JPS5817360A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS5817360A
JPS5817360A JP56115137A JP11513781A JPS5817360A JP S5817360 A JPS5817360 A JP S5817360A JP 56115137 A JP56115137 A JP 56115137A JP 11513781 A JP11513781 A JP 11513781A JP S5817360 A JPS5817360 A JP S5817360A
Authority
JP
Japan
Prior art keywords
frequency
vibrator
transducer
ultrasonic
ultrasonic beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56115137A
Other languages
Japanese (ja)
Inventor
Chihiro Kasai
河西 千広
Takeshi Fujie
藤江 健
Hiroaki Ookawai
宏明 大川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP56115137A priority Critical patent/JPS5817360A/en
Publication of JPS5817360A publication Critical patent/JPS5817360A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals

Abstract

PURPOSE:To enable the switching of frequency of an ultrasonic beam in a wide range by selectively connecting a plurality of frequency varying elements to a vibrator formed with a high molecular piezo-electric film. CONSTITUTION:A sound absorbing material is laminated on a vibrator 10 formed with a high molecular piezo-electric film to make the frequency of the vibrator 10 a side band. A frequency setting circuits 20-1-20-n in which turning coils as frequency varying element and damping resistances are combined in parallel are selected as desired with a selection switch 22 and connected in parallel to the vibrator 10. The frequency of an ultrasonic beam transmitted ore received with the vibrator 10 is determined by the capacity of the vibrator 10 and the inductance of a frequency selection circulation circuit selected with the selector switch 22. Thus, an ultrasonic beams can be obtained in a desired frequency according to part to be inspected by the operation of the selector switch 22.

Description

【発明の詳細な説明】 本発明は超音波探触子、特に超音波ビームの周波数の調
整を行う超音波探触子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved ultrasonic probe, particularly an ultrasonic probe that adjusts the frequency of an ultrasonic beam.

超音波探触子を被検体に押し当て、この探触子の探触子
面に設けられた振動子から被検体中に超音波ビームを放
射し、被検体内の音響インピーダンスの差から得られる
反射エコーを上記振動子で受波し、探触子と別体に設け
た表示装置で所望断層面に沿った断層像を画像表示する
超音波診断装置が一般に用いられている。このようなパ
ルスエコー法を用いた超音波診断装置においては、被検
体の被検部位に応じ、それに適した周波数の超音波ビー
ムを使用する必要がある。一般に、超音波診断に用いら
れる周波数は1〜15 MHz程度である。
An ultrasonic probe is pressed against the subject, and an ultrasonic beam is emitted into the subject from a transducer installed on the probe surface of the probe, which is obtained from the difference in acoustic impedance within the subject. Ultrasonic diagnostic apparatuses are generally used in which the reflected echoes are received by the transducer and a tomographic image along a desired tomographic plane is displayed on a display device provided separately from the probe. In an ultrasonic diagnostic apparatus using such a pulse echo method, it is necessary to use an ultrasonic beam of an appropriate frequency depending on the region to be examined of the subject. Generally, the frequency used for ultrasonic diagnosis is about 1 to 15 MHz.

すなわち、高い周波数を用いると、微細な組織の変化を
見分けることができる反面、生体内での超音波の減衰が
増加して深部まで到達しなくなる欠点が生じ、低い周波
数を用いた場合には、この逆となるため、被検部位に応
じ、例えば、乳腺、腹部などの診断には、2.25 M
Hz 、あるいは5 MHz、眼球などの診断には、1
5 MHzの超音波ビームが使い分けられている。
In other words, when using a high frequency, it is possible to distinguish minute changes in tissue, but on the other hand, the attenuation of ultrasound waves in the body increases, making it impossible to reach deep tissue, and when using a low frequency, The opposite is true, so depending on the area to be examined, for example, 2.25 M for diagnosis of mammary glands, abdomen, etc.
Hz or 5 MHz, 1 for diagnosis of eyeballs, etc.
5 MHz ultrasonic beams are used separately.

