to respective operation ends in the film width direction and a control means for controlling respective operation ends based on the respective thickness measured values measured by the given periods and respective target values set preliminarily. The thickness of the films to be manufactured is controlled to the target values, and the control means is provided with a control simulation means for simulating the control result of the given control operation set based on a process module formed of a numerical formula formed by utilizing the thickness measured values and target values so that the operation ends are controlled by the control output provided by the control simulation means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフィルム(シートと
も呼ばれる)の厚み制御装置に関し、さらに詳しくは、
溶融樹脂からなるフィルムを成型するダイの厚み調整手
段がダイの全幅に亘って配設されたダイの所定幅毎の吐
出量を操作して厚みを調整する複数の操作端からなり、
少なくとも該操作端に対応する各測定点で検出したフィ
ルムの厚みに基づいて該操作端を操作して厚みを制御す
る複数の制御ループからなる制御手段によりフィルムの
厚みプロフィールを制御するフィルムの厚み制御装置に
おいて、厚みプロフィールを効果的に、しかも短時間で
安定した定常制御状態に収束できるフィルムの厚み制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling the thickness of a film (also referred to as a sheet).
The die thickness adjusting means for molding a film made of a molten resin comprises a plurality of operation ends for adjusting the thickness by operating the discharge amount for each predetermined width of the die disposed over the entire width of the die,
A film thickness control for controlling a film thickness profile by a control means including a plurality of control loops for controlling the thickness by operating the operation end based on the film thickness detected at least at each measurement point corresponding to the operation end. The present invention relates to a film thickness control device capable of effectively converging a thickness profile to a stable steady state in a short time.

【0002】[0002]

【従来の技術】シート状物、たとえばプラスチックフィ
ルムの幅方向の厚みを所定のプロフィールたとえば均一
に制御するフィルムの厚み制御は、特公平6−7590
6号公報、特公平6−75907号公報、特公平6−7
5908号公報等の記載のとおり、これを形成する押し
出し成形装置、流延成形装置の広幅のダイの全幅に亘っ
て配置された所定幅の吐出量が制御して厚みを調整する
複数の操作端、具体的にはヒーター、ギャップ調整具等
の操作端ユニットからなる厚み調整手段のそれぞれをこ
れに対応する下流の各測定点で測定したフィルムの厚み
に基づいて制御する多数の制御ループからなる多点の制
御手段によるのが一般である。
2. Description of the Related Art To control the thickness of a sheet-like material, for example, a plastic film in a width direction to a predetermined profile, for example, to uniformly control the film thickness, Japanese Patent Publication No. 6-7590.
No. 6, JP-B-6-75907, JP-B-6-7
As described in Japanese Patent Application Laid-Open No. 5908 and the like, a plurality of operation terminals for controlling the thickness by controlling the discharge amount of a predetermined width disposed over the entire width of a wide die of the extrusion molding device and the casting die for forming the same. More specifically, a multi-unit control loop for controlling each of the thickness adjusting means including operating end units such as a heater and a gap adjusting tool based on the film thickness measured at each corresponding downstream measuring point. Generally, it is based on point control means.

【0003】そして、その多点制御手段としては、各制
御ループは独立で、検出した厚みと目標値との偏差に周
知の制御動作のP,PIあるいはPIDの演算を施して得られ
る制御出力を操作量として厚み調整手段に出力するPID
制御が、構成の簡単な割には安定した効果が得られる
点、チューニングが容易である点等の理由により広く利
用されている。
As the multi-point control means, each control loop is independent and outputs a control output obtained by performing P, PI or PID calculation of a well-known control operation on the deviation between the detected thickness and the target value. PID output to thickness adjustment means as operation amount
Control is widely used because of its stable configuration, simple configuration, and easy tuning.

【0004】[0004]

【発明が解決しようとする課題】前述の多点制御手段に
よる制御方法は、通常の単層の場合は定常運転状態では
実用上ほぼ問題のないプロフィール制御を与える。しか
し、立ち上げ時、大きな条件変更時等には目的とする品
質となる厚み斑に収束させるには無駄時間が多く、膨大
な時間がかかっている問題があった。
The above-described control method using the multi-point control means provides profile control that has practically no problem in a normal operation state in the case of a normal single layer. However, there is a problem that it takes a lot of wasted time to converge to the thickness unevenness of the target quality at the time of starting up or when a large condition change is performed, which takes an enormous amount of time.

【0005】また多層フィルムの各層のプロフィールを
調整する場合、各層間で干渉を起こし収束するのに単層
の場合に比べて非常に時間のかかる問題があった。
Further, when adjusting the profile of each layer of the multilayer film, there is a problem that it takes much time to cause interference and converge between the layers as compared with the case of a single layer.

【0006】本発明はかかる問題を解消するもので、厚
みプロフィールを効果的に、しかも短時間で安定した定
常制御状態に収束できるフィルムの厚み制御装置を目的
としたものである。
An object of the present invention is to solve such a problem, and an object of the present invention is to provide a film thickness control device capable of effectively converging a thickness profile to a stable control state in a short time.

【0007】[0007]

【課題を解決するための手段】本発明は、かかる目的を
達成するために鋭意研究した結果、実験等で求めた数式
モデルからなるプロセスモデルに、測定した厚み測定値
を入力し、制御シミュレーションを行い、目標の厚みプ
ロファイルを収束させたときのシミュレーション結果の
制御出力を実プロセスの操作端に操作量として出力する
事で、短時間で厚みプロフィールを調整できる事を見出
し、なされたものである。
According to the present invention, as a result of intensive research to achieve the above object, a measured thickness value is input to a process model consisting of a mathematical model obtained through experiments and the like, and a control simulation is performed. It has been found that the thickness profile can be adjusted in a short time by outputting the control output of the simulation result when the target thickness profile is converged to the operation end of the actual process as an operation amount.

【0008】すなわち、本発明は、溶融樹脂からフィル
ムを成型するダイの全幅に亘って配設されたダイの所定
幅毎の厚みを調整する複数の操作端と、フィルム幅方向
における少なくとも該操作端の夫々に対応する各測定点
でフィルムの厚みを測定する厚み計と、所定の周期で測
定された各厚み測定値と予め設定された各目標値とから
各操作端を制御する制御手段とを備え、製造されるフィ
ルムの厚みを該目標値に制御するようにしたフィルムの
厚み制御装置において、前記制御手段が、前記厚み測定
値と目標値から数式モデルからなるプロセスモデルに基
いて設定した所定の制御動作の制御結果をシミュレーシ
ョンする制御シミュレーション手段を備え、この制御シ
ミュレーション手段で得られる制御出力により前記操作
端を制御するようになされていることを特徴とするフィ
ルムの厚み制御装置である。
That is, the present invention provides a plurality of operation ends for adjusting the thickness of a die, which is provided over the entire width of a die for molding a film from a molten resin, at a predetermined width, and at least the operation ends in the film width direction. A thickness gauge that measures the thickness of the film at each measurement point corresponding to each of, and a control unit that controls each operation terminal from each thickness measurement value measured at a predetermined cycle and each preset target value. A film thickness control device for controlling the thickness of a film to be manufactured to the target value, wherein the control means sets a predetermined value set based on a process model consisting of a mathematical model from the thickness measurement value and the target value. Control simulation means for simulating a control result of the control operation of the control operation means, wherein the operation end is controlled by a control output obtained by the control simulation means. That has been made is the thickness control device for film characterized.

