JPS58173555A - Blood purifying apparatus - Google Patents

Blood purifying apparatus

Info

Publication number
JPS58173555A
JPS58173555A JP5549482A JP5549482A JPS58173555A JP S58173555 A JPS58173555 A JP S58173555A JP 5549482 A JP5549482 A JP 5549482A JP 5549482 A JP5549482 A JP 5549482A JP S58173555 A JPS58173555 A JP S58173555A
Authority
JP
Japan
Prior art keywords
blood
plasma
membrane
molecular weight
membranes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5549482A
Other languages
Japanese (ja)
Inventor
八木田 紘二
須磨 靖徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP5549482A priority Critical patent/JPS58173555A/en
Publication of JPS58173555A publication Critical patent/JPS58173555A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、血液浄化装置に関し、さらに詳しくは血液か
ら血漿成分を分離し、該成分から高分子量蛋・白質を除
去するに際して、血液処理期間中高い処理能力と分離性
能を保持し、かつ取扱いが簡単でコンパクトな膜による
血液浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blood purification device, and more specifically, the present invention relates to a blood purification device, and more specifically, when separating plasma components from blood and removing high molecular weight proteins and proteins from the components, the present invention provides high throughput and separation performance during blood processing. The present invention relates to a blood purification device using a compact membrane that is easy to handle.

近年、腎炎、グツドバスチャー症候群1%発性血小板減
少性紫斑病、重症筋無力症、リウマチ、高ガンマグロブ
リン血症、癌、糖尿病、高ガンマグロブリン血症、高脂
血症、レイノー病、薬物中毒、肝不全など免疫系の異常
、異常代謝産物、毒性物質の増加に起因すると考えられ
るこれら各種疾患の治療に、血漿交換療法が用いられて
いる。
In recent years, he has been diagnosed with nephritis, 1% thrombocytopenic purpura with Gutsudbascher syndrome, myasthenia gravis, rheumatism, hypergammaglobulinemia, cancer, diabetes, hypergammaglobulinemia, hyperlipidemia, Raynaud's disease, drug addiction, Plasma exchange therapy is used to treat various diseases thought to be caused by abnormalities in the immune system such as liver failure, abnormal metabolites, and increases in toxic substances.

か〜る疾患にSいては1例えば糸球体腎炎では、循環血
液中にある免疫複合体が腎に沈着し、障害を与えるため
、血液中の抗体、免疫複合体や炎症反応に伴うフイプリ
ノーゲンなどの中間産物等の除去が有効と考えられてい
る。またグツドバスチャー症候群では、抗q迦抗体の血
中レベルを低下させ、血漿中の槽体、凝固因子の除去が
望まれ、また重症筋無力症では、神、経接合部における
アセチルニリンレセプターに対する抗体、すなわち免疫
グロブリンの除去、高脂血漿では血液中の低比重リボ蛋
白の除去、レイノー症候群ではフィブリノーゲン、マク
ログロブリンの除去などにより症状の抜食および治療効
果がみられている。
For example, in glomerulonephritis, immune complexes in the circulating blood deposit in the kidneys and cause damage, so antibodies in the blood, immune complexes, and fibrinogen associated with inflammatory reactions are It is considered effective to remove intermediate products such as In addition, in Gutsudbascher syndrome, it is desirable to reduce the blood level of anti-QA antibodies and remove plasma cisternae and coagulation factors, and in myasthenia gravis, it is desirable to reduce the blood level of anti-QA antibodies, and in myasthenia gravis, it is desirable to reduce the blood level of anti-QA antibodies, and to remove antibodies against acetylniline receptors in the nerve and nerve junctions. In other words, the removal of immunoglobulin, the removal of low-density riboprotein in the blood in high-lipid plasma, and the removal of fibrinogen and macroglobulin in Raynaud's syndrome have been shown to be effective in eliminating symptoms and treating symptoms.

これら疾患に8ける血液中の病因物質または障害物質は
蛋白質源であり、かつ血液浸透圧の維持イオン、物質の
運搬など生体にとって重要な働きをし、かつ血漿蛋白質
の60〜80慢を占める分子量66.000(分子サイ
ズ38X150A)のアルブミンよりも分子量の大きな
物質が多いと言われて8す、例えば免疫グロブリン、フ
ィブリノーゲン、a!−マクログロブリン、免疫グロブ
リンと抗原物質、補体との結合物質、すなわち免疫複合
体、低比重リボ蛋白など少なくとも分子量百万以 の物
質、好ましくは分子量16万近辺のα−グロブリンの除
去が望まれる〇 血漿交換療法では、患者から確出された血液を遠心分離
器または膜による血漿分離器を用いて血球成分と血漿に
分離し、アルブミンおよびこれら病因物質または障害物
質などの不要成分を含む血漿の総てと、正常血漿なはy
勢量交換し、患者に血球成分と共和返還するものである
。か〜る血漿の分離交換は、短時間に大量の血漿を頻繁
に交換する必要があり、通常L5〜3時間で3〜6tも
の皇IIIv交換している。か〜る血漿交換療法には、
アルブミンを主体成分とする大量の新鮮血漿が必要であ
るが、新鮮血漿は極めて高価で、かつ供給量の制約舅よ
び肝炎感染などの危険を伴うなど、将来、か覧る**法
の発展の障害となる問題が数多(存在する。
The causative or harmful substances in the blood associated with these diseases are protein sources, play important functions in living organisms such as maintaining blood osmotic pressure and transporting ions and substances, and have molecular weights that account for 60 to 80% of plasma proteins. It is said that there are many substances with a larger molecular weight than albumin, which has a molecular size of 66.000 (molecular size 38 x 150 A)8, such as immunoglobulin, fibrinogen, and a! - It is desirable to remove macroglobulins, immunoglobulin-antigen substances, complement-binding substances, i.e., immune complexes, low-density riboproteins, and other substances with a molecular weight of at least 1,000,000 million or more, preferably α-globulin with a molecular weight of around 160,000. 〇In plasma exchange therapy, blood extracted from a patient is separated into blood cell components and plasma using a centrifuge or membrane plasma separator, and the plasma containing unnecessary components such as albumin and these disease-causing or harmful substances is removed. Everything and normal plasma
It exchanges the volume and returns the blood cell components to the patient. Such separation and exchange of plasma requires frequent exchange of a large amount of plasma in a short period of time, and usually 3 to 6 tons of plasma is exchanged in 5 to 3 hours. For plasma exchange therapy,
A large amount of fresh plasma, which mainly contains albumin, is required, but fresh plasma is extremely expensive and comes with risks such as limited supply and hepatitis infection. There are many problems that become obstacles.