従来、このような超音波診断においては、用いられる超
音波探触子が単一周波数の超音波ビームしか送受波でき
なかったため、被検部位に応じた複数の超音波探触子を
用意する必要がちシ、不便であった。このため、必要に
応じ、異なる周波数の超音波ビームを送受波できる機能
を備えた超音波探触子の開発が望まれていた。しかしな
がら、従来、探触子に用いられている振動子には、セラ
ミツノ等の圧電材料が用いられていただめ、十分な周波
数帯域を得ることはできなかった。すなわち、セラミッ
ク等の圧電材料で形成された振動子の音響インピーダン
スは30 x 10’kg/m2sであり、生体内の音
響インピーダンス1.5 X 10’ kg/m2sに
比し非常に大きいため、得られる周波数帯域は非常に狭
くなってしまう。
Conventionally, in this type of ultrasound diagnosis, the ultrasound probes used could only transmit and receive ultrasound beams of a single frequency, so it was necessary to prepare multiple ultrasound probes depending on the area to be examined. Unfortunately, it was inconvenient. For this reason, it has been desired to develop an ultrasonic probe that is capable of transmitting and receiving ultrasonic beams of different frequencies as necessary. However, since piezoelectric materials such as ceramic horn have been used for vibrators used in conventional probes, it has not been possible to obtain a sufficient frequency band. In other words, the acoustic impedance of a vibrator made of a piezoelectric material such as ceramic is 30 x 10' kg/m2s, which is much larger than the acoustic impedance in a living body of 1.5 x 10' kg/m2s, so it is difficult to obtain The frequency band that can be used becomes extremely narrow.

第1図はこのような従来の探触子の説明図である。10
はセラミック等の圧電材料を用いて形成された振動子で
あり、その前面には超音波ビームを透過する音響マツチ
ング層12が積層されている。
FIG. 1 is an explanatory diagram of such a conventional probe. 10
is a vibrator formed using a piezoelectric material such as ceramic, and an acoustic matching layer 12 that transmits an ultrasonic beam is laminated on the front surface of the vibrator.

前述のように、上記振動子10の音響インピーダンスは
生体内のそれに比し20倍もの大きさがあるため、この
ままでは1周波数帯域幅が狭く、ハルスエコー法を用い
る探触子には使用できない。そこで、通常は振動子10
の裏面に音波吸収材14を積層し、振動子10の振動を
ダンピングしている。しかし、このように音波吸収材1
4を用いても、この吸収材14の音響インピーダンスが
6 x lo’ kg/m2s 、すなわち振動子10
の5分の1程度であるため、振動子10の周波数帯域は
十分に改善されない。従って。
As mentioned above, since the acoustic impedance of the vibrator 10 is 20 times larger than that in the living body, the single frequency bandwidth is narrow and it cannot be used as a probe using the Hals echo method. Therefore, usually 10 vibrators
A sound wave absorbing material 14 is laminated on the back surface of the vibrator 10 to damp vibrations of the vibrator 10. However, in this way, the sound wave absorbing material 1
4, the acoustic impedance of the absorber 14 is 6 x lo' kg/m2s, that is, the oscillator 10
The frequency band of the vibrator 10 is not sufficiently improved. Therefore.

このように構成された探触子から送受波される超音波ビ
ームの周波数を変化させるため、振動子10に周波数可
変素子としての同調用コイル16およびダンピング用抵
抗18を並列に接続し、そのインダクタンス値を変化さ
せても、振動子10の音響インピーダンスが生体内のそ
れに比[2大きすぎるため、超音波ビームの周波数変化
はほとんど得られなかった。
In order to change the frequency of the ultrasonic beam transmitted and received from the probe configured in this way, a tuning coil 16 and a damping resistor 18 as frequency variable elements are connected in parallel to the transducer 10, and the inductance Even if the value was changed, almost no change in the frequency of the ultrasound beam could be obtained because the acoustic impedance of the transducer 10 was too large by [2] compared to that in the living body.

本発明は前述した従来の課題に鑑みなされたもので、そ
の目的は超音波ビームの周波数の切替を必要に応じて広
範囲に行える超音波探触子を提供することにある。
The present invention was made in view of the above-mentioned conventional problems, and its purpose is to provide an ultrasonic probe that can switch the frequency of an ultrasonic beam over a wide range as necessary.

上記目的を達成するため、本発明は高分子圧電フィルム
を用いて形成され被検体に超音波ビームを送受波する振
動子と、この振動子に接続される複数の周波数可変素子
と、任意の周波数可変素子を選択的に上記振動子に接続
し振動子が送受波する超音波ビームの周波数の切替を行
う切替スイッチと、を備えたことを特徴とする0 次に本発明の好適な実施例を説明する。
In order to achieve the above object, the present invention includes a transducer formed using a polymer piezoelectric film and transmitting and receiving an ultrasonic beam to a subject, a plurality of variable frequency elements connected to this transducer, A changeover switch that selectively connects a variable element to the vibrator and switches the frequency of the ultrasonic beam transmitted and received by the vibrator.0 Next, a preferred embodiment of the present invention will be described. explain.