【0009】上記本発明において、制御シミュレーショ
ン手段は、演算した制御結果が収束したか否かを判定す
る収束判定手段を備え、入力された前記厚み測定値及び
目標値に基いて求めた第1の制御結果が収束判定手段で
収束と判定されない時は、該第1の制御結果を次の厚み
測定値として第2の制御結果を求め、収束判定手段で判
定する手順をその制御結果が収束判定手段で収束と判定
されまで繰り返し演算し、収束と判定された時の制御出
力を前記操作端に出力する構成がデータ処理、特にオン
ライン処理の面から好ましい。
In the present invention, the control simulation means includes a convergence determination means for determining whether or not the calculated control result has converged, and the first simulation value obtained based on the input thickness measurement value and target value. If the control result is not determined to be convergence by the convergence determining means, a procedure for obtaining the second control result using the first control result as the next thickness measurement value and determining the second control result by the convergence determining means is performed by the convergence determining means. It is preferable from the standpoint of data processing, especially online processing, that the operation is repeatedly performed until the convergence is determined, and the control output when the convergence is determined is output to the operation terminal.

【0010】このオンライン処理の面から、前記プロセ
スモデルは静的な一次線形モデルであることが、中でも
近隣の複数の操作端の相互干渉を干渉率を係数とした一
次式で近似した線形干渉モデルが、高速処理ができ、か
つ制御結果も良好である点で好ましい。
In view of this on-line processing, the process model is a static first-order linear model. In particular, a linear interference model in which mutual interference between a plurality of neighboring operation terminals is approximated by a first-order equation using a coefficient of interference as a coefficient. However, it is preferable in that high-speed processing can be performed and the control result is good.

【0011】なお、フィルムが2層以上の複層フィルム
の場合は、前記プロセルモデルを拡張した、他層の操作
端からの当該層への影響をプロセスゲインを係数とした
一次式で近似した線形多層モデルが同様の理由から好ま
しい。以下、本発明の詳細を説明する。
In the case where the film is a multi-layer film having two or more layers, the process model is expanded, and the influence of the operation end of the other layer on the layer is approximated by a linear expression using a process gain as a coefficient. Multi-layer models are preferred for similar reasons. Hereinafter, details of the present invention will be described.

【0012】[0012]

【発明の実施の形態】以下に図を引用しながら本発明を
3層構成の多層フィルムのダイを用いた製造プロセスに
適用した実施例に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings based on an embodiment in which the present invention is applied to a manufacturing process using a three-layered multilayer film die.

【0013】図1は、本発明の実施例の基本構成の概略
説明図である。図1に於いて、ダイ1は、特開平8-5278
2号公報、実開平7-15321号公報等で公知の、溶融樹脂を
層状にする複数の流路を備え、これを合流して複数層の
フィルム状にして連続的に押出す複層押出ダイ、各層に
厚み調整手段2,3を設けた第1の表層/隣接層/第2
の表層の3層の複層フィルムを製膜するようになってお
り、各層の原料樹脂は図示省略された表層樹脂用押し出
し機と隣接層樹脂用押し出し機より溶融押し出され、ダ
イ1の各層のマニホールド(図示省略)に供給される。
なお、各層の厚み調整手段2,3は公知の後述の構成
で、所定幅を調整する調整ユニットをフィルム全幅に亙
って並べて設けた構成となっている。
FIG. 1 is a schematic illustration of the basic configuration of an embodiment of the present invention. In FIG. 1, a die 1 is disclosed in
No. 2, Japanese Utility Model Application Laid-Open No. 7-15321, etc., is provided with a plurality of flow paths for laminating a molten resin, a multilayer extrusion die for continuously extruding a plurality of films into a multi-layer film shape. First surface layer / adjacent layer / second layer provided with thickness adjusting means 2 and 3 for each layer
Are formed to form a multilayer film of three layers of the surface layer, and the raw material resin of each layer is melted and extruded from a surface resin extruder and an adjacent layer resin extruder (not shown). It is supplied to a manifold (not shown).
The thickness adjusting means 2 and 3 of each layer have a well-known configuration described later, and have a configuration in which adjustment units for adjusting a predetermined width are arranged side by side over the entire width of the film.

【0014】フィルムの層構成としては、本例では3層
構成となっているが、単層であっても、2層以上からな
る多層フィルムであってもよい。フィルム5の構成が2
層であれば、各層の樹脂はダイに供給される上流で合流
されダイスリットより押し出されても良いし、ダイ内で
合流されても良い。3層以上であれば、各層の厚みを制
御するためにダイ1内で合流させる方が、制御性がよ
い。
Although the film has a three-layer structure in this embodiment, it may be a single layer or a multilayer film having two or more layers. The structure of the film 5 is 2
In the case of a layer, the resin of each layer may be merged upstream of the die and extruded from the die slit, or may be merged in the die. If the number of layers is three or more, it is better to control the thicknesses of the respective layers so that they are merged in the die 1 for better controllability.

【0015】多層フィルムの層構成が3層以上であれ
ば、本例のように表層用樹脂はダイ内で隣接層を挟み込
むようにしてダイ1のスリットから押し出される。押し
出された多層フィルム5は冷却ドラム4によって冷却固
化され、延伸装置6によって延伸され、巻き取り装置9
によって巻き取られる。
If the multilayer film has three or more layers, the resin for the surface layer is extruded from the slit of the die 1 so as to sandwich the adjacent layer in the die as in this example. The extruded multilayer film 5 is cooled and solidified by the cooling drum 4, stretched by the stretching device 6, and wound up by the winding device 9.
Winded up by.

