JPS58173492A - Method of conquering design standard accident and virtual accident of atomic power plant - Google Patents

Method of conquering design standard accident and virtual accident of atomic power plant

Info

Publication number
JPS58173492A
JPS58173492A JP58029604A JP2960483A JPS58173492A JP S58173492 A JPS58173492 A JP S58173492A JP 58029604 A JP58029604 A JP 58029604A JP 2960483 A JP2960483 A JP 2960483A JP S58173492 A JPS58173492 A JP S58173492A
Authority
JP
Japan
Prior art keywords
reactor
temperature
measures
barrier
manually
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58029604A
Other languages
Japanese (ja)
Inventor
ライナ−・ニコライ
ビンフリ−ド・バクホルツ
ウルリツヒ・バイヒト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochtemperatur Reaktorbau GmbH
Original Assignee
Hochtemperatur Reaktorbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochtemperatur Reaktorbau GmbH filed Critical Hochtemperatur Reaktorbau GmbH
Publication of JPS58173492A publication Critical patent/JPS58173492A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • G21D3/06Safety arrangements responsive to faults within the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、プレストレストコンクリート圧力容器に格納
され、その球形燃料要素が黒鉛基質に埋設され被梼され
た核分裂物質粒子から成るガス冷却形高温原子炉と、プ
レストレストコンクリート圧力容器を堆囲む原子炉切換
建物と、少くとも1個の遮断系統および余熱排出装置と
、核分裂物質の保留のための複数個の障壁とを有し、核
分裂物質粒子の被覆が第1の障壁、黒鉛基質が第2の障
壁をなし、第3の障壁はプレストレストコンクリート圧
力容器によって実現され、原子炉防護建物が第4の障壁
をなす原子力発電所の設計基準事故および仮想事故克服
の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas-cooled high-temperature nuclear reactor housed in a prestressed concrete pressure vessel, the spherical fuel elements of which are composed of fissile material particles embedded in a graphite matrix, and a prestressed concrete pressure vessel. a reactor switching building enclosing a reactor switching building, at least one isolation system and residual heat exhaust system, and a plurality of barriers for retention of fissile material, the coating of fissile material particles being a first barrier, a graphite The present invention relates to a method for overcoming design basis and hypothetical accidents in nuclear power plants, where the substrate constitutes the second barrier, the third barrier is realized by a prestressed concrete pressure vessel, and the reactor protection building constitutes the fourth barrier.

原子力発電所は、設計基準事故(発生確率10/aない
し10/a以上)の克服を要求する現行の基準と規則に
従って設計される。これより希少な事故は、仮想事故と
して分類される。
Nuclear power plants are designed according to current standards and regulations that require overcoming design basis accidents (10/a to greater than 10/a probability of occurrence). Accidents rarer than this are classified as hypothetical accidents.

この仮想事故を目標とした原子力発電所の設計は通常行
われず、損害規模または危険度(発生確本×損害規模)
が確かめられるだけである。
Nuclear power plants are usually not designed with this hypothetical accident as a target, and damage scale or risk (certain occurrence x damage scale)
can only be confirmed.

原子力発電所の運転時の危険の減少または危険の排除の
ための一次的処置として、仮想事故を含む事故の際の放
射能の低下を保証することが考えられる。冒頭に挙げ九
構造の高温原子炉において、この任務の遂行のために前
記の障壁が利用される。しかし障壁の効果は一外部の作
用は別として一実質的に運転温度および事故温度と運転
圧力および事故圧力によって左右される。ま九それと共
に、高温と異物の存在による化学的過程(黒鉛の腐食、
コンクリートの分解)も、核分裂生成物の確実な閉じこ
めにおいて重要である。
As a primary measure for reducing or eliminating risks during the operation of nuclear power plants, it is conceivable to guarantee a reduction in radioactivity in the event of an accident, including a hypothetical accident. In high-temperature nuclear reactors of the nine structures mentioned at the outset, the aforementioned barriers are used to accomplish this task. However, the effectiveness of the barrier, apart from any external effects, depends substantially on operating and accident temperatures and operating and accident pressures. Along with this, chemical processes due to high temperatures and the presence of foreign substances (corrosion of graphite,
Decomposition of concrete) is also important in ensuring the containment of fission products.