第2図は本発明の超音波探触子の電気回路図である。こ
こにおいて、10は振動子であり、高分子圧電フィルム
を用いて形成されている。
FIG. 2 is an electrical circuit diagram of the ultrasonic probe of the present invention. Here, 10 is a vibrator, which is formed using a polymer piezoelectric film.

なお高分子圧電フィルムとは、ポリ弗化ビニリデン、ポ
リ弗化ビニルおよびこれらを主成分とする共重合体、更
にはこれらと強誘電体セラミック粉末の混合体を成極し
て得られる圧電体を意味する0 高分子圧電フィルムは一般にその音響インピーダンスが
生体内の音響インピーダンスに近く、例えば、高分子圧
電フィルムとしてPVDF(ポリ弗化ビニリデン)を用
いると、その音響インビーダン′スは4 X 10’ 
kg/m2s、すなわち、生体内の音響インピーダンス
の約2.7倍となり、音響吸収材を用いなくても、広帯
域特性をもった探触子が容易に実現できる。また上記高
分子圧電フィルムを用いて形成された振動子10に音響
吸収材を積層すれば、振動子100周波数帯域を更に広
帯域とすることができる。20−1.20−2.・・・
・・・はそれぞれ周波数可変素子としての同調用コイル
およびダンピング抵抗を並列に組み合わせてなる周波数
設定回路であり、この各回路20−1.20−2.・・
・・・・の同調用コイルには、それぞれ異なるインダク
タンスのものを用いてい10と並列に接続される。なお
この切替スイッチ22には、リレースイッチを用いると
、その操作を簡単に行うことができ、便利である。
Polymer piezoelectric film refers to piezoelectric materials obtained by polarizing polyvinylidene fluoride, polyvinyl fluoride, copolymers containing these as main components, and mixtures of these and ferroelectric ceramic powders. Meaning 0 Polymer piezoelectric films generally have an acoustic impedance close to that in vivo. For example, when PVDF (polyvinylidene fluoride) is used as a polymer piezoelectric film, its acoustic impedance is 4 x 10'.
kg/m2s, that is, about 2.7 times the acoustic impedance in the living body, and a probe with broadband characteristics can be easily realized without using an acoustic absorbing material. Further, by laminating an acoustic absorbing material on the vibrator 10 formed using the above polymer piezoelectric film, the frequency band of the vibrator 100 can be made even wider. 20-1.20-2. ...
. . . are frequency setting circuits formed by combining a tuning coil and a damping resistor in parallel as frequency variable elements, and each of the circuits 20-1, 20-2.・・・
The tuning coils 10 and 10 each have different inductances and are connected in parallel. Note that it is convenient to use a relay switch as the changeover switch 22 because it can be easily operated.

本発明の実施例は以上の構成から成シ、以下その作゛用
を説明する。
The embodiment of the present invention consists of the above configuration, and its operation will be explained below.

第3図にお諭て、Aは本発明の振動子10、つまりPV
DF高分子圧電フィルムの周波数特性を示し、Bはセラ
ミック圧電材料の周波数特性を示す。同図からも明らか
なように、本発明の振動子10は極めて良好な広帯域の
周波数特性を示し、そのため、振動子10から送受波さ
れる超音波ビームの周波数は、振動子lOの容量と切替
スイッチ22により選択され、この振動子10に並列に
接続される任意の周波数設定回路20−1.20−2.
・・・・・・のインダクタンスとにより一義的に決定さ
れる。すなわち、振動子10の電気容量をCとし、選択
された周波数設定回路の同調用コイルめインダクタンス
をLとすると、振動子10から送受波される超音波ビー
ムの周波数fは、’=2.r07で与えられる。ここに
おいて、各周波数設定回路20−1.20−2.・・・
・・・の同調用コイルは、それぞれ異なる値であるため
、切替スイッチ22の切替操作により、被検部位に応じ
た任意の周波数の超音波ビームを簡単に得ることができ
る。
Referring to FIG. 3, A is the vibrator 10 of the present invention, that is, the PV
DF shows the frequency characteristics of the polymer piezoelectric film, and B shows the frequency characteristics of the ceramic piezoelectric material. As is clear from the figure, the transducer 10 of the present invention exhibits extremely good broadband frequency characteristics, and therefore the frequency of the ultrasonic beam transmitted and received from the transducer 10 is switched by the capacitance of the transducer IO. Any frequency setting circuit 20-1, 20-2, . selected by the switch 22 and connected in parallel to this vibrator 10.
It is uniquely determined by the inductance of... That is, if the electric capacity of the transducer 10 is C, and the tuning coil inductance of the selected frequency setting circuit is L, then the frequency f of the ultrasonic beam transmitted and received from the transducer 10 is '=2. It is given in r07. Here, each frequency setting circuit 20-1, 20-2. ...
The tuning coils have different values, so by switching the changeover switch 22, it is possible to easily obtain an ultrasonic beam of any frequency depending on the region to be examined.