【0016】延伸されたフィルムの総厚は、放射線の透
過を利用して厚さを測定する放射線透過型厚み計7によ
ってフィルムの幅方向に走査しながら測定することによ
ってフィルムの幅方向に測定することができる。延伸さ
れたフィルムの表層厚みは、表層のみの厚みを測定する
表層厚み計8によって放射線透過型厚み計7同様フィル
ムの幅方向に走査しながら測定されることによって測定
される。このとき、放射線透過型厚み計7と表層厚み計
8の位置は同期して走査することが隣接層の厚みを求め
る上で好ましい。
The total thickness of the stretched film is measured in the width direction of the film by measuring while scanning in the width direction of the film using a radiation transmission type thickness meter 7 that measures the thickness using the transmission of radiation. be able to. The surface layer thickness of the stretched film is measured by a surface layer thickness meter 8 that measures only the thickness of the surface layer while scanning in the width direction of the film as in the radiation transmission type thickness meter 7. At this time, it is preferable that the positions of the radiation transmission type thickness meter 7 and the surface layer thickness meter 8 be scanned synchronously in order to obtain the thickness of the adjacent layer.

【0017】測定された各層の厚みデータはフィルムの
幅方向の測定位置データと共にコンピュータからなるコ
ントローラ10に入力され、フィードバックされる。コ
ントローラ10は、複層フィルム5の表層と全層の厚み
測定値とその測定位置データが入力される入力装置と、
各層毎に各操作端に対応する各測定位置での厚み測定値
と予め設定された各目標厚みと比較してその差がゼロに
なるように各制御出力を演算する演算装置と、処理手
順、演算結果等の必要データを記憶するメモリと、演算
装置からの各制御出力に従って厚みを調整する各操作端
からなる厚み調整手段2,3と、モニタ、キーボード、
マウスなどの入出力装置から構成される。
The measured thickness data of each layer together with the measured position data in the width direction of the film are input to a controller 10 comprising a computer and fed back. The controller 10 includes an input device for inputting thickness measurement values of the surface layer and all layers of the multilayer film 5 and measurement position data thereof,
An arithmetic unit that calculates each control output such that the difference between the thickness measurement value at each measurement position corresponding to each operation end for each layer and each preset target thickness is zero, and a processing procedure, A memory for storing necessary data such as calculation results, thickness adjusting means 2 and 3 each comprising an operation terminal for adjusting the thickness in accordance with each control output from the arithmetic unit, a monitor, a keyboard,
It consists of an input / output device such as a mouse.

【0018】なお、隣接層の厚み測定値は、コントロー
ラ10で各測定位置での全層の厚み測定値から表層の厚
み測定値を減ずることによって求めるようになってい
る。
The measured thickness of the adjacent layer is obtained by subtracting the measured value of the thickness of the surface layer from the measured value of the thickness of all the layers at each measurement position by the controller 10.

【0019】また、厚み調整手段2,3の操作端は、ダ
イ幅方向に沿って所定幅の各層の厚みを制御可能なもの
ならばいかような構成でも良く、従来技術で述べた各種
の公知の方式が適用できる。。しかし、表層の厚み調整
手段2は、操作性、保全性、ダイの構造の簡易化等の面
から、ヒーターを用いてダイリップ温度を変化させるこ
とによって樹脂流量を変化させる温度調整方式が好まし
い。一方、隣接層の厚み調整手段3は、操作性、保全
性、ダイの構造の簡易化の面から、ヒートボルトを用い
てダイ内流路の開度を変化させることによって樹脂流量
を変化させるヒートボルト方式が好ましい。
The operating ends of the thickness adjusting means 2 and 3 may have any structure as long as the thickness of each layer having a predetermined width can be controlled along the die width direction. Can be applied. . However, from the viewpoints of operability, maintainability, simplification of the die structure, and the like, the surface layer thickness adjusting means 2 is preferably a temperature adjusting method of changing the resin flow rate by changing the die lip temperature using a heater. On the other hand, the thickness adjusting means 3 of the adjacent layer is used to change the resin flow rate by changing the opening degree of the flow path in the die by using a heat bolt in terms of operability, maintainability, and simplification of the structure of the die. The bolt system is preferred.

【0020】ところで、複層フィルムが表層と隣接層と
で屈折率が異なるものでは、両層の界面において反射が
あるため、その表層の厚みは、この界面の反射光と表層
の表面での反射光の光干渉を用いて層厚みを測定する光
干渉型膜厚計によって薄い場合にも安定して測定するこ
とができ、本例の表層厚み計にはこの膜厚計を適用し
た。
If the multilayer film has a different refractive index between the surface layer and the adjacent layer, reflection occurs at the interface between the two layers. Therefore, the thickness of the surface layer depends on the reflected light at this interface and the reflection on the surface of the surface layer. The thickness can be stably measured even when the thickness is thin by an optical interference type thickness meter that measures the layer thickness using light interference of light, and this film thickness meter was applied to the surface layer thickness meter of this example.

【0021】本発明の適用できる複層フィルムの表層の
材は、光線を透過し、ダイで押出成型可能な全ての樹脂
を包含する。またその隣接層の材は、ダイで押出成型可
能な全ての樹脂を包含するが、表層と独立に制御する場
合は表層膜厚の測定の面から表層と屈折率が異なるもの
が好ましい。これらの樹脂の代表的な例としては、ポリ
エチレンテレフタレート、ポリエチレンナフタレートな
どのポリエステル、ポリエチレンなどが挙げられる。ま
た、これらの共重合体、混合体であっても、さらに他の
添加剤などが含有されたものであってもよい。
The material of the surface layer of the multilayer film to which the present invention can be applied includes all resins which transmit light and can be extruded with a die. The material of the adjacent layer includes all resins that can be extruded with a die, but when controlled independently of the surface layer, a material having a different refractive index from the surface layer is preferable from the viewpoint of measuring the surface layer thickness. Representative examples of these resins include polyesters such as polyethylene terephthalate and polyethylene naphthalate, and polyethylene. Further, these copolymers and mixtures may be used, or may further contain other additives and the like.

【0022】ところで、本例の演算装置は、以下の制御
手段で構成されている。図2は厚み制御の基本構成のブ
ロック図で、図3は図2の基本構成のコントローラ部を
構成する制御手段の構成のフローチャート図である。
By the way, the arithmetic unit of this embodiment is constituted by the following control means. FIG. 2 is a block diagram of the basic configuration of the thickness control, and FIG. 3 is a flowchart of the configuration of the control means constituting the controller of the basic configuration of FIG.

【0023】図3に示すように、制御手段は、各層の各
操作端について厚み偏差が予め設定された製品品質目標
である厚み斑などの管理値からそれぞれの層について定
めた閾値内か否かで厚み制御が目標厚みに収束したかを
判定する収束判定手段を備え、一定の周期で先ず厚み測
定値と目標厚みとの厚み偏差入力を求め、これの収束判
定を行うようになっている。そして、厚み偏差が閾値以
内と収束していれば、現在の制御出力のままとし、同じ
操作量を操作端に継続出力する。
As shown in FIG. 3, the control means determines whether or not the thickness deviation of each operating end of each layer is within a threshold value determined for each layer from a management value such as thickness unevenness which is a preset product quality target. A convergence determining means for determining whether or not the thickness control has converged to the target thickness. First, at a fixed cycle, a thickness deviation input between the measured thickness value and the target thickness is obtained, and the convergence determination is performed. If the thickness deviation converges within the threshold value, the current control output is maintained, and the same operation amount is continuously output to the operation terminal.