したがって、これら問題の解決のために、血液中から分
離された自己血漿中の不要成分のみを分離除去し、アル
ブミンなどの有用成分を捨てることな(回教し、浄化さ
れた血漿を血球成分と共に体内に返輩する方法が考えら
れ、これによって高価な他人の新鮮血漿を使用せず、か
つ肝炎の危険もなく、治療効果を一段と促進させること
が可能となる。かへる方法の一つとして、最も経済的で
、手11kK安全で、かつ連続的に大量の血漿を処理す
るものとして、血漿中の大きさの異なる2種以上の物質
を膜によって分離除去、tgi収するカスクードフイル
トレーションが一般に知られている。
Therefore, in order to solve these problems, only unnecessary components in autologous plasma separated from blood should be separated and removed, and useful components such as albumin should not be discarded. One possible method is to return the plasma to another person, thereby making it possible to further enhance the therapeutic effect without using expensive fresh blood plasma from another person and without the risk of hepatitis. Cascade filtration is the most economical, safe, and continuous treatment of large amounts of plasma, in which two or more substances of different sizes in plasma are separated and removed using a membrane, and TGI is collected. generally known.

しかし、かへる方法に−J6いて問題となる点は、その
装置および権扱いの繁雑さが挙げられる。すなわち、先
ず血液を血球成分と血漿成分に分離するために1才1段
フィルターに血漿分離器を用いる血漿分離#!作が必要
であり、かkる操作を経て分離された血漿は、次に高分
子蛋白質を分離除去する矛2段フィルターによる分離操
作な必要とし、しかる後、#膜を通過した高分子蛋白質
が除去された浄化血漿を上述の血球成分と合流させる手
段が必要である。治療を目的とした血液感層は、無菌的
、連続的、かつ短時間に行5ことが好ましく、そのため
に才1段フィルターと才2段フィルターおよび血球、血
漿混合室とを血を回路および血漿回路でポンプを介して
複雑に連結する必要がある。
However, the problem with the -J6 method is that the equipment and handling of rights are complicated. That is, first, plasma separation is performed using a plasma separator in a one-stage filter for separating blood into blood cell components and plasma components. The plasma separated through this process then undergoes a separation operation using a two-stage filter to separate and remove high-molecular proteins, and then the high-molecular proteins that have passed through the membrane are separated. A means is needed to combine the removed purified plasma with the blood cell components described above. It is preferable that the blood sensitive layer for therapeutic purposes be aseptically, continuously, and in a short period of time.For this purpose, a first-stage filter, a second-stage filter, and a blood cell and plasma mixing chamber are connected to a blood circuit and a plasma mixing chamber. The circuit requires complex connections via pumps.

したがって、かへる方法は経済的で肝炎などの危険もな
い優れた治療法であるにもか〜わらず、複雑な装置と操
作に熟練な喪する理由から、一般には用いられに(いの
が現状である。
Therefore, although the healing method is an excellent treatment method that is economical and free of risks such as hepatitis, it is not generally used because it requires complicated equipment and operation skills. is the current situation.

か〜る従来の膜分離法による血液浄化の問題点を解決す
るためK、それらを簡略化し、かつ優れた分離効果を得
る方法、装置につき種々検討を重ねてきたが、基本的に
は従来の方法、すなわち1.1−1j!jフイルターは
孔径の大きな膜を用いて血液中の血球と血漿を分離し1
次に才2段フィルターは孔径の小さな膜を用い、血漿中
の大きさの異なる2種以上の蛋白質を分離して得た浄化
血漿を、前述の血球成分と合流させると云う従来の方法
、装置の域を脱することができず、結局、少なくとも2
種類のフィルターとそれらを連結するための回路とポン
プを必要とする複雑な装置となることが明らかとなった
・ したがって、ここに、かへる従来の発6gよび考え方を
転換させ、構造の異なる膜とその使い方について徹底的
に研究した結果、驚くべきことK、その両膜WIKおけ
る分画分子量に、濾過方向性を有する濾過膜、例えば両
膜面KMける平均孔径の異なるjIIIv用いたモジュ
ールに:JlFいて、血液な孔径の大きい万から流して
血球成分と血漿成分に分離し、引続いて該分離血漿を逆
に、1膜の平均几径の小さい万から大きい万に流すとと
によって、血漿中の高分子蛋白質を分離し、アルブミン
、水、電解質などの低分子量物質を通過させ、血球成分
と合流させて血液を浄化させうろことを見出したが、さ
らKか−る膜を同一の装置内に収納させることで極めて
コンパクトで、従来問題となっていた複雑な装置の組合
せと操作の繁雑性が一挙に解決できる画期的な膜による
血漿浄化!!皺となることを見出した。
In order to solve the problems of blood purification using conventional membrane separation methods, various studies have been conducted on methods and devices that can simplify them and obtain excellent separation effects. Method, namely 1.1-1j! j Filter uses a membrane with large pores to separate blood cells and plasma.
Next, the two-stage filter is a conventional method and device that uses a membrane with a small pore size to separate two or more types of proteins of different sizes in plasma, and then combines the purified plasma with the aforementioned blood cell components. In the end, at least 2
It became clear that the device would be complicated, requiring different types of filters, circuits and pumps to connect them. As a result of thorough research on membranes and how to use them, it was surprising to find that the molecular weight cutoff in both membranes WIK and filtration membranes with directional filtration, such as modules using jIIIv with different average pore diameters on both membrane surfaces KM, : In JIF, blood is separated into blood cell components and plasma components by flowing through the tube with a large pore diameter, and then the separated plasma is passed in reverse from the tube with a small average pore diameter of one membrane to the large tube. They discovered that scales can purify blood by separating high-molecular-weight proteins in plasma and allowing low-molecular-weight substances such as albumin, water, and electrolytes to pass through and combine with blood cell components. Plasma purification using an epoch-making membrane that is extremely compact by being housed inside the device, and solves the conventional problems of complex device combinations and complicated operations at once! ! I found that it causes wrinkles.