なお上記実施例においては、振動子10の電気容量Cを
一定とし、切替スイッチ22により接続される同調用コ
イルのインダクタンスを変化させ、超音波ビームの周波
数を設定する探触子を説明した。
In the above embodiment, a probe was described in which the electric capacitance C of the transducer 10 is constant and the inductance of the tuning coil connected by the changeover switch 22 is changed to set the frequency of the ultrasonic beam.

しかし、これに限らず、振動子JOの電気容量をも変化
させ、超音波ビームの周波数を設定する構造とすること
も可能である。
However, the present invention is not limited to this, and it is also possible to have a structure in which the electric capacity of the vibrator JO is also changed to set the frequency of the ultrasonic beam.

第4図および第5図はこのような探触子の説明図である
。本実施例は振動子10の電極構造にその特徴があり、
一方の電極24は振動子10の一面全域に積層され、他
方の電極26は振動子10の他面中央部に積層される第
1の電極26aと、この第1の電極26aに沿って振動
子10の他面外周部に積層される第2の電極26bとか
ら成る。そして、この第2の電極26bはスイツ、チあ
によりオン・オフされる。
FIGS. 4 and 5 are explanatory diagrams of such a probe. This embodiment is characterized by the electrode structure of the vibrator 10,
One electrode 24 is laminated over the entire surface of the vibrator 10, and the other electrode 26 includes a first electrode 26a laminated at the center of the other surface of the vibrator 10, and a vibrator along the first electrode 26a. 10, and a second electrode 26b laminated on the outer periphery of the other surface of 10. The second electrode 26b is turned on and off by the switch and the switch.

ここにおいて、第1の電極26aと電極24とに挾まれ
た振動子10の電気容量をC1、第2の電極26bと電
極24とに挾まれた振動子10の電気容量を02とし、
この振動子10と並列に接続される周波数設定回路の同
調用コイルのインダクタンスをLとすると、スイッチ路
をオフしたときに振動子lOが送受波する超音波ビーム
の周波数はf1=   ’−一と2πqゴで丁 な9、スイッチ28をオンしたときに振動子10が送受
波する超音波ビームの周波数はf2= ’2 *V’T
□1゜と々る。
Here, the capacitance of the vibrator 10 sandwiched between the first electrode 26a and the electrode 24 is C1, the capacitance of the vibrator 10 sandwiched between the second electrode 26b and the electrode 24 is 02,
If the inductance of the tuning coil of the frequency setting circuit connected in parallel with this transducer 10 is L, then the frequency of the ultrasonic beam transmitted and received by the transducer lO when the switch path is turned off is f1='-1. The frequency of the ultrasonic beam transmitted and received by the transducer 10 when the switch 28 is turned on is f2 = '2 *V'T
□1°.

なお本実施例においては、単に超音波ビームの周波数の
切替が可能なばかりで力く、同時、に超音波ビームのパ
ターンの切替をも行うことができる。
In this embodiment, it is possible not only to simply switch the frequency of the ultrasonic beam, but also to switch the pattern of the ultrasonic beam at the same time.