【0024】厚み偏差が閾値を越えて収束していないと
収束判定手段が判定すると、以下の制御シミュレーショ
ン手段により制御を行う。すなわち、図示のように、制
御シミュレーション手段は、先ず、前記の厚み偏差入力
に基いて各層厚み制御演算部で予め設定された制御動作
の制御アルゴリズム(本例では周知のPID制御を用い
た)により制御演算をして、各層の各操作端に対する第
1回目の制御出力を得る。そしてこの第1回目の制御出
力から実験或いは理論又はこの両者を併用して求めた図
2のフィルムの厚み制御の実際のプロセスを数式モデル
で近似表現したプロセスモデルに基いて制御結果を演算
してシミュレーションによる第1回目の制御結果すなわ
ち第1回目の制御出力で生ずる第1回目の各層厚みプロ
ファイルのシミュレーションによる結果を得る。次い
で、この制御シミュレーション手段の結果を収束判定手
段で判定し、収束していないと判定された場合は、第1
回目の制御結果を第2回目の厚み測定として第1回目と
同じ演算をして第2回目の制御結果を求め、この第2回
目目の制御結果を収束判定手段で判断する。そして、収
束していないと判定されるとこの第2回目の制御結果を
第3回目の厚み測定として、この手順をシミュレーショ
ンの制御結果が収束するまで繰り返す。そして、該制御
結果が収束判定手段により収束と判定された際のシミュ
レーション手段の制御出力を各操作端に操作量として出
力するようになっている。
If the convergence determining means determines that the thickness deviation does not converge beyond the threshold value, control is performed by the following control simulation means. That is, as shown in the figure, the control simulation means first uses a control algorithm of a control operation preset in each layer thickness control calculation unit based on the thickness deviation input (in this example, a well-known PID control is used). A control operation is performed to obtain a first control output for each operation end of each layer. The control result is calculated based on a process model in which the actual process of controlling the thickness of the film in FIG. 2 obtained from the first control output by experiment or theory or by using both of them is approximated by a mathematical model. The first control result by simulation, that is, the first simulation result of each layer thickness profile generated by the first control output is obtained. Next, the result of the control simulation means is judged by the convergence judging means.
The second control result is obtained by performing the same calculation as the first control using the second control result as the second thickness measurement, and the second control result is determined by the convergence determining means. When it is determined that the control has not converged, the second control result is used as the third thickness measurement, and this procedure is repeated until the control result of the simulation converges. Then, the control output of the simulation means when the convergence determination means determines that the control result has converged is output to each operation terminal as an operation amount.

【0025】このようにプロセスモデルを用いて制御シ
ミュレーション手段により制御出力を求めることによっ
て、厚みが収束するであろう制御出力を出力できること
から、従来のPID制御に比べて、非常に短時間で厚みプ
ロフィールを調整できる。なお、本例では制御動作にP
ID制御を用いたものを示したが、その他P,PI制
御、最短時間制御等種々の制御動作が適用できる。ま
た、実プロセスの厚み制御の制御結果と制御シミュレー
ション手段での制御結果の判定を同一の収束判定手段で
判定するものを例示したが、実プロセスの制御結果は変
動幅が一定範囲内の定常状態を判定する状態判定手段と
して、両者に個別の判定手段を用いるようにしてもよ
い。この方式では、より広範なプロセスに対応できる利
点がある。
As described above, by obtaining the control output by the control simulation means using the process model, the control output that will converge the thickness can be output. You can adjust your profile. Note that in this example, P
Although the control using the ID control has been described, various control operations such as P and PI control and shortest time control can be applied. In addition, the control result of the thickness control of the actual process and the control result of the control simulation unit are determined by the same convergence determination unit. May be used as the state determination means for determining the condition. This method has an advantage that it can support a wider range of processes.

【0026】上述の制御シミュレーション手段に用いる
プロセスモデルは、本例では図4にフローチャートで示
したものを用いた。このプロセスモデルは多層フィルム
の製膜工程を簡単な数式モデルで近似表現したもので、
以下の構成となっている。
In the present embodiment, the process model used in the control simulation means described above is the one shown in the flowchart of FIG. This process model is an approximation of the multilayer film production process using a simple mathematical model.
It has the following configuration.

【0027】まず、前述の制御動作の制御演算で得られ
た各層の各操作端に対する制御出力が入力されると、そ
の変化分を求めて変化分に対し、プロセスゲインを乗ず
ることによって制御出力の変化分を厚み変化分に換算す
る。この換算において、各操作端nに対応する第1、第
2の表層の厚み変化△H1(n),△H2(n)および隣接層の
厚み変化△R(n)はその層間干渉をプロセスゲインAij
で評価し、次の一次式の線形多層モデルで求めた。ここ
で、△OH1(n)、△OH2(n)、 △OR(n)は各層の各操作端n
の制御出力の変化分である。
First, when the control output for each operating end of each layer obtained by the control operation of the control operation described above is input, the change is obtained and the change is multiplied by the process gain to obtain the control output. The change is converted into a thickness change. In this conversion, the thickness changes △ H1 (n) and △ H2 (n) of the first and second surface layers corresponding to each operation end n and the thickness change △ R (n) of the adjacent layer are caused by a process gain of the interlayer interference. Aij
Was evaluated using the following linear linear multilayer model. Here, △ OH1 (n), △ OH2 (n), and OROR (n) are the operating terminals n of each layer.
Is the change in the control output.

【0028】[0028]

【数1】△H1(n)=A11・△OH1(n)+A1r・△OR(n)+
A12・△OH2(n) △R(n)=Ar1・△OH1(n)+Arr・△OR(n)+Ar2・△OH
2(n) △H2(n)=A21・△OH1(n)+A2r・△OR(n)+A22・△O
H2(n)
数 H1 (n) = A11 · △ OH1 (n) + A1r · △ OR (n) +
A12 △ OH2 (n)) R (n) = Ar1 △ OH1 (n) + Arr △ OR (n) + Ar2 △ OH
2 (n) △ H2 (n) = A21 · △ OH1 (n) + A2r · △ OR (n) + A22 · △ O
H2 (n)

【0029】そして、各層のフィルムに対する各操作端
nに対応する厚み測定値としての厚み変化H1(n)、H2
(n)、R(n)は、各層におけるフィルムの幅方向の操作端
の間の干渉、および延伸倍率を考慮し、干渉率Bk,nを
係数とした次式の一次式による線形干渉モデルで求め
た。
Then, thickness changes H1 (n) and H2 as thickness measurement values corresponding to each operation end n with respect to the film of each layer.
(n), R (n) is a linear interference model by a linear equation of the following equation using the interference rate Bk, n as a coefficient in consideration of the interference between the operation ends in the width direction of the film in each layer and the draw ratio. I asked.