すなわち、本発明は、血液の導出入口を有する容器内に
分画分子量のp過方向性を有する才1の濾過膜か設けら
れ、1導出入口は血液中の血漿成分の濾過が分画分子量
の大となる方向に1膜の一方の面側であって、かつ1膜
mKaって処理すべき血液t−流すように設けられ、1
膜の他方の面側にはP液室が設けられ、該Fil室には
分離された血漿成分な再濾過するために才1′・の濾過
膜と同一種の才2の濾過膜が設けられ、かつ#矛2の濾
過膜は再濾過方向が分画分子量の小なる方向になるよう
Kその一面が該血漿成分と接する側とされ。
That is, in the present invention, a filtration membrane having a polarity of molecular weight cut-off is provided in a container having an inlet/outlet for blood, and the one outlet/outlet allows filtration of plasma components in the blood to be carried out in a direction of molecular weight cut-off. It is provided on one surface side of one membrane in the direction in which the blood becomes larger, and one membrane mKa is provided so that the blood to be processed flows 1 mKa.
A P liquid chamber is provided on the other side of the membrane, and a second filter membrane of the same type as the second filter membrane is provided in the filter chamber to refilter the separated plasma components. , and one side of the filtration membrane of spear 2 is in contact with the plasma component so that the refiltration direction is in the direction of the smaller molecular weight fraction.

#矛2の濾過膜の他方は前記血液導出口と連通され”〔
いることを%像とする血液浄化装置に関するものである
#The other side of the filter membrane of spear 2 is communicated with the blood outlet.
The present invention relates to a blood purification device that measures the amount of blood present.

以下図面によって詳細な説明する。矛1図は従来の膜を
用いた血液浄化装置の1例を示す説明図である。人体か
ら採取された血液1は、血液回路2、ポンプ3を経由し
て矛1段フィルター、例え!:!’孔径0.2μのセル
ロースアセテート中空糸膜による血漿分離器4(商品名
、プラズマフロー、旭メディカル社製)によって血球と
血漿に分離され、次いで該分離血漿は血漿導入回路5か
もポンプ6を蛙由して、血漿分離器4よりも孔径の小さ
な膜をMする膜分離器7に送られ、ここで膜を通過しな
い血漿中の高分子蛋白質は排出回路8かも外部へ排出さ
れ、アルブミン、水、電解質などの低分子量物質は、膜
を通過して回収回路9から混合室10に導入され、血球
成分11と混合されて導出回路12から外部へ導出され
る。か〜る従来の装置Kgいては、2種類のフィルター
4.7と複雑な回路2,5t9t12gよび複数個のポ
ンプ3゜6を必要とし、堆扱い操作かめんどうである。
A detailed explanation will be given below with reference to the drawings. Figure 1 is an explanatory diagram showing an example of a conventional blood purification device using a membrane. Blood 1 collected from the human body passes through a blood circuit 2 and a pump 3 to a one-stage filter. :! Blood cells and plasma are separated by a plasma separator 4 (trade name: Plasma Flow, manufactured by Asahi Medical Co., Ltd.) using a cellulose acetate hollow fiber membrane with a pore size of 0.2μ, and then the separated plasma is passed through the plasma introduction circuit 5 and the pump 6. The plasma is sent to the membrane separator 7, which has a membrane with a smaller pore size than the plasma separator 4, and the high molecular proteins in the plasma that do not pass through the membrane are also discharged to the outside through the discharge circuit 8, where albumin, water, etc. , low molecular weight substances such as electrolytes are introduced from the recovery circuit 9 into the mixing chamber 10 through the membrane, mixed with the blood cell components 11, and led out from the extraction circuit 12. This conventional device requires two types of filters, a complicated circuit, and a plurality of pumps, making the compost handling operation cumbersome.

矛2図は本発明&瞳の一使用態様を示す1illl!明
図である。血液1は血液回路2、ポンプ3を経て本発明
の紗化鉄*13VC入り、#化血液纒出1鮎12から外
部へ導出される。第2図において、14は圧力計、15
は圧カー整量、8は排出回路である。
Figure 2 shows one way of using the invention and eyes! This is a clear diagram. The blood 1 passes through the blood circuit 2 and the pump 3, enters the grated iron*13VC of the present invention, and is led out from the #ized blood discharge 1 sweetfish 12. In Fig. 2, 14 is a pressure gauge, 15
8 is a pressure control amount, and 8 is a discharge circuit.

才・3図は本発明装置13d)−*jii態様を簡略化
して示した説明図である。16.17は血液人口、浄化
血液出口をもつノズル、18は装置1本体のケース%1
9はキャップ、20は血液から血漿を分離する血漿分l
Il族で、血液中の血漿成分の濾過が分−分子量の大な
る面に旧って血液か流れる。21は血液流路で、22は
血漿分離器20と同−樵の膜℃、再p過刀11」が分画
分子量の小なる面一か血漿p液室23に面している、そ
の仙痛はポリウレタンの如き接着剤24で閉基された浄
化血漿流路25を形成している。jI!1120.22
&Xポリウレタンの如き接着剤26で、その両端がケー
ス18に接着固定されている。第3図において、血液1
はノズル16の血液入口から血液流路21を流れ、膜2
0によって血球成分27と血漿成分28 K分離される
。血球は血液流路の中を上流から下流に流下して行く一
方、血漿成分28は装置の血漿p液室23に流出滞留し
、その一部は引続いて展22で再濾過され、浄化血漿2
9となって血漿流路25内に入り、血球成分27とノズ
ル17の内部で混合されて下方の血液出口から浄化血液
3oとなって出て行(。がへる装置においては、血漿排
出口31にベローズ32を内蔵した圧力伝達器33、圧
力調整ピストン34、圧力計35からなるPaライン3
6を連結し゛、圧カIi!!!整ピストンを左右に作動
調節することによって血漿F液室に間欠的r(1−陽圧
、陽圧をに返し掛け、膜2oにょる血漿労組と膜22に
よる血漿の再濾過を強制的に竹うことができる、 矛4図は牙3図の装置の浄化血液出口をもつキャップ1
70代りに、血W=分の出口37、浄化m1漿出口38
を別々にもつノズル39を設りたもので、血漿出口38
から排出ポンプ4oで血漿な排出し、血球ライン41に
合流させることで浄化血液30となる。かkる装置によ
って血漿の分−浄化を確実に行うことができる。
Figure 3 is an explanatory diagram showing a simplified embodiment of the present invention apparatus 13d)-*jii. 16. 17 is the blood population, nozzle with purified blood outlet, 18 is case % 1 of device 1 body
9 is a cap, 20 is a plasma fraction l for separating plasma from blood.
In group Il, the filtration of plasma components in the blood is carried out in the direction of large molecular weight. 21 is a blood flow path, 22 is the plasma separator 20, and the membrane 11'' facing the plasma liquid chamber 23, which has a small fractional molecular weight; The pain forms a purified plasma flow path 25 closed with an adhesive 24 such as polyurethane. jI! 1120.22
Both ends thereof are adhesively fixed to the case 18 with an adhesive 26 such as &X polyurethane. In Figure 3, blood 1
flows through the blood flow path 21 from the blood inlet of the nozzle 16, and flows through the membrane 2.
Blood cell component 27 and plasma component 28K are separated by K. Blood cells flow down from upstream to downstream in the blood flow path, while plasma components 28 flow out and stay in the plasma p-liquid chamber 23 of the device, and a part of it is subsequently refiltered in the expansion 22 to become purified plasma. 2
9 enters the plasma flow path 25, mixes with blood cell components 27 inside the nozzle 17, and exits from the lower blood outlet as purified blood 3o (in a device with a plasma discharge port, A Pa line 3 consisting of a pressure transmitter 33 with a built-in bellows 32 in 31, a pressure adjustment piston 34, and a pressure gauge 35.
Connect 6, pressure Ii! ! ! By adjusting the movement of the regulating piston from side to side, intermittent positive pressure is applied to the plasma fluid chamber F (1-positive pressure), forcing the plasma through the membrane 2o and the plasma to be refiltered through the membrane 22. Cap 1 with purified blood outlet of the device shown in Fig. 3.
In the 70s, blood W=minute outlet 37, purification m1 plasma outlet 38
A plasma outlet 38 is provided with a nozzle 39 having separate
Plasma is discharged from the plasma by a discharge pump 4o and merged into a blood cell line 41 to become purified blood 30. Such a device makes it possible to reliably separate and purify plasma.