一般に、口径の小さい振動子から放射される超音波ビー
ムは近距離でピームロ径が小さく遠距離でそのピームロ
径が大きく広がる。また口径の大きい振動子から放射さ
れる超音波ビームは近距離ではピームロ径が大きいが、
遠距離になると、口径の小さな振動子から放射される超
音波ビームの口径に比し、そのピームロ径は小さくなる
。またこの超音波ビームが放射される被検体、つまり生
体内における超音波ビームの減衰は周波数の高いほど大
きい。従って、スイッチ路のオン・オフによシ、第6図
に示すように、異なったノくターンの超音波ビームを放
射することができる。まずスイッチ路をオフすると、実
質的に超音波ビームを放射する振動子10の口径が小さ
くなり1口径の小さな超音波ビームが放射される。そし
て、この超音波ビームの周波数はスイッチ路をオンした
ときに比し高いから、図中Xで示すように、スイッチ路
をオフすると、近距離は高い周波数を有する細いビーム
で診断することができる。またスイッチ28をオンする
と、実質的に超音波ビームを放射する振動子100口径
が大きくなり、しかも、超音波ビームの周波数も低くな
るから、図中Yで示すように、遠距離を低い周波数を有
する太い超音波ビームで診断することができる0 本実施例においては、振動子の電極の一方を2分割した
ものを示したが、これに限らず、振動子の電極を3分割
以上することも可能である。まだ振動子10を電極26
とともに分割す、ることも可能である。
Generally, an ultrasonic beam emitted from a small-diameter transducer has a small beam diameter at short distances and a large beam diameter at long distances. In addition, the ultrasonic beam emitted from a large-diameter transducer has a large beam diameter at short distances, but
As the distance increases, the beam diameter becomes smaller compared to the diameter of the ultrasonic beam emitted from the small-diameter transducer. Further, the higher the frequency, the greater the attenuation of the ultrasonic beam in the subject to be radiated, that is, in the living body. Therefore, depending on whether the switch path is turned on or off, ultrasonic beams with different nodules can be emitted as shown in FIG. First, when the switch path is turned off, the aperture of the transducer 10 that emits the ultrasonic beam becomes substantially smaller, and an ultrasonic beam as small as one aperture is emitted. Since the frequency of this ultrasonic beam is higher than when the switch path is turned on, when the switch path is turned off, as shown by the X in the figure, short distances can be diagnosed using a thin beam with a high frequency. . Furthermore, when the switch 28 is turned on, the aperture of the transducer 100 that emits the ultrasonic beam becomes larger, and the frequency of the ultrasonic beam also becomes lower. In this example, one of the electrodes of the transducer is divided into two parts, but the electrode of the transducer can be divided into three or more parts. It is possible. Still connecting the vibrator 10 to the electrode 26
It is also possible to divide both.

なお本実施例においては、振動子に対し周波数可変素子
を並列に接続し、並列共振を利用して超音波ビームの周
波数を切り替える探触子を示したが、これに限らず、直
列共振を利用して超音波ビームの周波数を切り替える構
造としてもよい。
Although this example shows a probe in which a variable frequency element is connected in parallel to a transducer and the frequency of the ultrasound beam is switched using parallel resonance, the probe is not limited to this, and may also use series resonance. It is also possible to adopt a structure in which the frequency of the ultrasonic beam is switched by changing the frequency of the ultrasonic beam.

以上のように、本発明によれば、振動子を高分子圧電フ
ィルムを用いて形成し、その音響インピーダンスを生体
内の音響インピーダンスに近づけることにより、振動子
から送受波される超音波ビームの周波数の切替を必要に
応じて広範囲に行うことの可能な超音波探触子を提供す
ることができる。
As described above, according to the present invention, the transducer is formed using a polymer piezoelectric film, and the acoustic impedance of the transducer is made close to that in the living body, thereby increasing the frequency of the ultrasonic beam transmitted and received from the transducer. It is possible to provide an ultrasonic probe that can perform switching over a wide range as necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波振動子の構造説明図、 第2図は本発明の超音波振動子の一実施例を示す電気回
路図、 第3図はその振動子の特性図、 第4図は本発明の他の実施例を示す説明図、第5図はそ
の電極構造の説明図、 第6図はその超音波ビームのパターンを示す説明図であ
る。 各図中同一部材には同一符号を付し、10は振動子、2
0−1.20−2.・・・・・・は周波数可変素子から
成る周波数設定回路、22は切替スイッチ、24 、2
6は電極である。 第1 図 才2図 才3図 目波数
Fig. 1 is an explanatory diagram of the structure of the ultrasonic transducer, Fig. 2 is an electric circuit diagram showing an embodiment of the ultrasonic transducer of the present invention, Fig. 3 is a characteristic diagram of the transducer, and Fig. 4 is the book. FIG. 5 is an explanatory diagram showing another embodiment of the invention, FIG. 5 is an explanatory diagram of its electrode structure, and FIG. 6 is an explanatory diagram showing its ultrasonic beam pattern. The same members in each figure are given the same reference numerals, 10 is a vibrator, 2 is
0-1.20-2. . . . is a frequency setting circuit consisting of a frequency variable element, 22 is a changeover switch, 24, 2
6 is an electrode. 1st figure, 2nd figure, 3rd figure, wave number