【0030】[0030]

【数2】H1(n)=B1,n-2・△H1(n-2)+B1,n-1・△H
1(n-1)+B1,n・△H1(n)+B1,n+1・△H1(n+1)+B1,
n+2・△H1(n+2) R(n)= Br,n-2・△R(n-2)+Br,n-1・△R(n-1)+B
r,n・△R(n)+ Br,n+1・△R(n+1)+Br,n+2・△R
(n+2) H2(n)=B2,n-2・△H2(n-2)+B2,n-1・△H2(n-1)+
B2,n・△H2(n)+B2,n+1・△H2(n+1)+B2,n+2・△
H2(n+2)
## EQU2 ## H1 (n) = B1, n-2 △ H1 (n-2) + B1, n-1 △ H
1 (n-1) + B1, n △ H1 (n) + B1, n + 1 △ H1 (n + 1) + B1,
n + 2 · △ H1 (n + 2) R (n) = Br, n−2 · △ R (n−2) + Br, n−1 · △ R (n−1) + B
r, n · △ R (n) + Br, n + 1 · △ R (n + 1) + Br, n + 2 · △ R
(n + 2) H2 (n) = B2, n-2 △ H2 (n-2) + B2, n-1 △ H2 (n-1) +
B2, n △ H2 (n) + B2, n + 1 △ H2 (n + 1) + B2, n + 2 △
H2 (n + 2)

【0031】なお、上式では、当該操作端nに対して左
右の各側で近接する2個の操作端n−2、n−1及びn
+1、n+2まで干渉ありとし、それより遠い操作端の
影響はないとした。なお、この個数はプロセスに応じて
実験等により求めることが好ましい。
In the above equation, two operating ends n-2, n-1 and n which are adjacent to the operating end n on the left and right sides, respectively.
It is assumed that there is interference up to +1 and n + 2, and that there is no influence of the operating end farther than that. Note that this number is preferably obtained by an experiment or the like depending on the process.

【0032】なお、実プロセスでは、通常操作端に出力
を出してからその変化を測定するまで時定数と無駄時間
を伴うので、プロセスモデルとしてはこの動的プロセス
も近似した図4の〔〕内の時定数計算、無駄時間計算を
含めた数式モデルが正確であるが、厚みプロファイルを
求めるのが目的であるので、この動的プロセスを無視し
た静的モデルを用いた。これにより演算処理が大幅に簡
略化し、オンライン処理に適したモデルが得られた。
In an actual process, a time constant and a dead time are required from the time when an output is normally output to the operation terminal to the time when the change is measured. Therefore, as a process model, this dynamic process is also approximated in [] in FIG. Although the mathematical model including the calculation of the time constant and the calculation of the dead time is accurate, but the purpose is to obtain the thickness profile, a static model ignoring this dynamic process was used. As a result, the calculation process was greatly simplified, and a model suitable for online processing was obtained.

【0033】制御シミュレーション手段は、以上のプロ
セスモデルで得られた厚み変化量を、実プロセスではダ
イより押し出される樹脂の量が時間当たりほぼ一定とな
るので、これを考慮してフィルムの幅方向の厚み変化量
の総和が一定になるように均一化の補正をする。そし
て、この補正後の厚み変化分を前回の制御結果に加算す
ることによって、新しいシミュレーション結果すなわち
各層の厚み出力を得るようになっている。以下、上述の
実施例による製膜例を説明する。
The control simulation means calculates the thickness change amount obtained by the above process model from the amount of resin extruded from the die in the actual process becomes substantially constant per time. The uniformization is corrected so that the sum of the thickness change amounts becomes constant. By adding the corrected thickness change to the previous control result, a new simulation result, that is, a thickness output of each layer is obtained. Hereinafter, an example of film formation according to the above-described embodiment will be described.

【0034】[0034]

【製膜例】第1の表層/隣接層(芯層)/第2の表層の
3層構成の複層フィルムを製膜した。両表層はそれぞれ
同じ樹脂を用いた。表層用のポリエステル原料として、
酢酸カリウムをジカルボン酸成分に対し12mmol
%、平均粒子径0.9μmのカオリンを0.3wt%添
加した固有粘度が0.60のポリエチレンテレフタレー
トのペレットを用い、これを170℃で3時間乾燥した
後、押出機に供給し、280℃で溶融押出した。
[Example of film formation] A multilayer film having a three-layer structure of first surface layer / adjacent layer (core layer) / second surface layer was formed. The same resin was used for both surface layers. As a polyester material for the surface layer,
12 mmol of potassium acetate based on dicarboxylic acid component
%, A pellet of polyethylene terephthalate having an intrinsic viscosity of 0.60 to which 0.3 wt% of kaolin having an average particle diameter of 0.9 μm was added, dried at 170 ° C. for 3 hours, and then supplied to an extruder. For melt extrusion.

【0035】一方、芯層用のポリオレフィン原料として
アナターゼ型チタンを1.0wt%と3,5−ジカルボ
キシベンゼンスルホン酸テトラ−n−ブチルホスホニウ
ムを0.05wt%含有させたポリプロピレン(溶融温
度Tm:152℃、メルトフローレイト:5g/10
分、エチレン共重合ポリプロピレンであり、エチレン共
重合量3mol%)のペレットを用い、100℃で1時間
乾燥した後、別の押出機に供給し、ポリエチレンテレフ
タレートと同様の温度280℃で溶融押出した。
On the other hand, polypropylene containing 1.0 wt% of anatase type titanium and 0.05 wt% of tetra-n-butylphosphonium 3,5-dicarboxybenzenesulfonate as a polyolefin raw material for the core layer (melting temperature Tm: 152 ° C., melt flow rate: 5 g / 10
The mixture was dried at 100 ° C. for 1 hour using pellets of ethylene copolymerized polypropylene (ethylene copolymerized amount: 3 mol%), fed to another extruder, and melt-extruded at the same temperature as polyethylene terephthalate at 280 ° C. .