それ故、原子力発電所の安全性Fiまず第一に温度問題
の克服に依存するのである。すなわち411[のすべて
の障壁の破損温度を超えることが十分に確率上束いか、
又は全く排除されなければならない。また設備の圧力防
護も極めて重要である。
Therefore, the safety of nuclear power plants depends first of all on overcoming temperature problems. In other words, is it sufficiently probable that the failure temperature of all barriers in 411[ is exceeded?
or must be excluded altogether. Pressure protection of equipment is also extremely important.

本発明の目的は、冒頭に述べ九原子力発電所に於て、設
計基準事故と仮想事故のいずれに対しても、原子力発電
所からの放射能もれの危険と環境へ及はすその被害を低
コストで実質上排除できる方法を提供することである。
The purpose of the present invention is to reduce the risk of radioactivity leakage from the nuclear power plant and its damage to the environment in both design basis accidents and hypothetical accidents at the nine nuclear power plants mentioned at the beginning. The objective is to provide a method that can be virtually eliminated at low cost.

本発明によれば、この目的は順次引続く複数個の下記段
階すなわちステ、デによって達成される。
According to the invention, this object is achieved by a plurality of the following steps, which follow one after the other.

a)第1の段階は自動的に始動される防護対策により、
またこの防護対策が始動しない時に、またはこの防護対
策の補助として、手動的に実施される緊急処置により、
かつ高温原子炉特有の負の温度係数を利用して、不当な
温度上昇を阻止することによって、第1および第2の障
壁の機能を保証する段階である。
a) The first step is through automatically triggered protective measures;
Also, emergency measures carried out manually when this protective measure fails or as an adjunct to this protective measure
This is a stage in which the functions of the first and second barriers are guaranteed by utilizing the negative temperature coefficient unique to high-temperature nuclear reactors to prevent an unreasonable temperature rise.

b)第2の段階は@1および第2の障壁が不調の場合に
、一方ではプレストレストコンクリート圧力容器とその
シールの温度制限のための処置により、他方では圧力制
限のための処置により、第3の障壁の機能を保証する段
階であり、その際自動的忙始動される防護対策がまず使
用され、この防護対策が始動しない時に、またはこの防
護対策の補助として、緊急処置が手動的に実施される。
b) The second step is the failure of @1 and the second barrier, on the one hand by measures for temperature limitation of the prestressed concrete pressure vessel and its seals, and on the other hand by measures for pressure limitation; stage to ensure the functionality of the barrier, in which automatically activated protective measures are first used and, if this protective measure fails or as an aid, emergency measures are carried out manually. Ru.

C)第3の段階は、一方では原子炉防護建物の封鎖処置
によシ、他方では核分裂生成物保留装電を介して圧力を
緩和する処flIItKより、プレストレストコンクリ
ート圧力容器からの一次ガス流出の際に第4の障壁の機
能を保証する段階であり、その際自動的に始動される防
護対策がまず使用され、この防護対策が始動しない時に
、またはこの防護対策の補助として、緊急処置が手動的
に実施され、補助的に受動的防諸装置を介して圧力の緩
和を行うことができる。
C) The third stage consists of the prevention of the primary gas leakage from the prestressed concrete pressure vessel by, on the one hand, the containment of the reactor protection building and, on the other hand, by the pressure relief process via the fission product retention system. This is a step to ensure the functionality of the fourth barrier during the event, in which the automatically triggered protective measures are first used, and if this protective measure fails or as an adjunct to this protective measure, emergency measures are activated manually. pressure relief can be provided through passive protection devices.

統および方法による少数の補助的装置および対策が一つ
の完結した安全設計に統合され、他方ではこの安全設計
が特定の立地条件(例えば都市近郊)あるいは変遷する
安全要件(科学技術の発達による)に随時適応すること
ができるように、十分な融通性を吃つことか特命である
On the one hand, a small number of auxiliary devices and measures according to the system and methods are integrated into a complete safety design, and on the other hand, this safety design is adapted to specific site conditions (for example in urban areas) or to changing safety requirements (due to scientific and technological developments). It has enough flexibility so that it can be adapted at any time.