才5図は第3図装置の膜20と22tケースlB内にラ
ング2に配置したもので、x−yt断@vcuいて矛6
図の如き膜の配置を有している。か−る装置では、血漿
p液室にどいて膜22によって再針過される血漿を膜に
均一に分配することが可能である。オフ図は矛5図装置
の膜22の他端24が上末端のウレタン接着剤26まで
伸び、かつ血漿流路25の上末端が閉塞されている。か
〜る装置においては、膜22が両端固定されているため
に針術撃性に優れ、膜の破損が少い優れた点を有してい
る。矛8図は矛3図装置のケース内中央部に隔壁42を
設け、膜2Gと22ft分離した血漿室43と44から
なるもので、19図はそのY−Y断面図であるーか一石
装置では、分離血漿28と膜22で再濾過される血11
45の不均一な混合を防ぎ、血漿室44における再濾過
tスムーズに行うことができる〇 才101i@lは不発v4俟置、例えば矛3図の膜20
のA部拡大模式図1才11図は1iil装置の膜22の
Bilの拡大模式図である。矛10図に示す如(、皇[
allzxを流れる血液は、血液中の血漿成分の濾過が
分画分子量の大きい面側5例えば孔径の大きい側番6か
ら小さい儒47へ通過する。また>3@Ifi+置4F
)Bllett、血漿FffL室23の血漿28が1才
11図に示す如(血漿成分の濾過が分画分子量の小とな
る面側1例えば孔径の小さい憫47から大きい儒46に
再び流入し、血液流路中で血球27と混合し、浄化血液
30となる。このとき分離血漿中の高分子蛋白質が分離
され、アルブミン、水、電解質を主成分とする低分子量
物質が換を再度通過して血球成分と混合される。
Figure 5 shows the membrane 20 and 22t of the device shown in Figure 3, which are placed in rung 2 in case 1B, with x-yt cutting @vcu and spear 6.
It has a membrane arrangement as shown in the figure. In such a device, it is possible to uniformly distribute the plasma across the membrane, which passes into the plasma p-fluid chamber and is re-needleled through the membrane 22. In the off-line view, the other end 24 of the membrane 22 of the device extends to the urethane adhesive 26 at the upper end, and the upper end of the plasma flow path 25 is closed. In this device, since the membrane 22 is fixed at both ends, it has excellent acupuncture impact properties and has the advantage of less damage to the membrane. Figure 8 shows the device shown in Figure 3, with a partition wall 42 installed in the center of the case, consisting of plasma chambers 43 and 44 separated by 22 feet from the membrane 2G, and Figure 19 is a Y-Y cross-sectional view of the device. Now, the separated plasma 28 and the blood 11 to be refiltered through the membrane 22
45 can be prevented from uneven mixing and refiltration in the plasma chamber 44 can be carried out smoothly.
An enlarged schematic diagram of part A of FIG. 1 is an enlarged schematic diagram of the membrane 22 of the 1iil device. As shown in figure 10 of the spear (, Emperor [
Blood flowing through allzx passes from the surface side 5 having a large molecular weight cutoff, for example, the side number 6 having a large pore diameter, to the small pore size 47 where plasma components in the blood are filtered. Also > 3 @ Ifi + 4th floor
) As shown in Figure 11, the plasma 28 in the plasma FffL chamber 23 flows back into the large pore 46 from the surface 1 where the fractional molecular weight is small, for example, from the small pore 47, and the blood It mixes with blood cells 27 in the flow path and becomes purified blood 30. At this time, the high molecular weight proteins in the separated plasma are separated, and the low molecular weight substances whose main components are albumin, water and electrolytes pass through the exchange again and become purified blood 30. mixed with ingredients.