【0036】各々の溶融ポリマーをダイ内部で合流さ
せ、ポリエチレンテレフタレート/ポリプロピレン/ポ
リエチレンテレフタレートの3層多層構造とした後、口
金から吐出させ、次いで20℃に保たれた冷却ドラムに
静電荷を印加しながら巻き付けることにより冷却固化さ
せて3層の未延伸多層フィルムとした。この未延伸多層
フィルムを加熱ロールに接触させて80℃に加熱した
後、長手方向に3.6倍延伸し、直ちに20℃まで冷却
した。続いて横方向にテンター式横延伸装置を用いて9
0℃で3.9倍延伸した後、120℃で熱処理を施し、
室温まで冷却した後巻き取った。
The respective molten polymers are merged in a die to form a three-layer multilayer structure of polyethylene terephthalate / polypropylene / polyethylene terephthalate, then discharged from a die, and then an electrostatic charge is applied to a cooling drum maintained at 20 ° C. While being wound, it was cooled and solidified to obtain a three-layer unstretched multilayer film. The unstretched multilayer film was heated to 80 ° C. by contacting it with a heating roll, stretched 3.6 times in the longitudinal direction, and immediately cooled to 20 ° C. Subsequently, 9 was performed in the transverse direction using a tenter-type transverse stretching apparatus.
After stretching 3.9 times at 0 ° C, heat-treat at 120 ° C,
After cooling to room temperature, it was wound up.

【0037】かくして得られた二軸延伸多層フィルム
は、表層のポリエチレンテレフタレート層の平均厚みが
1.5μm、芯層のポリプロピレン層の平均厚みが5μ
mであった。
In the biaxially stretched multilayer film thus obtained, the average thickness of the surface polyethylene terephthalate layer was 1.5 μm, and the average thickness of the core polypropylene layer was 5 μm.
m.

【0038】該フィルムを製造する際、全層を測定する
ための放射線透過型厚み計として、β線厚み計で全層の
厚みを測定した。また、表層の厚みを測定するための光
干渉型膜厚計として、ハロゲンランプの光を光ファイバ
ーを通してフィルムに照射し、反射した光を同軸の光フ
ァイバーで分光光度計(具体的には、大塚電子(株)製
分光光度計MCPD−2000)に導きそのときに発生
する光干渉波形をフーリエ変換し厚みの成分に分解し、
最大のピークをとる厚みをフィルム表面の厚みとする構
成を用い、これを図示のようにフィルム5の両側に設
け、両面の表層を夫々測定した。また、本測定はオンラ
インで行い、これらのデーターをもとに各層の厚みを調
整した。また、β線のヘッドのフィルムの幅方向位置と
光ファイバーのフィルムの幅方向位置は同期しており、
幅方向に置いては同じ時刻に同じ場所で測定できるよう
にした。
In producing the film, the thickness of all layers was measured with a β-ray thickness meter as a radiation transmission type thickness meter for measuring all layers. Also, as an optical interference type film thickness meter for measuring the thickness of the surface layer, a film of a halogen lamp is irradiated to the film through an optical fiber, and the reflected light is reflected by a coaxial optical fiber into a spectrophotometer (specifically, Otsuka Electronics ( Co., Ltd., a spectrophotometer MCPD-2000), and an optical interference waveform generated at that time is subjected to Fourier transform and decomposed into a thickness component.
A configuration was used in which the thickness at which the maximum peak was taken was taken as the thickness of the film surface, which was provided on both sides of the film 5 as shown in the figure, and the surface layers on both sides were measured. This measurement was performed online, and the thickness of each layer was adjusted based on these data. In addition, the width direction position of the film of the β-ray head and the width direction position of the optical fiber film are synchronized,
It was made possible to measure at the same time and at the same place in the width direction.

【0039】各厚み計で測定されたフィルムの幅方向の
厚みデータはコンピュータからなるコントローラに入力
し、下式によって各測定位置での芯層厚みを計算した。
芯層厚み測定値=全層厚み測定値−表層厚み測定値以上
の各層の厚み測定値をコントローラに入力することによ
って表層においてはヒーターからなる操作端に対して、
また芯層においてはヒートボルトからなる操作端に対す
る出力が演算され、各操作量を操作端に出力することに
よって幅方向に各層の厚み斑が良好なフィルムを得るこ
とができた。
The thickness data in the width direction of the film measured by each thickness gauge was input to a controller composed of a computer, and the core layer thickness at each measurement position was calculated by the following equation.
Core layer thickness measurement value = total layer thickness measurement value-surface layer thickness measurement value
In the core layer, the output for the operation end composed of the heat bolt was calculated, and by outputting each operation amount to the operation end, a film having good thickness unevenness of each layer in the width direction could be obtained.

【0040】この時コントローラ内の制御手段の制御シ
ミュレーション手段に用いたプロセスモデルのプロセス
ゲインAijの値を表1に示す。表で自層が制御対象のの
当該層である。
Table 1 shows the values of the process gains Aij of the process models used for the control simulation means of the control means in the controller. In the table, the own layer is the layer to be controlled.

【0041】[0041]

【表1】 [Table 1]

【0042】表1より、本例での前述の線形多層モデル
は次式となる。
From Table 1, the above-described linear multilayer model in this example is given by the following equation.

【0043】[0043]

【数3】△H1(n)=0.5 △OH1(n)+0.3△OR(n)+
0.1△OH2(n) △R(n)=0.2△OH1(n)+0.4△OR(n)+0.2△OH
2(n) △H2(n)=0.1△OH1(n)+0.3△OR(n)+0.5△O
H2(n) また、干渉率Bk,nの値を表2に示す。
[Equation 3] ΔH1 (n) = 0.5 ΔOH1 (n) +0.3 ΔOR (n) +
0.1 △ OH2 (n) △ R (n) = 0.2 △ OH1 (n) + 0.4 △ OR (n) + 0.2 △ OH
2 (n) △ H2 (n) = 0.1 △ OH1 (n) + 0.3 △ OR (n) + 0.5 △ O
H2 (n) Table 2 shows the values of the interference rates Bk, n.

【0044】[0044]

【表2】 [Table 2]

【0045】表2より、本例での線形干渉モデルは次式
となる。
From Table 2, the linear interference model in this example is as follows.

