JPS581735B2 - Oil seal - Google Patents

Oil seal

Info

Publication number
JPS581735B2
JPS581735B2 JP48070362A JP7036273A JPS581735B2 JP S581735 B2 JPS581735 B2 JP S581735B2 JP 48070362 A JP48070362 A JP 48070362A JP 7036273 A JP7036273 A JP 7036273A JP S581735 B2 JPS581735 B2 JP S581735B2
Authority
JP
Japan
Prior art keywords
seal
contact
sliding body
axial direction
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48070362A
Other languages
Japanese (ja)
Other versions
JPS5020773A (en
Inventor
長内康栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP48070362A priority Critical patent/JPS581735B2/en
Publication of JPS5020773A publication Critical patent/JPS5020773A/ja
Publication of JPS581735B2 publication Critical patent/JPS581735B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】 本発明は測定作業の簡易化を図ったシールの軸方向接触
圧力分布の計測方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the axial contact pressure distribution of a seal, which simplifies the measurement work.

従来のこの種庄力分布の計測は、測定対象としてオイル
シールを例にとれば、測定対象オイルシールの断面形状
と同形のモデルを使用する光弾性実験方法によるか、も
しくは圧力検出装置に電気的に接続されたストレンゲー
ジ付の板ばね等より起立させて先端部を軸表面と略同一
面状に位置させた庄力検出ピンにより、オイルシールリ
ツブ部の軸ト摺動時に生じる接触圧力を検出しているの
が現状である。
Conventional measurements of this type of force distribution, taking an oil seal as an example of a measurement target, are carried out by a photoelastic experimental method that uses a model with the same cross-sectional shape as the oil seal to be measured, or by an electrical connection to the pressure detection device. The contact pressure that occurs when the oil seal rib slides on the shaft is detected by a force detection pin that is raised up from a plate spring with a strain gauge connected to the shaft, and whose tip is positioned approximately flush with the shaft surface. The current situation is that it is being detected.

しかしながら上記前者の光弾性実験方法の場合、オイル
シールモデルの作成やそのモデル応力の測定後における
解析が繁雑であるとともに、オイルシール現物にあって
はこの種測定を行なうことができなかった。
However, in the case of the above-mentioned former photoelasticity experimental method, the preparation of an oil seal model and the analysis after measuring the stress of the model are complicated, and this type of measurement cannot be performed on the actual oil seal.

また最近のオイルシールはリップの接触幅が非常に狭く
なっているため、上記後者の場合の圧力検出ピンはそれ
自体が細径化されたものとなってオイルシールリツプ面
への喰込み現象が生じるなど正確な測定を行なうことが
困難であった。
In addition, recent oil seals have a very narrow lip contact width, so in the latter case the pressure detection pin itself has a smaller diameter, causing the phenomenon of biting into the oil seal lip surface. It was difficult to make accurate measurements due to the occurrence of

本発明は上述の点に鑑みてなされたもので、その目的は
シールの軸方向接触庄力分布の計測が随時簡易にしかも
正確に行なえるようにして上記従来の欠陥を一挙に解消
しようとするものである。
The present invention has been made in view of the above points, and its purpose is to eliminate the above-mentioned conventional defects at once by making it possible to easily and accurately measure the axial contact force distribution of a seal at any time. It is something.

以下にオイルシールを測定対象とした本発明の実施態様
を図面にもとづいて説明すると、円筒状の軸1には必要
個所に案内溝2が形成され、その案内溝2には軸方向に
作動ずるマイクロメータヘッド3の先端部が臨ませてあ
る。
Below, an embodiment of the present invention in which an oil seal is a measuring object will be explained based on the drawings.A cylindrical shaft 1 has guide grooves 2 formed at necessary locations, and the guide grooves 2 have an axially operating slider. The tip of the micrometer head 3 is exposed.

また上記案内溝2内には軸方向に移動自在な摺動体4が
嵌装され、この摺動体4は径方向スプリング5で案内溝
2の底面Cこ引張られるとさもに、軸方向スプリング6
でマイクロメータヘッド3の先端面に抑圧衝合させられ
ている。
Furthermore, a sliding body 4 that is movable in the axial direction is fitted in the guide groove 2, and when this sliding body 4 is pulled by a radial spring 5 on the bottom surface C of the guide groove 2, an axial spring 6
The tip of the micrometer head 3 is pressed against the tip surface of the micrometer head 3.

さらに摺動体4の円周方向には軸方向に一定の開口幅を
有する環状溝Tが穿設されており、その内部に受圧体8
が嵌装されている。
Furthermore, an annular groove T having a constant opening width in the axial direction is bored in the circumferential direction of the sliding body 4, and a pressure receiving body 8 is formed inside the annular groove T.
is fitted.

この受圧体8は前記環状溝1の開口幅と同様軸方向に一
定の幅を有する円弧形状をなすもので、その円弧内周面
には環状溝5の内底壁との間に位置する圧電体9が装着
してある。
This pressure-receiving body 8 has an arc shape having a constant width in the axial direction, similar to the opening width of the annular groove 1, and has a piezoelectric element located between the inner bottom wall of the annular groove 5 and the inner circumferential surface of the arc. A body 9 is attached.

この圧電体9はチタン酸バリウム等よりなっており、上
下面に金属メッキをした後に分極処理が施されたもので
、その金属メッキ面に接続されたリード線10により電
圧増巾器(図示せず)に電気的に接続されている。
This piezoelectric body 9 is made of barium titanate or the like, and is polarized after metal plating on the top and bottom surfaces.A voltage amplifier (not shown) is connected to the lead wire 10 connected to the metal plating surface. electrically connected to

このように圧電体9を備えて摺動体4の環状溝7に嵌装
された受圧体8は、平時において摺動体4と表面が略同
一面となるようにしておく。
The pressure-receiving body 8, which is thus equipped with the piezoelectric body 9 and fitted into the annular groove 7 of the sliding body 4, is arranged such that its surface is substantially flush with the sliding body 4 during normal times.

しかして軸1に挿入されたオイルシール11のリップ部
12を受圧体8上に当接位置させ、その状態からマイク
ロメータヘッド3を操作して摺動体4を軸方向前方(図
上右方)又は後方(図上左方)に移動させて、リップ部
12の一部か摺動体4の表面と接触し、残部が受圧体8
の表面と接触するごとくなし、受圧体8の表面に対する
接触と摺動体4の表面に対する接触の比率を徐々に変化
させると、リップ部12による受圧体8に対する負荷が
変化するので、このときのマイクロメータヘッド3の読
み取りにより得られるリップ部12と受圧体8との接触
幅の変化と、圧電体9を介して電圧増幅器によりプロッ
トされるリップ部12の負荷の値とを互いに対応させて
解折することによりリップ部12の軸方向接触圧力分布
が計測される。
Then, the lip portion 12 of the oil seal 11 inserted into the shaft 1 is placed in contact with the pressure receiving body 8, and from this state, the micrometer head 3 is operated to move the sliding body 4 forward in the axial direction (to the right in the figure). Or move it backward (to the left in the figure) so that part of the lip part 12 comes into contact with the surface of the sliding body 4, and the remaining part contacts the pressure receiving body 8.
By gradually changing the ratio of contact between the surface of the pressure receiving body 8 and the surface of the sliding body 4, the load on the pressure receiving body 8 by the lip portion 12 changes. The change in the contact width between the lip portion 12 and the pressure receiving body 8 obtained by reading the meter head 3 is correlated with the value of the load on the lip portion 12 plotted by the voltage amplifier via the piezoelectric body 9, and analyzed. By doing so, the axial contact pressure distribution of the lip portion 12 is measured.

本発明は上述のようになり、内周面に圧電体が設けられ
た受圧体を測定対象シールの摺動接触面に当接して前記
受圧体を軸方向に移動させるだけであるから、従来の光
弾性実験方法の場合のように測定対象シールモデルを絶
対的に必要とすることなく、測定対象シール現物の軸方
向の接触圧力分布を随時手際よく簡単に計測することが
でき、しかも上記受圧体は軸方向に一定の幅を有する円
弧形状をなしているから、従来の圧力検出ビン方法の場
合と異なってリップ面の狭いものや同リップ面の微小な
傷等で計測精度に支障をきたすようなことがなく、平均
的な軸方向接触圧力分布を確実に計測することができる
The present invention is as described above, and since the pressure receiving body provided with the piezoelectric body on the inner circumferential surface is simply brought into contact with the sliding contact surface of the seal to be measured and the pressure receiving body is moved in the axial direction, it is different from the conventional method. The contact pressure distribution in the axial direction of the actual seal to be measured can be easily and skillfully measured at any time without absolutely requiring a seal model to be measured as in the case of the photoelastic experimental method. Since the bottle has an arc shape with a constant width in the axial direction, unlike the conventional pressure detection bottle method, measurement accuracy may be affected by narrow lip surfaces or minute scratches on the lip surface. Therefore, the average axial contact pressure distribution can be reliably measured.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示す圧力検出装置の断面説明
図である。 8・・・・・・受圧体、9・・・・・・圧電体、11・
・・・・・オイルシール、12・・・・・・リップ。
The drawing is an explanatory cross-sectional view of a pressure detection device showing an embodiment of the present invention. 8...Pressure receiving body, 9...Piezoelectric body, 11.
...Oil seal, 12...Lip.

Claims (1)

【特許請求の範囲】[Claims] 1 円弧形状面を備えて軸方向に移動可能に配置された
摺動体4および軸方向に一定の幅を有する円弧杉状面を
備え、内周側に圧電体9を付設されて前記摺動体4に径
方向に移動町能に装着され、前記円弧形状面を前記摺動
体4の円弧形状面と同レベルに保っている受圧体8を測
定対象シールの接触部12の周面に当接させて前記摺動
体4を軸方向に移動させ、前記シールの接触部12の前
記受圧体8および前記摺動体4に対する接触割合の変化
と前記受千体8に対する前記シールの接触部12による
負荷の変化とを対応させるごとくなしたことを特徴とす
るシールの軸方向接触圧力分布の計測方法。
1 The sliding body 4 is provided with a circular arc-shaped surface and is arranged to be movable in the axial direction, and the sliding body 4 is equipped with a circular cedar-shaped surface having a constant width in the axial direction, and a piezoelectric body 9 is attached to the inner circumferential side. A pressure receiving body 8, which is mounted on a radially movable cylinder and whose arcuate surface is kept at the same level as the arcuate surface of the sliding body 4, is brought into contact with the circumferential surface of the contact portion 12 of the seal to be measured. By moving the sliding body 4 in the axial direction, a change in the contact ratio of the contact portion 12 of the seal with the pressure receiving body 8 and the sliding body 4, and a change in the load due to the contact portion 12 of the seal with respect to the pressure receiving body 8. A method for measuring axial contact pressure distribution of a seal, characterized in that it corresponds to the following.
JP48070362A 1973-06-21 1973-06-21 Oil seal Expired JPS581735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48070362A JPS581735B2 (en) 1973-06-21 1973-06-21 Oil seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48070362A JPS581735B2 (en) 1973-06-21 1973-06-21 Oil seal

Publications (2)

Publication Number Publication Date
JPS5020773A JPS5020773A (en) 1975-03-05
JPS581735B2 true JPS581735B2 (en) 1983-01-12

Family

ID=13429232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48070362A Expired JPS581735B2 (en) 1973-06-21 1973-06-21 Oil seal

Country Status (1)

Country Link
JP (1) JPS581735B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536257B2 (en) * 1983-10-18 1993-05-28 Bridgestone Corp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536257B2 (en) * 1983-10-18 1993-05-28 Bridgestone Corp

Also Published As

Publication number Publication date
JPS5020773A (en) 1975-03-05

Similar Documents

Publication Publication Date Title
JP4417338B2 (en) Overpin diameter measuring device
JP2010019783A (en) Inner diameter gage
US4490913A (en) Low contact force position sensing probe
US4509364A (en) Wear measuring arrangement for bearings
JPS6145163B2 (en)
CN108458639B (en) Device and method for measuring axial clearance of aircraft accessory
GB2069700A (en) Gap measuring device for piston rings
JPS581735B2 (en) Oil seal
CN101487683B (en) Ultra-large diameter accurate detector
US2467499A (en) Micrometer
CN219141807U (en) Civil engineering quality flatness detection device
JPH0251001A (en) Method and device for measuring height of burr
CN110375638A (en) A kind of radial deformation measuring device based on LVDT sensor
US4843722A (en) Self-centering bore hole gage
US6321590B1 (en) Leakage measuring device
CN209166306U (en) A kind of device of rapid survey abnormal shape stepped hole
WO2022146326A1 (en) Perpendicularity measuring device for the inner diameter of bearing rings
CN210375060U (en) Bearing seal ring height detector
JP2000081380A (en) Coating material-testing device
CN215114339U (en) Tool for rapidly detecting inner diameter and outer diameter of hard alloy sealing ring
SU1404795A1 (en) Device for measuring parameters of grooves in inner holes
US2472126A (en) Micrometer caliper
JPH0452642Y2 (en)
JPH0682503U (en) Measuring tool
RU2129697C1 (en) Device measuring inner diameter of articles with elastomer coating