ここで述べた両膜面ににける血漿成分の濾過が分画分子
量の異なる膜は、その両膜面に8ける平均孔径の異なる
膜に限定されず、荷電の性質が異なる膜、あるいは親水
性、疎水性素材膜などその両IIL面ににいて蛋白質の
吸着性、あるいはまた、蛋白質の透過性が異なるもので
あるが、例えば−例として、ここで述べた膜面Kjdけ
る孔径の異なる膜とは、血液中の血球成分が漏れない大
きさの孔径なもつ農で、走査型電子顕微鏡などの電子顯
微鏡で観察して、膜表面のうlダムサンプルの孔直径、
すなわち孔の長径と短径の算術平均値の多数を平均して
求める方法で、平均孔径の小なる膜面側の平均孔径0は
0.05〜G−3s s好まし、くは0.08〜0.2
5μであり、平均孔径の大なる膜面側の平均孔径■)は
0.15〜3.0μ、好ましくは0.2〜2.0μであ
り、比圓は1.2〜5.01好ましくは1.4〜3.0
のものである。か〜る孔径の異なる膜における血漿成分
の濾過が、その方向によって分画分子量に差がある理由
は明らかでないが、一つは、膜を構成する孔が大きい側
から小さい側に傾斜しているために、血漿中の高分子量
蛋白質が孔径大なる方向から小なる方向にすり抜は易い
のに対し、孔径小なる方向からは小孔壁で阻止されるた
めか、あるいは矛2には、かへる蛋白濾過膜の多くは両
層表面の活性層、すなわちスキン層の孔の大きさによっ
て透過物質の大きさを規制しているが、か〜る多孔質濾
過膜の大部分を1膜の断面方向の西部が粗い多数の互い
に通過しだ流路、すなわちスポンジ構造からなり、かつ
、か〜る膜の表面は孔径のバラツキの範囲内で孔径の小
なる膜面lIKも数は少ないが孔径の大なる孔が幾らか
存在し、かへる孔が孔径の大なる膜m稠の孔と内部のス
ポンジ構造の多数の流路で相違通しているために、孔径
の小さい側からはかへる数少ない孔から高分子量蛋白質
が確率的に数少なく流出するのみであるのに対し、孔径
の大きい側からはiii率的に多数の流路から、か〜る
孔を通り抜は小孔径面@に流出するために、結果として
孔極大なる膜面側からの高分子量蛋白質の透過性が大と
なるのか、あるいは才3には、孔径の大なる膜面側の!
!面は凹凸(富み狐なために、血流によるiL流効果、
または何らかの理由で蛋白の付着や吸着、すなわち蛋白
ケーク層が比較的小さくなるために高分子量蛋白透過性
が向上するのに対し、逆に孔径の小さい側は表向スムー
スで、かつ乱流作用も少なく、ケーク層大となるなど種
々の理由が推定される。
Membranes with different molecular weight cut-offs for plasma component filtration on both membrane surfaces mentioned here are not limited to membranes with different average pore diameters on both membrane surfaces, but also membranes with different charged properties or hydrophilic membranes. , hydrophobic material membranes, etc., have different protein adsorption properties or protein permeability on both IIL surfaces. The pore diameter is large enough to prevent blood cell components from leaking out, and the pore diameter of the duct sample on the membrane surface can be determined by observing it with an electron microscope such as a scanning electron microscope.
In other words, the average pore diameter 0 on the membrane surface side where the average pore diameter is smaller is preferably 0.05 to G-3s, or preferably 0.08. ~0.2
5μ, and the average pore diameter (■) on the membrane side, which has a larger average pore diameter, is 0.15 to 3.0μ, preferably 0.2 to 2.0μ, and the ratio is preferably 1.2 to 5.01. 1.4-3.0
belongs to. It is not clear why the molecular weight fraction differs depending on the direction of filtration of plasma components through membranes with different pore sizes, but one reason is that the pores that make up the membrane are inclined from the larger side to the smaller side. This may be because high molecular weight proteins in plasma easily pass through from the direction of larger pores to smaller pores, but are blocked by the pore walls from the direction of smaller pores. In many porous protein filtration membranes, the size of permeable substances is controlled by the pore size of the active layer on the surface of both layers, that is, the skin layer, but most of these porous filtration membranes are The membrane has a spongy structure, consisting of a large number of passages that pass through each other and are rough in the western part of the cross-sectional direction, and the membrane surface has a small pore size within the range of pore size variation. There are some large pores in the membrane, and the pores communicate with the large pores in the membrane through a number of channels in the internal sponge structure. In contrast, high molecular weight proteins probabilistically flow out from only a few pores through a small number of pores, whereas from the large pore side, they pass through the pores from a probabilistically large number of flow paths to the small pore surface @. As a result, the permeability of high-molecular weight proteins from the membrane side where the pores are maximum is increased due to outflow, or perhaps the permeability of high molecular weight proteins is increased from the membrane side where the pores are large!
! The surface is uneven (because it is a rich fox, the iL flow effect due to blood flow,
Or, for some reason, protein adhesion or adsorption, that is, the protein cake layer becomes relatively small, which improves high molecular weight protein permeability, whereas on the other hand, the surface of the small pore side is smooth and there is no turbulent flow effect. There are various possible reasons for this, such as a smaller amount of cake and a larger cake layer.

−万、か覧る不発1装*に用いる膜は、中空繊維膜、チ
ューブ状膜、平膜なと広く把えた概念であり、平膜のみ
に限定されるものではない。また、両膜面KXける平均
孔径の異る膜は、例えばミリボア社、アミコン社メンブ
レンに代表される膜濾過領域の孔径な有する市販平膜で
も可能であるか。
The membrane used in the 10,000-year-old unexploded unit* is broadly understood to include hollow fiber membranes, tubular membranes, and flat membranes, and is not limited to flat membranes. Also, is it possible to use a commercially available flat membrane having different average pore diameters in the membrane filtration region, such as Millibore and Amicon membranes, for example, with different average pore diameters on both membrane surfaces KX?

小さなプライミングボリュームの濾過装置で大膜面積を
簡単に得ると舊うことから、中空繊維状の膜の利用が望
ましい、膜の素材は1例えはセルロースアセテートなど
のセルロース系膜、およびポリビニルアルコール、エチ
レンビニルアルコール、ポリメチルメタクリレート、ポ
リアクリロニトリル、ポリカーボネート、ポリスルホン
、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン
、ポリアミド、ポリエステルなどの゛合成高分子系多孔
膜である。これらの多孔膜は、すでに公知の技術で得る
ことができるが、例えば代表的な例として。
Since it is easy to obtain a large membrane area with a filtration device with a small priming volume, it is desirable to use a hollow fiber membrane.Membrane materials include cellulose membranes such as cellulose acetate, polyvinyl alcohol, and ethylene. Synthetic polymer porous membranes made of vinyl alcohol, polymethyl methacrylate, polyacrylonitrile, polycarbonate, polysulfone, polyvinylidene fluoride, polyethylene, polypropylene, polyamide, polyester, etc. These porous membranes can be obtained by already known techniques, for example, as a typical example.

セルロースアセチ−トナどのセルロースエステルでは特
開昭52−84183に開示された方法を応用して得る
ことができる。
Cellulose esters such as cellulose acetate can be obtained by applying the method disclosed in JP-A-52-84183.

特開昭52−84183に開示さitた方法に16いて
は、セルロースエステルなその溶媒に対し25〜35重
量−1−価、ニーの陽イオン金属の塩酸塩。硝酸塩、臭
化−8よびヨウ化物の少なくとも1種の金属化合物をセ
ルロースエステルに対し20〜100重量%、飽和−価
アルコールまたは炭素数5〜10の環状炭化水素類より
なるものから少なくとも1種類の非溶媒を、該セルロー
スエステルの溶媒に対し50〜80重JIk%を含有し
た紡糸原液を環状紡糸孔から吐出すると共に、環状紡糸
孔の中央から該紡糸原液に対し緩慢な凝固作用な南する
内部凝固液を定量的に流出させ、紡糸孔の垂直下に自重
落下後、凝固浴中で凝固させ、塩化カルシウムと非溶媒
をメタノール液中で洗滌除去することを特徴とする方法
であり、このような方法によって両膜面に8ける平均孔
径が異なり、かつ、本発明の孔径領域をもった中空糸分
離膜が優られる。
In the method disclosed in JP-A-52-84183, a cationic metal hydrochloride having a valence of 25 to 35% by weight is used in its solvent, such as a cellulose ester. 20 to 100% by weight of at least one metal compound of nitrate, 8-bromide, and iodide based on the cellulose ester, and at least one type of saturated alcohol or cyclic hydrocarbons having 5 to 10 carbon atoms. A spinning dope containing a non-solvent of 50 to 80 weight JIk% relative to the solvent of the cellulose ester is discharged from an annular spinning hole, and an inner part that slowly coagulates the spinning dope from the center of the annular spinning hole. This method is characterized by quantitatively flowing out the coagulating liquid, allowing it to fall vertically under the spinning hole under its own weight, coagulating it in a coagulating bath, and washing away calcium chloride and non-solvent in a methanol solution. A hollow fiber separation membrane having different average pore diameters on both membrane surfaces depending on the method and having the pore diameter range of the present invention is preferable.

次K、本発明の効果について述べると、今供給血液中表
よび浄化血液中のアルブミン*iを各々CPA、CFA
、百方近辺の高分子蛋白質をCPHMN、CFkmM、
処理時間を大とすると、ある処理時間内での血漿中各成
分蛋白質、すなわち、アルブミン、為分子蛋白質それぞ
れの浄化血液側への回収率(積分回収率)をRA、凡H
MW %)とし、また全供給血液量、全浄化血液量をQ
PT、QFTとするとで示される。
Next, to describe the effects of the present invention, albumin*i in the currently supplied blood and in the purified blood is adjusted to CPA and CFA, respectively.
, CPHMN, CFkmM,
If the processing time is increased, the recovery rate (integral recovery rate) of each component protein in plasma, namely albumin and molecular protein, to the purified blood within a certain processing time is RA, H
MW %), and the total supplied blood volume and total purified blood volume are Q.
When PT and QFT, it is shown as.

この場合、血液浄化処理に要求される条件は、KAは大
きく、Mは小さいことで、分離性を示す値IRA−RH
MWIが大きいことが望ましい。
In this case, the conditions required for blood purification treatment are that KA is large, M is small, and the value IRA-RH that indicates separation property is
It is desirable that the MWI is large.

特に血液浄化を目的とした処理においては、前述の如く
短時間、かつ膜面積の小さな濾過装置で大量の血液が処
理でき、しかもkLAが大きいことが必須条件となるが
、この場合、15〜3時間で処理血液量か2〜41.ル
A60〜90%となるような装置とすることか望ましい
1゜以上述べた如く、両膜面における分画分子tにFJ
力向性を有するF1a膜の、血液中の血漿成分のF遍か
分画分子量の大となる方向に血液を流して血液から血漿
を分離する第1の膜と、次いで逆KBi!膜の分−分子
量の小さい方向からfji遇する同−棟の矛2の膜を同
一の血漿浄化装置の中に収納させることで、極めてコン
パクトで取扱いが簡単で、優れた浄化性屁を1する血液
浄化装置となることか判った。
Particularly in processing for the purpose of blood purification, as mentioned above, it is essential that a large amount of blood can be processed in a short time and with a filtration device with a small membrane area, and that the kLA is large. The amount of blood processed in time is 2 to 41. It is preferable to use an apparatus in which the angle A is 60 to 90%, or more than 1 degree.
The first membrane, which separates plasma from blood by flowing blood in the direction of F1 of plasma components in blood or the direction in which the molecular weight cutoff is large, of the F1a membrane having force tropism, and then the reverse KBi! By storing two membranes of the same type in the same plasma purification device, which have a smaller molecular weight, it is extremely compact, easy to handle, and has excellent purification properties. It turned out to be a blood purification device.

以下、本発明の実施例を挙けて説明する。The present invention will be described below with reference to examples.

実−例1 セルロースアセテート(East man  社製eA
−394−45J16f%溶媒としてアセトン329%
よびメタノール8fの混合溶媒402、金属化合物とし
て塩化カルシウム2水塩99,1&加俗媒としてシクロ
ヘキサノール342を完全均−浴[になるように攪拌し
、脱泡した原液を得た。この紡糸原液を環状紡糸孔から
吐出させ、その中央部にある内部凝固液の流出孔からは
50谷蓋饅メタノール水浴液を定型的に流出させ、下刃
に801IIII空中を通過さゼた恢、50容it嗟メ
タノール水溶液の凝固浴に尋き、凝固した中空糸をメタ
ノール浴で処理した。この結果、侮られた中空糸は内径
360μ、膜厚150μ、かつ、その内外絢表t!0を
倍率10,000倍の電子顕微鏡で観察したところ、内
表面の平均孔径は糸軸方向で0.33μ、軸直角力向で
0.25μの格円孔で、外表面の平均孔径は糸軸方向で
0.19μ、軸直角方向で0.13μの楕円孔で、外表
面が内表面より孔径の小さな中空糸であった。か瓦る中
空糸を用いて、2′3図に示す如き本発明の装置を作成
した。すなわち、か〜る装置に?いては、上述の中空糸
が3600本、有効長1gon、有効膜面積0.7−と
なる如(束ねられて、その両末端がウレタン接着された
血漿分IIl膜20が形成されている。他力、η中空糸
の一末端の中空開口部をウレタン樹脂で閉塞し、400
0本束ね、 4r効長163、有効膜面積0.7−とな
る如く束ねりれて、その他木端かウレタン接着された血
漿分画膜22が形成されている。かかるモジュールな才
2図の装置に組立てた。次にヘマトクリット4516.
5%蛋白血漿に調整し、ヘパリン1万単位/lt添加牛
新鮮血5tを本発I!jI!装置に150d1分で供給
し、限外濾過圧80IIIIIHg  で再循環連続供
給処理した。このとき、血漿中のアルブミン、分子量百
方以上の高分子蛋白成分の1収率は、東洋1達社製液体
クロマトグラフィーHLC−801A(カラムsw−a
oo。
Example 1 Cellulose acetate (eA manufactured by Eastman)
-394-45J16f% Acetone 329% as solvent
A mixed solvent of 402 and 8 f of methanol, 99.1 calcium chloride dihydrate as a metal compound, and 342 cyclohexanol as a heating medium were stirred to form a completely uniform bath to obtain a defoamed stock solution. This spinning dope was discharged from the annular spinning hole, and from the internal coagulation liquid outflow hole in the center, the methanol water bath solution was flowed out in a regular manner, and passed through the 801III air to the lower blade. A coagulation bath of 50 volumes of methanol aqueous solution was used, and the coagulated hollow fibers were treated in the methanol bath. As a result, the neglected hollow fiber has an inner diameter of 360μ, a membrane thickness of 150μ, and an inner and outer surface of t! 0 was observed with an electron microscope at a magnification of 10,000 times, the average pore diameter on the inner surface was 0.33 μ in the direction of the yarn axis and 0.25 μ in the direction perpendicular to the axis, and the average pore diameter on the outer surface was 0.33 μ in the direction of the yarn axis. The hollow fiber had an oval hole of 0.19μ in the axial direction and 0.13μ in the direction perpendicular to the axis, and the outer surface had a smaller hole diameter than the inner surface. An apparatus of the present invention as shown in Figures 2' and 3 was prepared using a flexible hollow fiber. In other words, to the device? In this case, 3,600 hollow fibers, an effective length of 1 gon, and an effective membrane area of 0.7 mm were bundled to form a plasma II membrane 20 with both ends bonded with urethane. Force, η The hollow opening at one end of the hollow fiber was closed with urethane resin, and 400
A plasma fractionation membrane 22 is formed by bundling 0 membranes, 4r effective length 163, and effective membrane area 0.7, and the other ends are glued with urethane. Such a modular device was assembled into the device shown in Figure 2. Next, the hematocrit is 4516.
The original I! 5 tons of fresh bovine blood adjusted to 5% protein plasma and added with 10,000 units/lt of heparin! jI! It was fed into the apparatus at 150 d1 min and was continuously fed with recirculation at an ultrafiltration pressure of 80 III Hg. At this time, the yield of albumin in plasma, a high-molecular protein component with a molecular weight of 100 or more, is calculated using a liquid chromatography HLC-801A (column swa-a
oo.

X1本、溶離液に燐酸緩衝液使用)によるクロマトグラ
フから解析した。@12図点線は処理前牛血液の血漿5
s蛋白溶液(母液)の100倍希釈液の液クロパターン
であり、実線は浄化血液の血漿100倍希釈液のパター
ンである。
Analysis was performed using a chromatograph using a phosphate buffer (using a phosphate buffer as the eluent). @ Figure 12 The dotted line is bovine blood plasma 5 before processing.
This is a liquid chromatography pattern of a 100-fold dilution of the S protein solution (mother liquor), and the solid line is a pattern of a 100-fold dilution of purified blood plasma.

今、処理前血液によび浄化血液の血漿中、アルブミン、
高分子蛋白質のピーク面積を各々AA、は、 なる計算式から求めた。この場合、これらの値はスター
ト前および後3時間目までの浄化血液をプールしたもの
を用い測定した。また、血II総蛋白濃度はビウレット
法にて測定した。結果な[1表に示す。第1表に8いて
、Pは本装置の到達圧力(−一匈)である。
Now, in the plasma of purified blood by pre-processed blood, albumin,
The peak areas of high molecular weight proteins, AA and AA, respectively, were determined from the following formula. In this case, these values were measured using a pool of purified blood from before and up to 3 hours after the start. In addition, blood II total protein concentration was measured by the biuret method. The results are shown in Table 1. 8 in Table 1, P is the ultimate pressure (-1 mongo) of this device.

この結果から本発明の装置では、アルブミン回収率およ
び分離性が良(、かっ堆扱い簡単で処理能力も充分であ
ることが判った。
From these results, it was found that the apparatus of the present invention had good albumin recovery rate and separation performance, was easy to handle, and had sufficient processing capacity.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

才1図は従来の膜を用いた血液浄化装置の一例を示す説
明図、矛2図は本発明装置の一使用態様を示す説明図%
矛3図は本発明装置の一実施態様の簡略化した説明図、
 、!4%よび才5図は矛3図装置の別の実施態様を示
す説明図、矛6図は矛5図装置のX−X@の断面図、オ
フ図は矛5図装置の別の実ms+様の簡略説明図、、1
−8図は矛3図装置の別の実J11i]1様を示す説明
図、才9図は矛8図のY−Ymの断面図、矛10図およ
び矛11図は矛3図装置に用いる膜の拡大模式図、矛1
2図は実施例の回収率を説明するグラフである。 l・−・・−・・−・血液     2・・・・・・・
・・血液回路3・・・−・・・−・ポンプ    4・
・・叩・・血漿分離器5・−・・・・・・・血漿導入回
路 6・・・・・・・・・ポンプ7・・・・・・・・・
膜分離器   8・・・叩・・排出回路9・・・・・・
・・・回収回路   1o・・・・・・混合室11・・
・・−・血球成分   12・・・・・・導出回路13
・・・・・・本発明装置、 14・・・・・・圧力針1
5・・・・・・圧力調整器  16.17・・・・・ツ
ズル18・・・−・・ケース    19・・・・・・
キャップ20・・・・・・血漿分離lA21・・・・・
・血液流路22・・・・・・血漿分離膜  23・・・
・・・血漿F液室24・・・・・・接着剤    25
・−・・・・浄化血漿流路26・・・・・・接着剤  
  27・・・・・・血球成分28・・・・・・血漿成
分   29・・・・・・浄化血漿30・・・・・・浄
化血液   31・−・−・血漿排出口32−・・・・
・ベローズ   33・−・・・・圧力伝達器34・・
・・・圧カー整ピストン 35・・・・・・圧力計36
・・・・・・F液ライン  37・・・・・・血球成分
出口38・・・・・・浄化血漿出口 39・−・・・ツ
ズル40・・・・・・排出ポンプ  41・・・・・・
血球ライン42・・・・・・隔@       43.
44・・・・・・血漿室45・・・・・・再濾過される
血漿 46・・・・・・孔径の大きい側47・・・・・
・孔径の小さい稠 第1図      第2図 第3図     第4図 第5図 第7図      第8図 第10図   第11図 第12 m
Figure 1 is an explanatory diagram showing an example of a conventional blood purification device using a membrane, and Figure 2 is an explanatory diagram showing one mode of use of the device of the present invention.
Figure 3 is a simplified explanatory diagram of one embodiment of the device of the present invention;
,! Figures 4% and 5 are explanatory diagrams showing other embodiments of the Figure 3 device, Figure 6 is a sectional view taken along line X-X@ of the Figure 5 device, and the off view is another actual ms+ of the Figure 5 device. A simple explanatory diagram of , 1
Figure -8 is an explanatory diagram showing another example of J11i]1 of the 3-figure device, Figure 9 is a cross-sectional view of Y-Ym of the 8-dimensional figure, and Figures 10 and 11 are used for the 3-figure device. Enlarged schematic diagram of membrane, spear 1
FIG. 2 is a graph explaining the recovery rate of Examples. l・−・・−・・−・Blood 2・・・・・・・
・・Blood circuit 3・−・・・Pump 4・
...Plasma separator 5 --- Plasma introduction circuit 6 ... Pump 7 ...
Membrane separator 8...beating/discharge circuit 9...
...Recovery circuit 1o...Mixing chamber 11...
...Blood cell component 12 ...Derivation circuit 13
... Device of the present invention, 14 ... Pressure needle 1
5... Pressure regulator 16.17... Tuzzle 18... Case 19...
Cap 20...Plasma separation lA21...
・Blood flow path 22...Plasma separation membrane 23...
...Plasma F liquid chamber 24...Adhesive 25
...Purified plasma flow path 26...Adhesive
27...Blood cell component 28...Plasma component 29...Purified plasma 30...Purified blood 31...Plasma outlet 32-...・
・Bellows 33...Pressure transmitter 34...
...Pressure car adjustment piston 35...Pressure gauge 36
...F fluid line 37... Blood cell component outlet 38... Purified plasma outlet 39... Tuzzle 40... Discharge pump 41...・・・
Blood cell line 42... Interval @ 43.
44... Plasma chamber 45... Plasma to be refiltered 46... Side with larger pore size 47...
・Thickness with small pore diameter Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 Fig. 10 Fig. 11 Fig. 12 m