【0046】[0046]

【数4】H1(n)=0.2△H1(n-2)+0.5△H1(n-1)
+△H1(n)+0.5△H1(n+1)+0.2△H1(n+2) R(n)= 0.3△R(n-2)+0.6△R(n-1)+△R(n)
+ 0.6△R(n+1)+0.3△R(n+2) H2(n)=0.2△H2(n-2)+0.5△H2(n-1)+△H2
(n)+0.5△H2(n+1)+0.2△H2(n+2)
H1 (n) = 0.2 (H1 (n-2) + 0.5 △ H1 (n-1)
+ △ H1 (n) + 0.5 △ H1 (n + 1) + 0.2 △ H1 (n + 2) R (n) = 0.3 △ R (n-2) + 0.6 △ R (n-1 ) + △ R (n)
+ 0.6 △ R (n + 1) + 0.3 △ R (n + 2) H2 (n) = 0.2 △ H2 (n-2) + 0.5 △ H2 (n-1) + △ H2
(n) +0.5@H2 (n + 1) +0.2@H2 (n + 2)

【0047】この時各層各操作端毎のプロセスゲイン、
干渉率を入力すべきであるが、測定、入力が煩雑である
こと、同じ層であれば、ばらつきを無視しても制御性に
大きな影響がなかったことから同層の各操作端で同一と
した。
At this time, a process gain for each operation end of each layer,
The interference rate should be input, but the measurement and input are complicated, and if the same layer, ignoring the variation did not greatly affect the controllability. did.

【0048】各層厚みプロファイルにおける厚み斑のば
らつきが調整前に20%であり、調整後5%以内に入る
までの時間が従来の方法では8時間費やした。これに対
し本調整方法で製膜した結果、1時間で厚み斑のばらつ
きを5%以内に収束させることができた。
The unevenness of the thickness unevenness in each layer thickness profile was 20% before the adjustment, and the time required to fall within 5% after the adjustment was 8 hours in the conventional method. On the other hand, as a result of forming a film by the present adjustment method, the unevenness in thickness unevenness could be converged within 5% in one hour.

【0049】[0049]

【発明の効果】以上のとおり、本発明では従来の多点制
御手段で多層フィルム各層の厚みプロファイルを調整す
るのに非常に多くの時間を費やしていたのに対し、短時
間で目標品質である厚みに制御でき、歩留まりを飛躍的
に向上できる。
As described above, according to the present invention, the conventional multi-point control means spends a great deal of time adjusting the thickness profile of each layer of the multilayer film. The thickness can be controlled, and the yield can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施例の基本構成の説明図で
ある。
FIG. 1 is an explanatory diagram of a basic configuration of an embodiment of the present invention.

【図2】図2は、厚み制御の基本構成のブロック図であ
る。
FIG. 2 is a block diagram of a basic configuration of thickness control.

【図3】図3は、実施例の制御手段のフローチャート図
である。
FIG. 3 is a flowchart of a control unit according to the embodiment.

【図4】図4は、実施例のプロセスモデルのフローチャ
ート図である。
FIG. 4 is a flowchart of a process model according to the embodiment.

【符号の説明】[Explanation of symbols]

1 ダイ 2 表層厚みアクチュエータ 3 芯層厚みアクチュエータ 4 冷却ドラム 5 フィルム 6 延伸装置 7 全層厚み計 8 表層厚み計 9 巻き取り装置 10 コントローラ DESCRIPTION OF SYMBOLS 1 Die 2 Surface thickness actuator 3 Core layer thickness actuator 4 Cooling drum 5 Film 6 Drawing device 7 Total thickness gauge 8 Surface thickness gauge 9 Winding device 10 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 司 神奈川県相模原市小山3丁目37番19号 帝 人株式会社相模原研究センター内 Fターム(参考) 4F207 AA04 AA24 AG01 AG03 AP11 AQ01 AQ03 AR12 KA01 KA17 KB22 KL65 KL76 KL84 KM06 KM15  ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Tsukasa Nishimura 3-37-19 Koyama, Sagamihara-shi, Kanagawa F-term in Sagamihara Research Center, Teijin Limited 4F207 AA04 AA24 AG01 AG03 AP11 AQ01 AQ03 AR12 KA01 KA17 KB22 KL65 KL76 KL84 KM06 KM15

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 溶融樹脂からフィルムを成型するダイの
全幅に亘って配設されたダイの所定幅毎の厚みを調整す
る複数の操作端と、フィルム幅方向における少なくとも
該操作端の夫々に対応する各測定点でフィルムの厚みを
測定する厚み計と、所定の周期で測定された各厚み測定
値と予め設定された各目標値とから各操作端を制御する
制御手段とを備え、製造されるフィルムの厚みを該目標
値に制御するようにしたフィルムの厚み制御装置におい
て、前記制御手段が、前記厚み測定値と目標値から数式
モデルからなるプロセスモデルに基いて設定した所定の
制御動作の制御結果をシミュレーションする制御シミュ
レーション手段を備え、この制御シミュレーション手段
で得られる制御出力により前記操作端を制御するように
なされていることを特徴とするフィルムの厚み制御装
置。
1. A plurality of operation ends for adjusting a thickness of a die provided for a predetermined width disposed over the entire width of a die for molding a film from a molten resin, and corresponding to at least each of the operation ends in the film width direction. A thickness gauge for measuring the thickness of the film at each measurement point, and control means for controlling each operation terminal from each thickness measurement value measured at a predetermined cycle and each preset target value, and manufactured. In the film thickness control device configured to control the thickness of the film to the target value, the control means performs a predetermined control operation set based on a process model consisting of a mathematical model from the thickness measurement value and the target value. A control simulation means for simulating a control result, wherein the control end is controlled by a control output obtained by the control simulation means. Characteristic film thickness control device.
【請求項2】 制御シミュレーション手段は、演算した
制御結果が収束したか否かを判定する収束判定手段を備
え、入力された前記厚み測定値及び目標値に基いて求め
た第1の制御結果が収束判定手段で収束と判定されない
時は、該第1の制御結果を次の厚み測定値として第2の
制御結果を求め、収束判定手段で判定する手順をその制
御結果が収束判定手段で収束と判定されるまで繰り返し
演算し、収束と判定された時の制御出力を前記操作端に
出力するようになされている請求項1記載のフィルムの
厚み制御装置。
The control simulation means includes convergence determination means for determining whether or not the calculated control result has converged, and the first control result obtained based on the input thickness measurement value and target value is determined. If the convergence determining means does not determine convergence, the first control result is used as the next thickness measurement value to obtain a second control result, and the procedure for determining by the convergence determining means determines that the control result is converged by the convergence determining means. The film thickness control device according to claim 1, wherein the calculation is repeatedly performed until the determination is made, and a control output when the convergence is determined is output to the operation terminal.
【請求項3】 前記プロセスモデルが静的な一次線形モ
デルである請求項1又は2記載のフィルムの厚み制御装
置。
3. The film thickness control device according to claim 1, wherein said process model is a static linear first-order model.
【請求項4】 前記プロセスモデルが近隣の複数の操作
端の相互干渉を干渉率を係数とした一次式で近似した線
形干渉モデルである請求項3記載のフィルムの厚み制御
装置。
4. The film thickness control device according to claim 3, wherein the process model is a linear interference model obtained by approximating mutual interference between a plurality of neighboring operation ends by a linear expression using a coefficient of interference as a coefficient.
【請求項5】 フィルムが2層以上の複層フィルムであ
り、前記プロセルモデルが他層の操作端からの当該層へ
の影響をプロセスゲインを係数とした一次式で近似した
線形多層モデルである請求項4記載のフィルムの厚み制
御装置。
5. The film is a multilayer film having two or more layers, and the process model is a linear multilayer model obtained by approximating the influence of the operation end of another layer on the layer by a linear equation using a process gain as a coefficient. The film thickness control device according to claim 4.
【請求項6】 制御手段が、前記各厚み測定値が定常状
態にあるか否か判定する状態判定手段を備え、所定周期
で入力される前記各厚み測定値が定常状態にあると判定
された時は操作端への制御出力は現状のままとし、定常
状態でないと判定された時は、該各厚み測定値から制御
シミュレーション手段で得られた制御出力を操作端へ出
力するようになされている請求項1〜5記載のいずれか
のフィルムの厚み制御装置。
6. A control unit comprising state determination means for determining whether or not each of the thickness measurement values is in a steady state, wherein each of the thickness measurement values input in a predetermined cycle is determined to be in a steady state. At this time, the control output to the operation terminal is kept as it is, and when it is determined that the control output is not in the steady state, the control output obtained by the control simulation means from each of the thickness measurement values is output to the operation terminal. The film thickness control device according to claim 1.
【請求項7】 収束判定手段が、状態判定手段を兼ねて
いる請求項6記載のフィルムの厚み制御装置。
7. The film thickness control device according to claim 6, wherein the convergence determination means also functions as a state determination means.
【請求項8】 収束判定手段は、厚み測定値又はシミュ
レーションの制御結果が設定した閾値内の時収束と判定
する請求項7記載のフィルムの厚み制御装置。
8. The film thickness control device according to claim 7, wherein the convergence determination means determines convergence when the measured thickness value or the control result of the simulation is within a set threshold value.
JP26952198A 1998-09-24 1998-09-24 Film thickness control device Expired - Fee Related JP3874943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26952198A JP3874943B2 (en) 1998-09-24 1998-09-24 Film thickness control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26952198A JP3874943B2 (en) 1998-09-24 1998-09-24 Film thickness control device