提案の方法においては、高温原子炉の特有の性質が最適
に利用される。自動的に始動される個々の防護対策と、
手動的に行われる防護対策(補修処置と緊急処置)を時
間的にずらせて進行させるために十分な時間が利用でき
るから、仮想事故の場合でも核分裂生成物の確実な閉じ
こめが保証される。
In the proposed method, the unique properties of high temperature nuclear reactors are optimally utilized. individual protective measures that are automatically triggered;
The availability of sufficient time for the staggered development of manual protective measures (repair and emergency measures) ensures reliable containment of the fission products even in the event of a hypothetical accident.

前述のように、核分裂生成物を保留する障壁の効果は、
とりわけ高温原子炉内の温度に左右される。温度上昇は
通常、熱の生成と熱の排出との関係の異常の結果生じる
。原子炉内の核分裂物質粒子と燃料要素6温度を故障限
界以下に保つことができなければ、これらの2種の核分
裂生成物障壁の不調と、−次回路の放射能もれを招く結
果を住する。
As mentioned above, the effect of the barrier to retain fission products is
In particular, it depends on the temperature inside the high-temperature reactor. Temperature increases typically result from abnormalities in the relationship between heat production and heat removal. Failure to maintain the fissile material particle and fuel element temperatures within the reactor below failure limits can result in failure of these two fission product barriers and radioactivity leakage into the next circuit. do.

一次回路の放射能閉じこめの保証は、容器貫通部のシー
ルおよび圧力容器自体の温度と、−次回路に生ずる圧力
によって定まる。補修処置や緊急処置によっても取除く
ことができない−次回路冷却装置の重大な故障の場合、
コールドガス温度の上昇と一次回路の圧力上昇が生じる
The guarantee of radioactive confinement in the primary circuit is determined by the seals of the vessel penetrations and the temperature of the pressure vessel itself, as well as the pressure created in the secondary circuit. In case of a major failure of the next circuit cooling system, which cannot be removed by repair or emergency measures,
An increase in cold gas temperature and pressure in the primary circuit occurs.

−次回路の圧力上昇は、防護対策が作動しなければ、圧
力容器の過圧によって損傷を招く恐れがある。上記の防
護対策とは、圧力容器の圧力を計画的に緩和することで
ある。それは、コールドガス温度の上昇の結果、過熱温
度にさらされる容器シールの予期せざる破損をも防止す
る。
- A pressure increase in the next circuit can lead to damage due to overpressure in the pressure vessel if protective measures are not activated. The above-mentioned protective measure is a planned relaxation of the pressure in the pressure vessel. It also prevents unexpected failure of container seals that are exposed to superheated temperatures as a result of an increase in cold gas temperature.

圧力の緩和は、原子炉防護建物内への一層ガスの流出を
もたらす。原子炉防護建物はその設計と機能によシ、第
4の障壁として放射畦間じこめを保証する。原子炉助層
建物の事故挙動も、生゛じる温度と圧力によってきまる
。原子炉からの十分な排熱を作動させることができなけ
れば、原子炉と金属付属品は一層熱せられ、更に一層ガ
スが圧力容器から流出する。その際高い炉心温度に関連
して、放射能の増加を考慮に置かなければならない。手
動的に開始゛される補助的緊急処置によって、原子炉助
層建物の封鎖が維持゛される。
Relief of pressure results in more gas escaping into the reactor protection building. The reactor protection building, by its design and function, guarantees radiation furrow containment as a fourth barrier. The accident behavior of reactor support buildings is also determined by the temperature and pressure that occurs. If sufficient exhaust heat from the reactor cannot be activated, the reactor and metal fittings will become even hotter and more gas will escape from the pressure vessel. In this case, the increase in radioactivity associated with the high core temperature must be taken into account. Manually initiated auxiliary emergency measures maintain containment of the reactor support building.

物内に到達し、過圧による建物の損傷を考慮しなければ
ならない場合にだけ、放射畦間じこめを無効にする事態
が原子炉防Sa物に生じる。
A situation arises in nuclear reactor saline structures that renders radiation ridge containment ineffective only when radiation reaches the interior of the reactor structure and damage to the building due to overpressure must be considered.

その場合、原子炉防SS物内の可燃物の燃焼によって生
じる圧力負荷と、多量の非凝縮性ガスの集積によって発
生する圧力負荷とが区別される。可燃性または非凝縮性
ガスの発生の原因は、原子炉圧力容器のコンクリートの
熱分解と、−次回路への空気の侵入が水の侵入と同時に
起ったときに生ずる黒鉛の腐食である。
In that case, a distinction is made between pressure loads caused by the combustion of combustible materials in the reactor SS material and pressure loads caused by the accumulation of large amounts of non-condensable gases. The sources of flammable or non-condensable gases are the thermal decomposition of the reactor pressure vessel concrete and the corrosion of graphite that occurs when air ingress into the secondary circuit occurs simultaneously with water ingress.

上記の場合に原子炉防饅建物自体の過圧破損を回避する
た&′)に、自動的または手動的に始動される防護対策
によって、核分裂生成物を保留する装置を介して、原子
炉防躾建物の圧力が緩和されるので、この場合も許容値
以上の放射能が環境に到達すること社あり得ない。更に
補動的に作動する受動的防謹装置を設けることができる
。この装置もま九核分裂生成物保留装置と連結される。
In order to avoid overpressure failure of the reactor protection building itself in the above cases, the reactor protection is Since the pressure in the building is relieved, it is unlikely that radioactivity exceeding the permissible level will reach the environment in this case as well. In addition, passive protection devices that operate auxiliarily can be provided. This device is also connected to the nine fission product retention devices.

本発明による方法の効果は、一方では複数個の段階的な
障壁を利用することに基づき、他方では時間をずらせて
行なわれる種々の防護対策によって個々の障壁の機能を
保持することに基づくものである。本発明の別の実施例
に於ては、自動的または手動的に始動される防護対策の
少くとも一部が、種々異なる構造の冗長度を高めるため
に設けられた装置によりて行われる。
The effectiveness of the method according to the invention is based, on the one hand, on the use of a plurality of graded barriers, and on the other hand, on the preservation of the functionality of the individual barriers by means of various protective measures carried out in a staggered manner. be. In another embodiment of the invention, at least some of the automatically or manually initiated protective measures are provided by means of devices designed to increase the redundancy of different structures.

本発明による方法の第1段階、すなわち不当な温度上昇
の阻止の実施は、一方では高温原子炉の遮断を、他方で
は原子炉の冷却を予定し、この目的のために余熱排出装
置を駆動する。
The first step of the method according to the invention, i.e. the implementation of the prevention of an undue temperature rise, involves, on the one hand, the shutdown of the high-temperature reactor and, on the other hand, the cooling of the reactor, activating the residual heat evacuation device for this purpose. .

炉心の動作を遮断する可能性は、炉心と側部反射材に挿
入する吸収棒を具備する第1の遮断系統によって保証さ
れる。事故が発生した場合、@1の遮断系統が自動的に
始動され、あるいは自動装置が不調の際は、吸収棒が手
操作で挿入される。吸収棒を挿入することができないと
きは、多数の小さな吸収球を具備する第2の遮断系統を
手動操作によって使用することができる。
The possibility of interrupting the operation of the core is ensured by a first isolation system comprising absorption rods inserted into the core and side reflectors. In the event of an accident, the @1 shutoff system is automatically activated, or if the automatic system malfunctions, an absorber rod is manually inserted. If it is not possible to insert an absorbent rod, a second shutoff system comprising a large number of small absorbent bulbs can be used by manual operation.

小さな吸収球の機能は原子炉を臨界未満のコールド状態
に保持するのに十分である。小さな吸収球を炉心に供給
する期間または第1の遮断系統を反応させる期間は、高
温原子炉の負の温度係数並びに被覆された核分裂物質粒
子の高い破損温度によシ、10時間以上に及ぶ。
The function of small absorption spheres is sufficient to keep the reactor subcritically cold. The period of feeding the small absorbing spheres into the core or reacting the first shutoff system can extend to more than 10 hours due to the negative temperature coefficient of high temperature reactors as well as the high failure temperature of the coated fissile material particles.

第2の御所系統も不調であり、第1の#!断糸系統補修
が不可能であるならば、負の温度係数を介して高温原子
炉の遮断が行なわれる。
The second Imperial Palace system is also in poor condition, and the first #! If repair of the broken line is not possible, a shutdown of the high-temperature reactor takes place via a negative temperature coefficient.

−次回路の冷却性は2つの要因、すなわちガスの循環と
一次回路の熱吸収材の存在によって定まる。そこtで余
熱排出装置には熱交換器と循環送風機が備えられる。
- The cooling properties of the secondary circuit are determined by two factors: the circulation of gas and the presence of heat absorbers in the primary circuit. There, the residual heat removal device is equipped with a heat exchanger and a circulation blower.