Claims (1)

【特許請求の範囲】[Claims] 血液の導出入口を有する容器内に分画分子量のp過方向
性を有する矛10濾過膜が設けられ、該導出入口は血液
中の血漿成分の濾過が分画分子量の大となる方向に該層
の一万の面側であって、かつ該膜v7iK沿って処理す
べき血液を流すように設けられ、該層の他力の面側には
P[室が設けられ、#F液室には分離された血漿成分を
NF遇するために才1f)p過膜と同一種の才20濾過
膜が設けられ、かつ該12のV過膜は再濾過方向が分−
分子量の小なる方向になるようKその一面が該血漿成分
と接する側とされ、該才20V過誤の他力は前記血液導
出口と連通されていることな特徴とする血液浄化装置、
A filtration membrane having a p-direction of the molecular weight cut-off is provided in a container having an inlet and an inlet for blood, and the inlet and outlet are arranged so that the plasma components in the blood are filtered in the direction in which the molecular weight is larger. It is provided on the 10,000 side and along the membrane v7iK so that the blood to be processed flows, and on the other side of the layer there is a P[chamber, and in the #F fluid chamber. In order to NF-treat the separated plasma components, 20 filtration membranes of the same type as the 1f) P filtration membranes are provided, and the 12 V filtration membranes are separated in the refiltration direction.
A blood purification device characterized in that one side of the K is in contact with the plasma component so as to be in the direction of decreasing molecular weight, and the other force of the 20V voltage is communicated with the blood outlet.
JP5549482A 1982-04-05 1982-04-05 Blood purifying apparatus Pending JPS58173555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5549482A JPS58173555A (en) 1982-04-05 1982-04-05 Blood purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5549482A JPS58173555A (en) 1982-04-05 1982-04-05 Blood purifying apparatus

Publications (1)

Publication Number Publication Date
JPS58173555A true JPS58173555A (en) 1983-10-12

Family

ID=13000184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5549482A Pending JPS58173555A (en) 1982-04-05 1982-04-05 Blood purifying apparatus

Country Status (1)

Country Link
JP (1) JPS58173555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171063A (en) * 1984-06-16 1986-04-11 ビー・ブラウン―エスエスシー・アクチエンゲゼルシャフト Selective separation of high-molecular weight substance in blood
JPS61172563A (en) * 1984-11-16 1986-08-04 アニサ メデイカル インコ−ポレ−テツド Method and system for removing immune reaction suppressing component from blood of mammal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171063A (en) * 1984-06-16 1986-04-11 ビー・ブラウン―エスエスシー・アクチエンゲゼルシャフト Selective separation of high-molecular weight substance in blood
JPS61172563A (en) * 1984-11-16 1986-08-04 アニサ メデイカル インコ−ポレ−テツド Method and system for removing immune reaction suppressing component from blood of mammal

Similar Documents

Publication Publication Date Title
CN100503020C (en) Plasma purifying membrane and plasma purifying system
EP2800592B1 (en) Multi-staged filtration system for blood fluid removal
EP1993631B1 (en) Regeneratable filter for extracorporal treatment of liquids containing particles and use thereof
EP0038203B1 (en) Blood treatment apparatus
JP5873170B2 (en) Method and apparatus for producing high concentration protein solution
US4609461A (en) Apparatus for purifying blood
US5069788A (en) Multi-pass blood washing and plasma removal device and method
US4968432A (en) Treatment of liquid including blood components
US5017293A (en) Multi-pass blood washing and plasma removal device and method
JP2002526172A (en) Biological fluid filters and systems
JP2024514111A (en) filtration media
JPS58173555A (en) Blood purifying apparatus
EP3185926B1 (en) System for the removal of pro-inflammatory mediators and granulocytes and monocytes from blood
JP2004121608A (en) Hollow fiber membrane for dialysis liquid purification, and method for producing the same
DE102004037475A1 (en) Filter system for the membrane-separated, adsorptive treatment of particle-containing liquids
JPH0211263B2 (en)
JPS58173556A (en) Blood purifying apparatus
JPS6362B2 (en)
JPH034230B2 (en)
JPS5894858A (en) Serum treating apparatus
JPS58175565A (en) Serum treating apparatus
EP0262656A2 (en) A membrane for the separation of blood plasma components
JPH019575Y2 (en)
JPS6124019B2 (en)
JPS6315861B2 (en)