Claims (1)

【特許請求の範囲】[Claims] (1)高分子圧電フィルムを用いて形成され被検体に超
音波ビームを送受波する振動子と、この振動子に接続さ
れる複数の周波数可変素子と、任意の周波数可変素子を
選択的に上記振動子に接続し振動子が送受波する超音波
ビームの周波数の切替を行う切替スイッチと、を備えた
ことを特徴とする超音波探触子。 (2、特許請求の範囲(1)記載の超音波探触子におい
て、振動子の電極を複数に分割し、超音波を送受波する
振動子の実質振動面の面積を調整自在としたことを特徴
とする超音波探触子。
(1) A transducer formed using a polymeric piezoelectric film and transmitting and receiving an ultrasound beam to the subject, a plurality of frequency variable elements connected to this transducer, and any frequency variable element selectively An ultrasonic probe comprising: a changeover switch connected to a transducer to switch the frequency of an ultrasonic beam transmitted and received by the transducer. (2. In the ultrasonic probe described in claim (1), the electrode of the vibrator is divided into a plurality of parts, and the area of the substantial vibrating surface of the vibrator that transmits and receives ultrasonic waves can be freely adjusted. Features of ultrasonic probe.
JP56115137A 1981-07-24 1981-07-24 Ultrasonic probe Pending JPS5817360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115137A JPS5817360A (en) 1981-07-24 1981-07-24 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115137A JPS5817360A (en) 1981-07-24 1981-07-24 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS5817360A true JPS5817360A (en) 1983-02-01

Family

ID=14655194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115137A Pending JPS5817360A (en) 1981-07-24 1981-07-24 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS5817360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641956A (en) * 1987-06-24 1989-01-06 Hitachi Medical Corp Ultrasonic probe
JP2007185525A (en) * 2007-03-14 2007-07-26 Toshiba Corp Ultrasonic diagnostic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182987A (en) * 1975-01-17 1976-07-21 Tokyo Shibaura Electric Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182987A (en) * 1975-01-17 1976-07-21 Tokyo Shibaura Electric Co

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641956A (en) * 1987-06-24 1989-01-06 Hitachi Medical Corp Ultrasonic probe
JP2007185525A (en) * 2007-03-14 2007-07-26 Toshiba Corp Ultrasonic diagnostic equipment

Similar Documents

Publication Publication Date Title
US5465725A (en) Ultrasonic probe
US5957851A (en) Extended bandwidth ultrasonic transducer
US5410205A (en) Ultrasonic transducer having two or more resonance frequencies
US5163436A (en) Ultrasonic probe system
US4963782A (en) Multifrequency composite ultrasonic transducer system
JP3950755B2 (en) Ultrasonic transducers that increase the resolution of imaging systems
KR860000380B1 (en) Device for ultrasonic diagnosis
CN112368085B (en) Micromechanical ultrasonic transducer and imaging device
JPH1023598A (en) Piezoelectric conversion device
GB2230159A (en) Piezoelectric transducer
JPS618033A (en) Ultrasonic converter system
JP2001258879A (en) Ultrasonic transducer system and ultrasonic transducer
JPS63255044A (en) Sound converter especially for medical image operating by plurality of frequencies
EP1483060A1 (en) Piezoelectric ultrasound transducer assembly having internal electrodes for bandwidth enhancement and mode suppression
US6821252B2 (en) Harmonic transducer element structures and properties
US4958327A (en) Ultrasonic imaging apparatus
US6416478B1 (en) Extended bandwidth ultrasonic transducer and method
JPS5817360A (en) Ultrasonic probe
US6558331B1 (en) Apparatus and method for harmonic imaging using an array transducer operated in the k31 mode
JPS6367149B2 (en)
JPS599859B2 (en) variable frequency ultrasound transducer
JPS6243687B2 (en)
JPH06225881A (en) Ultrasonic diagnostic device
JPH0379199A (en) Transmitter/receiver
JPS62185163A (en) Body inspection device by ultrasonic echography