Publications (2)

Publication Number Publication Date
JP2000094497A true JP2000094497A (en) 2000-04-04
JP3874943B2 JP3874943B2 (en) 2007-01-31

Family

ID=17473560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26952198A Expired - Fee Related JP3874943B2 (en) 1998-09-24 1998-09-24 Film thickness control device

Country Status (1)

Country Link
JP (1) JP3874943B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024434A1 (en) * 2000-09-21 2002-03-28 Toray Industries, Inc. Method of manufacturing sheet, device and program for controlling sheet thickness, and sheet
JP2003089146A (en) * 2000-09-21 2003-03-25 Toray Ind Inc Sheet manufacturing method and sheet thickness control unit
CN112996647A (en) * 2018-11-06 2021-06-18 温德默勒及霍乐沙两合公司 Method and device for controlling the nozzle gap of an outlet nozzle of a flat film machine
US11964419B2 (en) 2018-11-06 2024-04-23 Windmöller & Hölscher Kg Method and device for controlling a thickness profile of a film web
US11964418B2 (en) 2018-11-06 2024-04-23 Windmöller & Hölscher Kg Adjusting device and method for controlling an exit thickness of a nozzle exit gap of a flat film machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024434A1 (en) * 2000-09-21 2002-03-28 Toray Industries, Inc. Method of manufacturing sheet, device and program for controlling sheet thickness, and sheet
JP2003089146A (en) * 2000-09-21 2003-03-25 Toray Ind Inc Sheet manufacturing method and sheet thickness control unit
US6856855B2 (en) 2000-09-21 2005-02-15 Toray Industries, Inc. Method of manufacturing sheet, device and program for controlling sheet thickness, and sheet
KR100847056B1 (en) * 2000-09-21 2008-07-17 도레이 가부시끼가이샤 Method of manufacturing sheet, device and computer readable recording medium having program for controlling sheet thickness
CN112996647A (en) * 2018-11-06 2021-06-18 温德默勒及霍乐沙两合公司 Method and device for controlling the nozzle gap of an outlet nozzle of a flat film machine
US11964419B2 (en) 2018-11-06 2024-04-23 Windmöller & Hölscher Kg Method and device for controlling a thickness profile of a film web
US11964418B2 (en) 2018-11-06 2024-04-23 Windmöller & Hölscher Kg Adjusting device and method for controlling an exit thickness of a nozzle exit gap of a flat film machine
CN112996647B (en) * 2018-11-06 2024-04-30 温德默勒及霍乐沙两合公司 Method and device for controlling nozzle gap of outlet nozzle of flat film machine

Also Published As

Publication number Publication date
JP3874943B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP3828950B2 (en) Method for calculating position corresponding to die bolt on biaxially stretched film and method for controlling thickness of biaxially stretched film using the same calculation method
KR101983397B1 (en) Method for producing film roll
JP2612244B2 (en) Method for controlling thickness of stretched resin film
WO1988000522A1 (en) Method and apparatus for producing thermoplastic resin film
JP2000094497A (en) Film thickness control device
EP0608918B1 (en) Film thickness controller
JP2000071309A (en) Manufacture of film
JP3631636B2 (en) Film winding method
JP3973755B2 (en) Multilayer extrusion molding method and apparatus
JP2014162186A (en) Extrusion t-die apparatus
JP2001030340A (en) Apparatus and method for controlling thickness of film
CN111688153A (en) Resin film manufacturing apparatus and resin film manufacturing method
JP2000211016A (en) Method for controlling thickness profile of film
JP2000141447A (en) Thickness control device for multilayer film
JPS6034827A (en) Controlling method of power for heating primary molded article for molding bottle by biaxial orientation blow molding
JP2003089146A (en) Sheet manufacturing method and sheet thickness control unit
JP2014061615A (en) Extrusion t die apparatus
WO2002024433A1 (en) Method of manufacturing sheet
Kocić et al. Single screw extruder temperature control using PLC and HMI in cable production process
JP2002087690A (en) Method of manufacturing film roll
Doli Analysis of fused deposition modeling process for additive manufacturing of Abs parts
JPH09141736A (en) Biaxially stretched polyester film and production thereof
JP2001310372A (en) Method for controlling thickness of plastic sheet
Chistyakova et al. Mathematical Models and Data Processing Methods for Improving the Efficiency of High-Tech Production of Polymeric Films
CN115302678B (en) Method for controlling casting technological parameters of packaging material for plastic molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees