JPS58173554A - Blood purifying apparatus - Google Patents

Blood purifying apparatus

Info

Publication number
JPS58173554A
JPS58173554A JP5549382A JP5549382A JPS58173554A JP S58173554 A JPS58173554 A JP S58173554A JP 5549382 A JP5549382 A JP 5549382A JP 5549382 A JP5549382 A JP 5549382A JP S58173554 A JPS58173554 A JP S58173554A
Authority
JP
Japan
Prior art keywords
blood
plasma
membrane
outlet
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5549382A
Other languages
Japanese (ja)
Inventor
八木田 紘二
須磨 靖徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP5549382A priority Critical patent/JPS58173554A/en
Publication of JPS58173554A publication Critical patent/JPS58173554A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、血液の浄化?&置に関し、さらに詳しくは、
血液から高分子蛋白を除去するKIIIL、血液処理期
間中^い血液処虐絽力と分離性能を保持し、かつ取扱い
簡単でコンパクトなJilI[Kよる血液の浄化装置K
関する。
[Detailed Description of the Invention] Does the present invention purify blood? For more information on & placement,
KIIIL, which removes high-molecular proteins from blood, and JILI, a blood purification device that maintains high blood processing power and separation performance during blood processing, and are easy to handle and compact.
related.

近年、腎炎、グツドバスチャー症候群、特発性血小板減
少性紫)病、重症筋無力症、リウマチ、高ガンマグロブ
リン血症、癌、糖尿病、高ガンマグロブリン血症、高脂
血疾、レイノー病、薬物中毒、肝不全など免疫系の異常
、異常代鐵童物、毒性物質の増加に起因すると考えられ
るこれら各種疾患の治療に、血漿交換療法が用いられて
いる。かへる疾患においては、例えば糸球体腎炎では、
循環血液中にある免液複合体が胃に沈着し、障害を与え
るため、血液中の抗体、免液複合体や炎症反応に伴うフ
ィブリノーゲンなどの中間産物等の除去が有効と考えら
れている。またグツドバスチャー症候群では、抗Q B
 M抗体の血中レベルを低下させ、血漿中の補体、#−
内因子除去が望まれ、また重症筋無力症では、神経接合
部におけるアセチルユリンレセグターに対する抗体、す
なわち免疫グロブリンの除去、高膚血漿では血液中の低
比重リボ蛋白の除去、レイノー症候群ではフィブリノー
ゲン、マクログロブリンの除去などKより柱状の改全お
よび治療効果がみられている。
In recent years, he has been diagnosed with nephritis, Gutsudbascher syndrome, idiopathic thrombocytopenic purpura disease, myasthenia gravis, rheumatism, hypergammaglobulinemia, cancer, diabetes, hypergammaglobulinemia, hyperlipidemia, Raynaud's disease, drug addiction, Plasma exchange therapy is used to treat various diseases thought to be caused by abnormalities in the immune system such as liver failure, abnormal iron production, and an increase in toxic substances. In inflammatory diseases, such as glomerulonephritis,
Because immune complexes in the circulating blood deposit in the stomach and cause damage, it is considered effective to remove antibodies, immune complexes, and intermediate products such as fibrinogen associated with inflammatory reactions in the blood. In addition, in Gutdbuscher syndrome, anti-QB
Reduces blood levels of M antibodies and increases plasma complement, #-
Removal of intrinsic factor is desired, and in myasthenia gravis, it is necessary to remove antibodies against the acetylurin receptor at nerve junctions, that is, immunoglobulin, in hyperthermic plasma, removal of low-density riboproteins in the blood, and in Raynaud's syndrome, removal of fibrinogen, Columnar reform and therapeutic effects have been seen compared to K, such as removal of macroglobulin.

これら扶患における血液中の病因物質またh1障害物質
は蛋白質源であり、かつ血液浸透圧の維持、イオン、物
質の運搬など生体にとって重要な働をし、かつ血漿蛋白
質の60〜80Xt占める分子量66.000(分子サ
イズ38X15ON)のアルブミンよりも分子量の大き
な物質b=多いと言われており、例えば免疫グロブリン
、フィブリノーゲン、ヘーマクログロプリン、免疫グロ
ブリンと抗原物質、補体との結合物質、すなわち免疫複
合体、低比重リボ蛋白など少なくとも分子を百方以上の
物質、好ましくは分子116万近辺のα−グロブリンの
除去が望まれる。
The pathogenic substances and H1-disturbing substances in the blood of these patients are protein sources and play important functions for the living body, such as maintaining blood osmotic pressure and transporting ions and substances, and have a molecular weight of 66 .000 (molecular size 38 x 15 ON), it is said that there are many substances with a larger molecular weight than albumin, such as immunoglobulin, fibrinogen, hemacroglobulin, immunoglobulin and antigen substances, and complement binding substances, that is, immune complexes. It is desired to remove at least 100 molecules of substances such as body and low-density riboprotein, preferably α-globulin with around 1,160,000 molecules.

血漿交換療法では、患者から取出された血液を遠心分l
IA器または膜による血漿分離器を用いて血球成分と血
漿に分離し、アルブミンおよびこれら病因物質または障
害物質などの不要成分を含む血漿の−でと、正常血漿を
はy等量交換し、患者に血球成分と共和返還するもので
ある。
In plasma exchange therapy, blood removed from the patient is centrifuged.
Blood cell components and plasma are separated using an IA device or a membrane plasma separator, and equal amounts of normal plasma are exchanged with plasma containing unnecessary components such as albumin and these disease-causing or harmful substances. It returns to blood cell components.

かへ為血漿の分離交換は、短時間に大量の血漿を頻!I
Fk交換する必要があり、通常1.5〜3時鴎で3〜@
Lもの血漿を交換して(・る、カ・へる血漿交換療法に
は、アルブミンを主体成分とする大量0@鮮皇IIが必
要であるが、新鮮血漿は極めて高価で、かつ供給量の制
約および肝炎感染などの危険を伴うなど、将来、か〜る
治療法の発展の障害となる問題が数多く存在する。
Separation and exchange of Kahetame plasma allows for frequent exchange of large amounts of plasma in a short period of time! I
It is necessary to exchange Fk, usually from 1.5 to 3 o'clock at 3 to @
Plasma exchange therapy, which involves exchanging as much plasma as possible, requires a large amount of 0@Senko II, whose main component is albumin, but fresh plasma is extremely expensive and the supply is limited. There are a number of problems that will hinder the future development of such treatments, including limitations and risks such as hepatitis infection.

し友がって、これら問題の解決のために、自己血漿中の
不要成分のみを分離除去し、アルブミンなどの有用成分
を捨てることなく回収し、体中に返嫌する方法が考えら
れ、これによって4価な他人の新鮮血漿を使用せず、か
つ肝炎の危険もなく、治療効果を一段と促進させること
が可能となる。かへる方法の一つとして、最も経済的で
、手軽に安全で、かつ連続的に大量の血漿を処理するも
のとして、血漿中の大きさの異なる28以上の物質をj
[Kよって分離除去、―収オるカスケード、フィルトレ
ーショ/が一般に知られている。
In order to solve these problems, a method has been considered to separate and remove only unnecessary components from autologous plasma, recover useful components such as albumin without discarding them, and return them to the body. This makes it possible to further promote the therapeutic effect without using someone else's fresh tetravalent plasma and without the risk of hepatitis. As one of the most economical, easy, safe, and continuous methods for processing large amounts of plasma, it is possible to treat more than 28 substances of different sizes in plasma.
[K separation/removal, - cascade, filtration/ is generally known.

しかし、かへる方法において問題となる点は、その装置
および取扱いの繁雑さが挙げられる。
However, problems with this method include the complexity of its equipment and handling.

すなわち、先ず血液を血球成分と血漿成分に分離するた
めに%第1段フィルターに血I[分離器を用い、bm血
漿離操作が必要であり、かへる操作を経て分離された血
漿は、次に高分子蛋白質を分離除去する第2段フィルタ
ーによる分離操作を必要とし、しかる後、破膜を通過し
た高分子蛋白質が除去された浄化血漿を上述の血球成分
と合流させる手段が必要である。治療を目的とした血液
処理は、無菌的、連続的、かつ短時間に行うことが好ま
しく、そのために第1段フィルターと第2段フィルター
および血球、血漿混合室とを血液回路および血漿回路で
ポンプを介して複雑に連結する必要がある。したがって
、か−る方法は経済的で肝炎などの危険もない優れた治
療法であるにもかへわらず、複雑な装置と操作に熟練を
費する理由から、一般には用いられにくいのが現状であ
る。
That is, in order to separate blood into blood cell components and plasma components, a blood I[separator is used in the first stage filter and a bm plasma separation operation is required, and the plasma separated after the heating operation is Next, a separation operation using a second-stage filter is required to separate and remove high-molecular proteins, and after that, a means is required to combine the purified plasma from which high-molecular proteins have been removed after passing through the ruptured membrane with the above-mentioned blood cell components. . Blood processing for therapeutic purposes is preferably performed aseptically, continuously, and in a short period of time, and for this purpose, the first and second stage filters, blood cells, and plasma mixing chamber are pumped through a blood circuit and a plasma circuit. It is necessary to connect them in a complicated manner via . Therefore, although this method is economical and is an excellent treatment method with no risk of hepatitis, it is currently difficult to use in general because it requires complicated equipment and skill to operate. It is.

か〜る従来の膜分離法による血液浄化の問題点を解決す
る九めに、それらを簡略イヒし、カ)つ優れた分離効果
を得る方法、装置につき櫨々検討を重ねてきたが、基本
的Ki!従来の方法、すなわち、111段フィルターは
孔径の大きな膜を用いて血液中の血球と血漿を分離し、
次に第2段フィルターは孔径の小さな膜を用(・、血漿
中の大きさの異なる2種以上の蛋白質を分離して得た浄
化血漿を前述の血球成分と合流させるという従来の方法
、装置の域を脱することができず、結局、少なくとも2
樵類のフィルターとそれらを連結するための回路とポン
プを必要とする複雑な装置となることが明らかとなった
In order to solve the problems of blood purification using conventional membrane separation methods, extensive research has been carried out on methods and devices to simplify them and obtain superior separation effects. Target Ki! The conventional method, that is, the 111-stage filter, uses a membrane with a large pore size to separate blood cells and plasma from blood.
Next, the second stage filter uses a membrane with a small pore size (a conventional method and device in which purified plasma obtained by separating two or more proteins of different sizes in plasma is combined with the aforementioned blood cell components). In the end, at least 2
It turned out to be a complex device requiring woodcutter filters, a circuit to connect them, and a pump.

したがって、ことに、か〜る従来の発想および考え方を
転換させ、構造の異なる膜とその使い方について徹底的
に研究した結果、篇くべきことに、その両膜−における
分画分子tK、濾過方向性を有する濾過膜、例えば両膜
面における平均孔径の異なる膜を用いた単一モジュール
において、血痕を孔径の大きい方から流して血球成分と
血漿成分に分離し、引続−1て該分離血漿を逆に破膜の
平均孔径の小さい方から大ぎ−・方Kfiすことによつ
【、血漿中の高分子蛋白質を分離し、アルプミy、水、
電解質などの低分子量物質を通過させ、血球成分と合流
させて血液を浄化させうろことを見出した。かへる膜を
組込んだ膜分離装置によって極めてコンパクトで、従来
問題となっていた複雑な装置の組合せと操作の繁雑性が
一挙に解決できる一期的な膜による血漿浄化装置となる
ことを見出した。
Therefore, as a result of a thorough study of membranes with different structures and their usage, by changing the conventional ideas and ways of thinking, we found that the fractionated molecules tK in both membranes, the filtration direction, In a single module using a filtration membrane with different characteristics, for example, a membrane with different average pore sizes on both membrane surfaces, blood stains are separated into blood cell components and plasma components by flowing from the side with the larger pore size, and then the separated plasma is On the other hand, by increasing the average pore size of the ruptured membrane from the smaller one to the larger one, the high-molecular proteins in the plasma are separated, and the
The researchers discovered that scales purify blood by allowing low-molecular-weight substances such as electrolytes to pass through it, allowing them to merge with blood cell components. By using a membrane separation device incorporating a heating membrane, we hope to create a temporary membrane-based plasma purification device that is extremely compact and can solve the conventional problems of complicated device combinations and complicated operations. I found it.

すなわち、本発明は、血液の導出入口を有する容器内に
分画分子量の濾過方向性を有する一過膜が設けられ、蚊
導出入口は血液中の血漿成分の一過が分画分子量の大と
なる方向KIl*膜の一方の1側であって、かつ、鋏膜
厘<faつて旭理すべt血液を流すように設けられ、破
膜の他方の面側にはP液室が設けられ、かつ、破膜の少
なくとも血液導出口に近い藝分はP液室内に分離され九
血漿成分の血液側への再濾過領域となされていることを
特徴とする血液の浄化装置K11lするものである。
That is, in the present invention, a transient membrane having a filtration direction according to a molecular weight cut-off is provided in a container having an inlet and an inlet for blood, and a mosquito inlet and an outlet allows plasma components in the blood to pass through with a high molecular weight cut-off. A liquid chamber is provided on one side of the membrane in the direction of KIl* so as to allow blood to flow therethrough, and a P liquid chamber is provided on the other side of the ruptured membrane. In addition, the blood purification device K11l is characterized in that the part of the ruptured membrane that is at least close to the blood outlet is separated into the P liquid chamber, which serves as a refiltration area for plasma components to the blood side.

以下、図IIKよって詳細を説明する。第1図は従来の
膜を用いた血液浄化装置の1例を示す説明図である0人
体から採取された血液lは、血液回路2.ポンプ3を経
由して第1段フィルター、f4Lkl孔径0.2μのセ
ルロースアセテート中空糸膜による血漿分離器4(商品
名、プラズマフロー、旭メディカル社製)によって血球
と血漿に分離され、次いで該分離血漿は血漿導入回路か
らポンプ6を経由して、血漿分離器4よりも孔径の小さ
な膜を有する膜分離器7に送られ、ここで膜を通過しな
い血漿中の高分子蛋白質は排出回路8から外部へ排出さ
れ、アルブミン、水、電解質などの低分子量物質は、膜
を過通しと回収回路9から混合基10に導入され、血球
成分11と混合されて導出回路12から外部へ導出され
る。か〜る従来の装置においては、2種類のフィルター
4,7と複雑な回路2,5゜9.12および複数個のポ
ンプ3,6を必要とし、取扱い操作がめんどうである。
Details will be explained below with reference to FIG. IIK. FIG. 1 is an explanatory diagram showing an example of a conventional blood purification device using a membrane. Via the pump 3, the blood cells and plasma are separated by a first stage filter and a plasma separator 4 (trade name, Plasma Flow, manufactured by Asahi Medical Co., Ltd.) using a cellulose acetate hollow fiber membrane with an f4Lkl pore size of 0.2μ, and then the separation is performed. Plasma is sent from the plasma introduction circuit via a pump 6 to a membrane separator 7 having a membrane with a smaller pore size than the plasma separator 4, where high molecular proteins in the plasma that do not pass through the membrane are sent from a discharge circuit 8. Discharged to the outside, low molecular weight substances such as albumin, water, and electrolytes pass through the membrane and are introduced into the mixing group 10 from the recovery circuit 9, where they are mixed with blood cell components 11 and led out from the extraction circuit 12. Such a conventional device requires two types of filters 4, 7, a complicated circuit 2, 5°9.12, and a plurality of pumps 3, 6, and is cumbersome to handle.

gzaaは本発明装置の一使用一様を示す説明図である
。血液lは血液回路2、ポンプ3を経由して本発明の浄
化装置13vC入り、浄化血液導出口路12から外部へ
導出される。第21!IIにおいて、14は圧力針、1
5は圧力1llJl器、8は排出回路である。
gzaa is an explanatory diagram showing one way of using the device of the present invention. Blood 1 enters the purification device 13vC of the present invention via the blood circuit 2 and pump 3, and is led out from the purified blood outlet path 12. 21st! In II, 14 is a pressure needle, 1
5 is a pressure 1 liter Jl device, and 8 is a discharge circuit.

第3図は本発明装置13の一実施態様を簡略化して示し
た説明図である。16.17は血液導入口、浄化血液導
出口をもつノズル、18は装置本体のケース、19はキ
ャップ、20は膜21とケースを固定する例えばウレタ
ンの如き接着剤、22は装置の中間部に上流側の血漿P
液室23と下流側の血漿P液室24を隔離する隔壁であ
り、か〜る隔壁はm121とケース18をウレタンの如
き接着剤で接着固定することでF[m23と24を液I
IK隔離するものである〜第3図において血液lはノズ
ル16の血液導入口から血液流路25を流れ、分画分子
量のF−1m方向性を有する濾過a[21によって血球
成分26と血[27に分離される。血球成分は血#LR
路の中を上流から下流lIC流れる一方、血漿27は装
ばの血漿p液室23にrffi誓する。か〜る血漿はポ
ンプ28によって、血漿上部取出口29から血漿回路3
0を通って血漿下部導入口31から血漿PK室24に入
り、ここで膜21で再濾過され、浄化面#I32となっ
て血液流路25内に入り、血球成分26と混合されてF
方の血液導出口から浄化血液33となって出て行く。一
方、襖の目詰り防止のため弁34を開き、F液室23か
ら間欠的に血漿を排液するか、またはバイパス回路35
の弁36を閉じ、弁37を開き、pH室2+から逆に、
バイパス回路35、ポンプ28、血漿回路30、升34
を経由して血漿を間欠的icW&することも可能である
FIG. 3 is an explanatory diagram showing a simplified embodiment of the device 13 of the present invention. 16. 17 is a nozzle having a blood inlet and a purified blood outlet; 18 is a case of the main body of the device; 19 is a cap; 20 is an adhesive such as urethane for fixing the membrane 21 and the case; 22 is a nozzle in the middle of the device; Upstream plasma P
This is a partition wall that separates the liquid chamber 23 from the plasma P liquid chamber 24 on the downstream side.
In FIG. 3, blood l flows through a blood flow path 25 from the blood inlet of the nozzle 16, and is separated from blood cell components 26 and blood by filtration a[21 having a molecular weight cut-off F-1m directionality It is separated into 27 parts. Blood cell component is blood #LR
While flowing through the IC from upstream to downstream IC, plasma 27 is transferred to the plasma plasma compartment 23 of the equipment. The plasma is transferred from the upper plasma outlet 29 to the plasma circuit 3 by the pump 28.
0, enters the plasma PK chamber 24 from the plasma lower introduction port 31, is refiltered by the membrane 21, enters the blood flow channel 25 as a purification surface #I32, is mixed with blood cell components 26, and becomes F
The purified blood 33 exits from the other blood outlet. On the other hand, to prevent clogging of the sliding door, the valve 34 is opened and plasma is intermittently drained from the F liquid chamber 23, or the bypass circuit 35
Close the valve 36, open the valve 37, and reversely from the pH chamber 2+.
Bypass circuit 35, pump 28, plasma circuit 30, square 34
It is also possible to intermittent icW& of plasma via .

第4図は本発明装置の血液流路上ilL部への拡大換、
弐図、第5図は下流部Bの拡大僕式図でル)る。第4図
に示す如く、血液流路25を流れる血液は、血液中の血
漿成分の濾過が分ll!]J分子−の大きい而−1例え
ば孔径の大きい114113Bかり小さい[39へ通過
する。また、第3図装−〇下滝では、血漿FflL室2
4の血@27が、第5図に示す如く血漿成分の′tFi
通か分画分子−の小となる面一、′f1」えば孔径の小
さく・114!139から大きい側38に再び流入し、
血液流路中で血球26と混合し、浄化血液33となる。
FIG. 4 is an enlarged view of the blood flow section of the device of the present invention,
Figures 2 and 5 are enlarged views of downstream section B. As shown in FIG. 4, blood flowing through the blood flow path 25 is filtered to remove plasma components in the blood! ] If the J molecule is large, then the pore diameter is large (114113B) or small [39]. In addition, in Figure 3-〇 Shimotaki, plasma FflL chamber 2
The blood of No. 4 @27 has plasma component 'tFi as shown in Figure 5.
If the pore size is small, the fractionated molecules flow into the large side 38 again from the small pore diameter 114!139,
It mixes with blood cells 26 in the blood flow path and becomes purified blood 33.

このとき分離血漿中の高分子蛋白質が分離され、アルブ
ミン、水、゛シ!!4質を主成分とする低分子竣物電が
PiIを再度通過して血球成分と混合される。
At this time, high-molecular proteins in the separated plasma are separated, and albumin, water, etc. ! The low-molecular finished product, which is mainly composed of 4 molecules, passes through PiI again and is mixed with blood cell components.

第6図は第3図における装置のPVh壁22が設けられ
ていない血液の浄化装置で、あり、単一の血#IP液室
40からなる。血漿上部取出口29から血漿下部導入口
31の間に設けられた血漿回路30に一方向弁41が設
けられ、血漿回路の一部にポンプ28と貯槽42が結合
した導出入回路43が設げられている。かへる装置では
、血IF液室40に溜った血漿をポンプ28−Cよって
血漿上部取出口29から血漿回@30を経由して貯槽4
2に溜め、次いで1■欠的にポンプ28を正逆運転させ
ることによって、さらに血漿上部取出口からの血漿の取
出しと血漿下部導入口31への血漿の圧入を繰返し、血
漿上−取出口近傍のll!における血漿分離と、血漿下
部導入口近傍の膜における再−過を強制的に行うことが
できる。
FIG. 6 shows a blood purification device without the PVh wall 22 of the device in FIG. 3, and consists of a single blood #IP fluid chamber 40. A one-way valve 41 is provided in a plasma circuit 30 provided between an upper plasma outlet 29 and a lower plasma inlet 31, and a part of the plasma circuit is provided with an in/out circuit 43 in which a pump 28 and a storage tank 42 are combined. It is being In the recharging device, the plasma collected in the blood IF liquid chamber 40 is transferred from the upper plasma outlet 29 to the storage tank 4 via the plasma outlet 30 by the pump 28-C.
2, then by intermittently operating the pump 28 in forward and reverse directions, the removal of plasma from the upper plasma outlet and the forced injection of plasma into the lower plasma inlet 31 are repeated, and the plasma is collected in the vicinity of the plasma removal port. Noll! Plasma separation at the membrane and refiltration at the membrane near the lower plasma inlet can be forcibly performed.

槙711iiilは第6図と類似の装置であるが、血漿
導出人口29.31の代りに血漿F液室40に圧カー整
孔44を設けたもので、それと連結した圧力111!祭
回路45、ベローズ46を内蔵した圧力伝達器47、圧
力調整ピストン48および圧力計49からなる。また、
50.51は血液側の装置入口、出口圧力計である。か
Nる装置において、血液1は装置上方の血液導入口16
から膜21の血液流路25を流れ、下方の血液導出口1
7から流出するが、このとき血液は血液流路25を流下
する過程で圧力勾配を生じながら流下し、血漿分離され
る。lすなわち、血液流体の圧力損失による圧力勾配に
よって、出口17に近い下方の血液流路内圧力は、入口
16に近い上方の流路内圧力よりも低い。このときFm
室40の圧力を血液入口側の圧力P1と出口−圧力P、
+7)中間ofiP、、すなわち、 Pt < Ps 
<P、にピストン48および圧力伝達器470作用で調
整することで、一旦膜の上流側で分離され、血′・漿F
液室40に溜った血漿27を、膜の下流側で再度血液F
液室40から膜21の血#L貴25に浄化血漿32とし
て再枦遇させることが可能である。
Maki 711iii is a device similar to that shown in Fig. 6, but a pressure car adjustment hole 44 is provided in the plasma F liquid chamber 40 instead of the plasma extraction volume 29.31, and the pressure 111! It consists of a pressure circuit 45, a pressure transmitter 47 with a built-in bellows 46, a pressure adjustment piston 48, and a pressure gauge 49. Also,
50 and 51 are device inlet and outlet pressure gauges on the blood side. In this device, the blood 1 is passed through the blood inlet 16 at the top of the device.
The blood flows through the blood flow path 25 of the membrane 21 from the blood outlet 1 to the lower blood outlet 1.
At this time, the blood flows down the blood flow path 25 while creating a pressure gradient, and is separated into plasma. That is, the pressure in the lower blood flow path near the outlet 17 is lower than the pressure in the upper flow path near the inlet 16 due to the pressure gradient due to the pressure loss of the blood fluid. At this time Fm
The pressure in the chamber 40 is defined as the pressure P1 on the blood inlet side and the pressure P1 on the outlet side,
+7) intermediate ofiP, i.e. Pt < Ps
By adjusting <P by the action of the piston 48 and the pressure transmitter 470, the blood'/plasma F is separated once on the upstream side of the membrane.
The plasma 27 accumulated in the liquid chamber 40 is recycled to the blood F on the downstream side of the membrane.
Blood #L 25 in the membrane 21 from the liquid chamber 40 can be used again as purified plasma 32.

か〜る装置における血漿浄化能、すなわち。The plasma purification ability of such a device, ie.

血球と血漿の分離能と血漿の膜による再浄化能をよくす
るためには、血液側線速度を大きく、圧力損失を血球破
壊が生じない範囲で大きくすることが望ましいが、その
ためには、血液流量を大にするか、または置板流路の厚
みを小さくするか、さらにはモジュールにおける血液入
口と出口の距離を長くすることが好ましい、溶血、凝血
が起りにくい実用的な血液fIL略の厚みとして、内径
360μの中空糸の場合、実用1少なくとも301以上
100a*以下の#11兼モジュールであることが好ま
しい、また、本発明の装置は、上述の例に限定されるも
のではなく、また、例えばaI6図の装置とは逆に、血
漿F液室@に、血漿成分の2通が分−分子量の大なる一
側として、血液を血漿上S*導出口ら血lIP液室40
KjlL、下sO血漿下84人口31から流出させる一
方、血液流路2sを血INF液室とし、血液導入導出口
16.17を血漿取出口、導入口として使用し、血漿−
路30と連結した装置としてもよい。
In order to improve the separation ability between blood cells and plasma and the repurification ability of the plasma membrane, it is desirable to increase the blood lateral velocity and increase the pressure drop within a range that does not cause destruction of blood cells. It is preferable to increase the thickness of the plate flow path, or to increase the distance between the blood inlet and outlet in the module, as a practical blood fIL thickness that is less likely to cause hemolysis and coagulation. In the case of a hollow fiber with an inner diameter of 360μ, it is preferable to use a practical #11 module with a diameter of at least 301 to 100a*.Furthermore, the apparatus of the present invention is not limited to the above-mentioned examples, and can also be used, for example. Contrary to the device shown in Fig. aI6, two portions of plasma components are placed in the plasma F liquid chamber @, one side having a larger molecular weight, and the blood is transferred from the plasma S* outlet to the blood lIP liquid chamber 40.
KjlL, while the lower sO plasma flows out from the lower 84 population 31, the blood flow path 2s is used as a blood INF liquid chamber, and the blood inlet/outlet 16.17 is used as a plasma outlet and an inlet.
It may also be a device connected to the path 30.

ここで述べた両膜面における血漿成分のp遍が分−分子
量の異なる膜は、その両膜面における平均孔径の異なる
膜に限定されず、荷電の性質が異なる膜、あるいは親水
性、疎水性素材膜なと、その両jI−において蛋白質の
吸着性、あるいはまた、蛋白質の透過性が異なるもので
あるが、例えば、−例としてここで述べた膜面にSける
孔径の異なる膜とは、血液中の血球成分力1れない大き
さの孔径をもつ膜で、走査型電子J141i1iなどの
鑞子顧砿威で*察して、膜表面のランダムサンプルの孔
直径、すなわち、孔の擾径と短径のJl術平均蝋の多数
を平均して求める方法で、平均孔径の小なる膜−貴の半
均孔径(qは0.05〜0.3μ、好ましくは0.08
〜0.25μであり、平均孔径の大なるgg側の平均孔
径(Diは0.15−40声、好ましくは0,2〜2.
0μであり、比D/Cは1.2〜!1LO1好ましくは
1.4〜3.0のものである。かへる孔径の異なる膜に
おける血漿成分の一過が、その方向によって分画分子量
に差がある理由は嘴らかでないが、一つは、膜を構成す
る孔が大きい側から小さい側に傾斜しているために、血
漿中の高分子量蛋白質が孔径大なる方向から小なる方向
にすり抜は易いのに対し、孔極小なる方向からは小孔壁
で阻止されるためか、あるいは第2には、かよる蛋白F
過膜の多くは両膜表面の活性層、すなわち、スキン層の
孔の大きさKよって透過物質の大きさを規制しているが
、か〜る多孔質F過膜の大部分は、膜のwRIjir方
向の内部が粗い多数の互いに連通した流路、すなわちス
ポンジ構造からなり、かつ、か〜る膜の表面は孔径のバ
ラツキの範囲内で、孔径の小なる膜面側にも数は少ない
が孔径の大なる孔が幾らか存在し、かへる孔が孔径の大
なり11面側の孔と内部のスポンジ構造の多数の流路で
相連通しているために、孔径の小さい側からは、かよる
微少ない孔から高分子量蛋白質が確率的V−歇少なく流
出するのみであるのに対し、孔径の大きい側からは確率
的に多数の流路から、かへる孔を通り抜は小孔径画側K
ll、出するために、結果として孔極大なる膜面側から
の高分子量蛋白質の透過性が大となるのか、あるいは第
3には、孔径の大なる膜面側の表面は凹凸に富み粗なえ
め〈、血流による電流効果、または何らかの理由で蛋白
の付着や吸着、すなわち蛋白ケーク層が比較的小さくな
るために、高分子鎖蛋白透過性が向上するのに対し、逆
に孔径の小さい側は表面スムースで、かつ乱流作用も少
なく、ケーク層大となるなど種々の理由が推定される。
Membranes with different p distributions and molecular weights of plasma components on both membrane surfaces mentioned here are not limited to membranes with different average pore diameters on both membrane surfaces, but also membranes with different charge properties, or hydrophilic and hydrophobic membranes. The material membranes have different protein adsorption properties or protein permeability on both sides, but for example, the membranes with different pore sizes on the membrane surface described here are: It is a membrane with a pore diameter that is large enough to exceed the force of blood cell components in the blood, and it can be estimated with a scanning electronic J141i1i etc. that the pore diameter of a random sample on the membrane surface, that is, the diameter of the pores. This is a method of averaging a large number of short diameter Jl average waxes, and the semi-uniform pore diameter of a membrane with a small average pore diameter (q is 0.05 to 0.3 μ, preferably 0.08
~0.25μ, and the average pore diameter on the larger gg side (Di is 0.15-40 mm, preferably 0.2-2.
0μ, and the ratio D/C is 1.2~! 1LO1 is preferably 1.4 to 3.0. The reason why the molecular weight fraction differs depending on the direction of plasma components passing through membranes with different pore sizes is unclear, but one reason is that the pores that make up the membrane slope from the larger side to the smaller side. This may be due to the fact that high molecular weight proteins in plasma easily pass through from the direction of large pore size to the direction of small pore size, whereas they are blocked by the pore wall from the direction of minimum pore size, or because of a second reason. is Kayoru Protein F
In most porous F membranes, the size of the permeable substance is regulated by the pore size K of the active layer on the surface of both membranes, that is, the skin layer. It consists of a large number of mutually communicating channels with rough interiors in the wRIjir direction, that is, a sponge structure, and the surface of such a membrane is within the range of variation in pore size, and there are a small number of channels on the membrane side with small pore sizes. There are some pores with large pore diameters, and the pores that are hidden communicate with the pores on the 11th side of the larger pore diameter through a large number of channels in the internal sponge structure, so that from the side with smaller pore diameters, High-molecular-weight proteins only stochastically flow out from very small pores with a small number of probabilistic V-intervals, whereas from the large pore side, they pass through the pores stochastically from a large number of flow paths. Image side K
ll, as a result, the permeability of high molecular weight proteins from the membrane side where the pores are maximum increases, or thirdly, the membrane side where the pores are large is rough and uneven. However, due to the current effect caused by blood flow or for some reason, protein adhesion or adsorption, that is, the protein cake layer becomes relatively small, improves the permeability of polymer chain proteins, whereas There are various possible reasons for this, including the smooth surface, less turbulent flow, and large cake layer.

一方、か〜る本発明装置に用いる膜は、中空繊維膜、チ
ューブ状膜、平膜など広く把えた概念であり、平膜のみ
に限定されるものではない。
On the other hand, the membrane used in the apparatus of the present invention has a broad concept such as a hollow fiber membrane, a tubular membrane, and a flat membrane, and is not limited to flat membranes.

また、両膜1における平均孔径の異なる膜は、例えばミ
リボア社、アミコン社メンプレ7に代表されるl[濾過
領域の孔径を有する市販平膜でも可能であるが、小さな
プライ2ングボリユームの一過装置で大膜面積を筒単に
得ると言うことから、中空繊維状の膜の利用が望ましい
、gの素材は、例えば七ルロースア竜テートなどの*k
a−スilt、mヨヒylリビニルアルコール、エチレ
ンビニルアルコール、ボqメチルメタクリレート、ポリ
アクリロニトリル、ポリカーボネート、ポリスルホン、
ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン、
ボリア2ド、ポリエステルなどの合成高分子系多孔膜で
ある。
In addition, membranes with different average pore diameters in both membranes 1 can be used, for example, commercially available flat membranes having pore diameters in the filtration region, such as Millibore Co., Ltd. and Amicon Co., Ltd. In order to easily obtain a large membrane area with the device, it is desirable to use a hollow fiber membrane.
a-silt, myohyyl libinyl alcohol, ethylene vinyl alcohol, boq methyl methacrylate, polyacrylonitrile, polycarbonate, polysulfone,
Polyvinylidene fluoride, polyethylene, polypropylene,
It is a synthetic polymer porous membrane made of boria 2, polyester, etc.

これらの多孔膜は、すでに公知の技術で得ることができ
るが、例えば代表的な例として、セルロー x 7 *
 f −) rx トのセルロースエステルでは特開昭
52−84183Kil示された方法を応用して得るこ
とかできる。
These porous membranes can be obtained by already known techniques, but for example, as a typical example, cellulose x 7 *
The cellulose ester of f-)rx can be obtained by applying the method disclosed in JP-A-52-84183Kil.

%!l@52−84183Kl!示された方法において
、セルロースエステルをその溶媒に対し25〜35重量
%、−価、二価の陽イオン金属の塩酸塩、硝酸塩、臭化
物およびヨウ化物の少なくとも1種の金属化合一をセル
ロースエステルに対し20〜100重量X%飽和−価ア
ルコールまたは炭素数5〜10の環状炭化水JA類より
なるものから少なくとも1種類の非溶媒を、該セルロー
スエステルの溶媒に対し50〜80重量%を含有した紡
糸原液を環状紡糸孔から吐出すると共に、環状紡糸孔の
中央から該紡糸原ltK対し緩慢な凝固作用を有する内
g#固液を定量的に流出させ、紡糸孔の垂直下に自重落
下後、凝固浴中で凝固させ、塩化カルシウムと非溶媒を
メタノール液中で洗滌除去することを特徴とする方法で
あり、このような方法によって両jli[*Icおける
平均孔径が異り、かつ、本発明の孔径領域をもった中空
A分離膜が得られる。
%! l@52-84183Kl! In the method shown, 25 to 35% by weight of cellulose ester, based on its solvent, and at least one metal compound of -valent, divalent cationic metal hydrochloride, nitrate, bromide, and iodide are added to the cellulose ester. The cellulose ester contains at least one non-solvent selected from 20 to 100% by weight of a saturated alcohol or a cyclic hydrocarbon having 5 to 10 carbon atoms, and 50 to 80% by weight of the solvent for the cellulose ester. The spinning stock solution is discharged from the annular spinning hole, and the inner g# solid liquid having a slow coagulating effect on the spinning material ltK is quantitatively flowed out from the center of the annular spinning hole, and after falling under its own weight vertically under the spinning hole, This method is characterized by coagulating in a coagulation bath, and washing and removing calcium chloride and non-solvent in a methanol solution. A hollow A separation membrane having a pore size range of .

次に、本発明の効果について述べると、今供給血液中お
よび浄化血液中のアルブミン濃度を各々CPA、CFA
、百方近辺の高分子蛋白質をCPHMV、CFHMW%
旭環時間を大とすると、ある感層1liIrka内での
血漿中各成分蛋白質、オなわち、アルブミン、高分子蛋
白質それぞれの浄化血液側への回収率[株]分回収率)
を)LA、R)IMW〜とじ、また全供給血液量、全浄
化血液量をQPT、QFTとすると で示される。
Next, to describe the effects of the present invention, the albumin concentrations in the currently supplied blood and in the purified blood are measured by CPA and CFA, respectively.
, CPHMV, CFHMW% of macromolecular proteins around 100
If the Asahi cycle time is increased, the recovery rate of each component protein in plasma, that is, albumin and high molecular protein, to the purified blood side within a certain sensitive layer 1liIrka (collection rate)
) LA, R) IMW~, and the total amount of blood supplied and the total amount of purified blood are QPT and QFT.

この場合、血液浄化#&塩K1京される条件モ鷲几ムは
大きく、RHMWは小さいことで、分離性を示す値I 
RA−RHMWIが大きいことが望ましいm’tltK
血液浄化を目的とし九処通においては、前述の如く短時
間、かつ*面積の小さなf’A装置で大量の血液が地理
でき、しかもRムが大きいことが必須条件となるが、こ
の場合、1.5〜3時間で逃環血液量が2〜41.Rム
6ト90%となるような装置とすることかwlましい。
In this case, the blood purification #&salt K1K condition is large and RHMW is small, so the value I
It is desirable that RA-RHMWI is large m'tltK
For the purpose of blood purification in Kusho-dori, it is essential that a large amount of blood can be collected in a short time and with a small-area f'A device, as described above, and that the Rm is large, but in this case, In 1.5 to 3 hours, the amount of blood lost was 2 to 41. It would be desirable to have a device that achieves a R rate of 90%.

ところで、両面における分−分子量にIFi過方向性を
有する濾過膜の血液中の血漿成分の一過が分−分子量の
大となる方向に血#命流して血球と血漿を分離し、次い
で逆に破膜の分画分子量の小さい方向から該分離血漿を
血液−に−過し、アルブミン、水、′11解質を主成分
とする低分子量物質からなる膜通過血漿を血球と混合す
ることからなる本発明の装置を用いた場合、アルブミン
回収車に優れ、かつ取扱い簡単な血液浄化装置となるこ
とが判った。
By the way, the blood plasma component in the blood flowing through the filtration membrane, which has IFi directionality in molecular weight on both sides, flows in the direction of increasing molecular weight to separate blood cells and plasma, and then vice versa. It consists of passing the separated plasma into blood from the direction of the ruptured membrane with a lower molecular weight cutoff, and mixing the membrane-passed plasma, which consists of low-molecular-weight substances whose main components are albumin, water, and '11 solute, with blood cells. It has been found that when the device of the present invention is used, it becomes a blood purification device that is excellent in albumin recovery vehicles and is easy to handle.

以下、本発明の実施例を挙げて説明する。Hereinafter, the present invention will be explained by giving examples.

実施例1 セルロースアセテート(Eastman社襄CA−39
4−45)16F、溶媒としてアセトン32fおよびメ
タノール8tの混合溶媒40t1金属化合吻として塩化
カルシウム2水塩91、添加温媒としてシクロヘキサノ
ール34&を完全均一#l漱になるように攪拌し、脱泡
した原液を得た。この紡糸原液を環状紡糸孔から吐出さ
せ、その中央部にある内部凝固液の流出孔からは50谷
量%メタノール水溶漱を定菫的KH出させ、下方に80
g+空中全空中させた後、50容量%メタノール水溶液
の凝固浴に導き、凝固した中空糸をメタノール浴で処理
した。この結果、得られた中空糸は内径360μ、膜厚
150μ、かつ、その内外両表面を倍率10,000倍
の電子顕微鏡で観察したところ、内表面の平均孔径は糸
軸方向で0.33μ、軸直角方向で0.25μの隋円孔
、外表面の平均孔径は糸軸方向で0.19μ、軸直角方
向で0.13μの噌円孔で外表面が内表面より孔径の小
さな中空糸であった。この中空糸+3600本束ね、両
末端および中央部をウレタンで固定し、有効長36om
、全有効−面4511.5m’+7)第3図に示すモジ
ュール13を作成し、嬉2図の装置を組立てた。
Example 1 Cellulose acetate (Eastman CA-39
4-45) 16F, a mixed solvent of 32f acetone and 8t methanol as a solvent, 40t1, calcium chloride dihydrate 91% as a metal compound, and cyclohexanol 34% as an added heating medium are stirred to form a completely uniform #1 slurry, and defoamed. A stock solution was obtained. This spinning stock solution is discharged from the annular spinning hole, and from the outflow hole of the internal coagulated liquid in the center, 50% methanol aqueous solution is discharged at a constant violet KH, and 80% methanol is discharged downward.
After the fibers were completely evaporated into air, the fibers were introduced into a coagulation bath containing a 50% by volume methanol aqueous solution, and the coagulated hollow fibers were treated in the methanol bath. As a result, the obtained hollow fiber had an inner diameter of 360μ and a membrane thickness of 150μ, and when both the inner and outer surfaces were observed with an electron microscope at a magnification of 10,000 times, the average pore diameter on the inner surface was 0.33μ in the fiber axis direction. The hollow fiber has a diameter of 0.25μ in the direction perpendicular to the axis, a diameter of 0.19μ in the direction of the fiber axis, and a diameter of 0.13μ in the direction perpendicular to the axis. there were. Bundle 3,600 of these hollow fibers, fix both ends and the center with urethane, and have an effective length of 36 om.
, total effective surface 4511.5 m'+7) The module 13 shown in Fig. 3 was created and the device shown in Fig. 2 was assembled.

次にヘマトクリット45N、5%蛋白血漿に調整し、ヘ
パリン1万単位/ 1 を添加牛耕岬血5tを本晃明装
−にtSO−/分で供給し、限外P過圧50〜80■H
gで上m@F液室で血漿分嵯し、ポンプ28を10〜3
0atg/’+の流菫ではy連続的に作動させ、血#t
F’流u+ tSS産室込り込み、3時IMIIII[
L故全豊傭環使用しなから処理した。このとき、血漿中
のアルブミン、分子門百万以上の病分子蛋白成分の回収
率は、東洋帖達社=A体クロマトグラフィーHL C,
−801A(カラム5vV−3000x1本、解離液に
燐酸緩衝液使用)によるクロマトグラフから解析した。
Next, the hematocrit was adjusted to 45 N, the plasma was adjusted to 5% protein, and 5 tons of Ushikomisaki blood to which heparin was added at 10,000 units/1 was supplied to Honkomeiso at a rate of tSO-/min.
aliquot the plasma in the upper m@F liquid chamber at
In the flow of 0atg/'+, operate y continuously, blood #t
F' flow u+ tSS delivery room entry, 3 o'clock IMIII [
I disposed of it after using the late Zenpo Merchant Ring. At this time, the recovery rate of albumin in plasma, a disease molecular protein component of more than 1 million molecules, was determined by Toyo Chodatsusha = A-body chromatography HL C,
-801A (column 5vV-3000x1, using phosphate buffer as dissociation solution) was analyzed using chromatography.

纂8図点−は処理前牛血液の血漿5%蛋白11母故)の
100倍希釈練の岐クロパターンであり、実−は浄化匹
敵の血漿100倍希釈液のバター7である。
The point in Figure 8 is a cross pattern of a 100-fold dilution of pre-processed bovine blood plasma with 5% protein (11), and in reality it is Butter 7, a 100-fold dilution of plasma comparable to purification.

今、処理前血液および浄化血液の血漿中、アルブミン、
高分子蛋白質のピーク面積を各々AA。
Now, in the plasma of unprocessed blood and purified blood, albumin,
The peak area of each high molecular weight protein is AA.

AfLviW、AA’ 、 A’)(MWとすると、各
成分の積分回収率は、 ΣQ l) なる計算式から求めた。この場合、これらの値はスター
ト前および後3時間目までの績化血漱をプールしたもの
を用い測定した。、また、血漿酩蛋白濃度はビウレット
法にて測定した0M果を第1表に示す。
AfLviW, AA', A') (where MW is the integral recovery rate of each component, ΣQ l) was calculated using the following formula. In this case, these values were measured using the pooled blood samples from before and up to 3 hours after the start. Table 1 shows the 0M plasma protein concentration measured by the biuret method.

この結果から、本発明の装置では、アルブミン回収率お
よび分離性が良く、かつ処jlig力も充分であること
か判った。
From these results, it was found that the apparatus of the present invention had good albumin recovery rate and separation performance, and had sufficient processing power.

蘂    l    衣Shoes L Clothes

【図面の簡単な説明】[Brief explanation of drawings]

5g1図は従来の膜を用いた面数浄化装置y’+ 1例
を示す説明図、第2図は本発明装置の一便用11!!i
体を示す説明図、第3図は本発明装置の一夷厖一罎のm
錫化した説明図、騙4図は本元明装−の血液流路上流部
の拡大模式図、第5図は同下處−の拡大模式図、第6図
は第3図装置の別の実施11A嫌を示す説明図、萬7図
は第3図装置のさらに別の夷kjl1m様を示す説明図
、第8図は央處Hの回収車を説明するグラフである。 l・・・血 液     2・・・皿欣回錯3・・・ポ
ンプ     4・・・血漿が嵯45・・・血漿尋人L
gl錯  6・・・ボングア・・・膜分嵯器    8
・・・併出回絡9・・・回収回m     10・・・
混合基11・・・血球成分    12・・・導出回路
13・・・本発明装置   14・・・圧力針15・・
・圧力A盛量 16,17・・・ノズル18・・・ケー
ス     19・・・キャップ20・・・接着剤  
   21・・・膜22・・・隔 壁    23・・
・上流側F液室24・・・下流@謔威室  25・・・
血液流路26・・・血球成分    27・・・血 漿
28・・・ポンプ     29・・・血漿上部取出口
30・・・血漿回路    31・・・血漿下部導入口
32・・・浄化面端    33・・・浄化回数34・
・・弁35・・・バイパス回路 36.37・・・升      38・・・孔径の大き
い−39・・・孔径O」\さい@40・・・血漿v’i
液室41・・・一方向弁    42・・・貯 槽43
・・・導出人回に@44・・・圧力調贅孔45・・・圧
力III幣回M   46・・・ベローズ47・・・圧
力伝迷姦   48・・・圧カー姫ピストン4為5へ5
1・・・圧力針 第1図     第2図 第4図 第6図      第7図 第8図
Fig. 5g1 is an explanatory diagram showing an example of a surface number purification device y'+ 1 using a conventional membrane, and Fig. 2 is an explanatory diagram showing an example of the device of the present invention for one use. ! i
Fig. 3 is an explanatory diagram showing the body of the present invention.
Figure 4 is an enlarged schematic diagram of the upstream portion of the blood flow of the Hongen Meiso, Figure 5 is an enlarged schematic diagram of the same lower part, and Figure 6 is another diagram of the device shown in Figure 3. An explanatory diagram showing the implementation 11A, Figure 7 is an explanatory diagram showing yet another example of the equipment shown in Figure 3, and Figure 8 is a graph explaining the collection vehicle of Central Office H. 1...Blood 2...Plasma circulation 3...Pump 4...Plasma 45...Plasma sage L
GL complex 6...Bonga...Membrane spectrometer 8
...Concurrent circulation 9...Collection times m 10...
Mixing group 11... Blood cell component 12... Derivation circuit 13... Device of the present invention 14... Pressure needle 15...
・Pressure A amount 16, 17... Nozzle 18... Case 19... Cap 20... Adhesive
21... Membrane 22... Partition wall 23...
・Upstream side F liquid chamber 24...Downstream @Full room 25...
Blood flow path 26... Blood cell component 27... Plasma 28... Pump 29... Upper plasma outlet 30... Plasma circuit 31... Lower plasma inlet 32... Purification surface end 33 ...Number of purifications: 34.
... Valve 35 ... Bypass circuit 36. 37 ... Measure 38 ... Large pore size -39 ... Pore size O" @ size @ 40 ... Plasma v'i
Liquid chamber 41... One-way valve 42... Storage tank 43
...Derived person times @44...Pressure adjustment hole 45...Pressure III circulation M 46...Bellows 47...Pressure transmission 48...Pressure car princess piston 4 to 5 5
1...Pressure needle Figure 1 Figure 2 Figure 4 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 血液の導出入口を有する容器内に分−分子量のP)1!
方向性を有するp過膜が設けられ、該導出入口は血液中
の血漿成分の濾過が分−分子量の大となる方向Km膜の
一方のti情であって、かつ、該膜面に宿って処理すべ
き血液を流すように設けられ、破膜の他方の面側圧はv
i液室が設けられ、かつ、破膜の少なくとも血液導出口
に近い部分はV液室内に分離された血漿成分の血漱圓へ
の再ν過狽域となされていることを特徴とする血液の伊
化装置。
Minutes - molecular weight P) 1! in a container with a blood inlet and outlet.
A directional p-filtration membrane is provided, and the inlet/outlet is located in one direction of the Km membrane in which the filtration of plasma components in the blood increases in molecular weight. The pressure on the other side of the ruptured membrane is v
A blood vessel characterized in that an i-liquid chamber is provided, and at least a portion of the ruptured membrane near the blood outlet is used as an area where plasma components separated in the v-liquid chamber are recirculated into the blood stream. Ika equipment.
JP5549382A 1982-04-05 1982-04-05 Blood purifying apparatus Pending JPS58173554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5549382A JPS58173554A (en) 1982-04-05 1982-04-05 Blood purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5549382A JPS58173554A (en) 1982-04-05 1982-04-05 Blood purifying apparatus

Publications (1)

Publication Number Publication Date
JPS58173554A true JPS58173554A (en) 1983-10-12

Family

ID=13000154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5549382A Pending JPS58173554A (en) 1982-04-05 1982-04-05 Blood purifying apparatus

Country Status (1)

Country Link
JP (1) JPS58173554A (en)

Similar Documents

Publication Publication Date Title
US5286449A (en) Adsorber module for whole blood treatment and an adsorber apparatus containing the adsorber module
EP1993631B1 (en) Regeneratable filter for extracorporal treatment of liquids containing particles and use thereof
US9138529B2 (en) Anticoagulant-free dialysis systems and methods
EP0488095B1 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
EP0341413B2 (en) An adsorber module and adsorber apparatus for whole blood treatment
DE3586834T2 (en) DEVICE AND MEDIUM FOR CLEANING BODY LIQUIDS.
WO2013103906A1 (en) Multi-staged filtration system for blood fluid removal
WO1997032653A1 (en) Selective membrane/sorption techniques for salvaging blood
RU2086264C1 (en) Method and device for clearing blood in patients suffering from renal insufficiency
JP6171931B2 (en) Polysulfone-based hollow fiber membrane and hollow fiber membrane module for purifying blood products
JP3124565B2 (en) Leukocyte removal filter and leukocyte removal device
JPH0725776A (en) Filter material for selectively removing leukocyte
JPH11267199A (en) Blood treatment method and device
JPS58173554A (en) Blood purifying apparatus
JP2814399B2 (en) Adsorber for whole blood processing
EP1679117A2 (en) Adsorption system for removing viruses and viral components from fluids, in particular from blood and blood plasma
CN115461100A (en) Fluid treatment method and circulation treatment equipment and system
JPH0211263B2 (en)
JP5722098B2 (en) Porous particles, method for producing porous particles, and carrier
US20170266362A1 (en) System for removal of pro-inflammatory mediators as well as granulocytes and monocytes from blood
JPS58173555A (en) Blood purifying apparatus
JPS58175565A (en) Serum treating apparatus
JPS5894858A (en) Serum treating apparatus
WO2015136107A1 (en) Adsorber granules for removing uraemic toxins
CA1293928C (en) Thermofiltration of plasma