循環送風機は必要に応じて自動的に始動され、または手
動的に作動させられる。始動させることができなければ
、補修処理と緊急処置の実施のために数時間(5ないし
10時間)が使用される。
The circulation blower is automatically started or manually activated as required. If it cannot be started, several hours (5 to 10 hours) are used for repair processing and emergency procedures.

一次回路部品の特殊な配列と構造によシ十分な自然循環
流を利用できる高温原子炉の場合は、循環送風機を始動
することが成功しな力為っ走時、この自然対流が長時間
にわたって炉心からの確実な排熱を行う。しかし炉心の
流れの逆転の結果、コールドガス温度の上昇が起こる。
In the case of high-temperature nuclear reactors, where sufficient natural circulation flow is available due to the special arrangement and construction of the primary circuit components, this natural convection may last for an extended period of time during an unsuccessful attempt to start the circulation blower. Reliably exhaust heat from the reactor core. However, as a result of the core flow reversal, an increase in cold gas temperature occurs.

炉心からの余熱の排出は通常、主熱交換器を介して行わ
れる。この熱交換器が停止した時は、自動的に補助熱交
換器に切換えられる。補助熱交換器も不調の時は、やは
り数時間のあいだ緊急処置の手動的実施が行なわれる。
Exhaust of residual heat from the core is usually carried out via a main heat exchanger. When this heat exchanger stops, it is automatically switched to the auxiliary heat exchanger. If the auxiliary heat exchanger also malfunctions, manual emergency measures are still required for several hours.

この丸めに特に炉心と原子炉付属品の高い熱容量が有効
に用いられる。
In particular, the high heat capacity of the reactor core and reactor accessories is effectively used for this rounding.

余熱排出装置の全面的停止は温度上昇をもたらす・−次
回路からの余熱排出の停止は長時間(数日間)のあいだ
に第1および第2の障壁すなわち核分裂物質粒子の被覆
と黒鉛基質の損傷を招き、−次回路の大量の核分裂物質
もれが生じるので、第3の障壁すなわちプレストレスト
コンクリート圧力容器は完全無欠でなければならない。
A complete shutdown of the residual heat extraction system will result in a temperature rise - a cessation of residual heat extraction from the circuit will damage the first and second barriers, i.e. the coating of fissile material particles and the graphite matrix, over a long period of time (several days). The third barrier, the prestressed concrete pressure vessel, must be impeccable as this would result in a large amount of fissile material leaking from the next circuit.

そこで本発明による方法の第2段階は、圧装置を包含す
る。まず圧力容器のコンクリートが分解して、多量のH
2,COその他のガスが原子炉防護建物に放出されるこ
とを、排熱を十分に行なうことによって阻止しなければ
ならない。
The second stage of the method according to the invention therefore includes a pressure device. First, the concrete in the pressure vessel decomposes, producing a large amount of H.
2. Release of CO and other gases into the reactor protection building must be prevented by sufficient heat exhaustion.

タイプを内張すしたライナーの冷却系統を利用できる高
温原子炉の場合は、上記の目的はこのライナー冷却系統
によって行なわれる。ライナー冷却系統は炉心と一次回
路の温度を制限するる。なぜなら長時間(約10日)に
わ九ってすべての余熱をこの系統から排出することがで
きるからである。手動的に実施される補助的緊急処置に
よれば、ライナー冷却系統〆作用により安全機能が確保
される。
In the case of high temperature nuclear reactors where type lined liner cooling systems are available, the above objectives are served by the liner cooling system. The liner cooling system limits the temperature of the core and primary circuit. This is because over a long period of time (approximately 10 days) all residual heat can be removed from this system. Manually performed auxiliary emergency procedures ensure the safety function of the liner cooling system closure.

ライナー冷却系統が無欠陥であっても、圧力容器内圧力
が発生するので、長い事故期間後に過熱温度が現れた時
、圧力容器の過圧による故障を回避するために、計画的
に圧力の緩和が行なわれなければならない。−次回路の
圧力の制限は安全弁によって行われる。応答圧力に到達
での安全弁の不調が排除されない時は(その結果、−次
回路の全内容物が原子炉防護建物に流出することになる
)、緊急処置によれば、例えば手動操作の補助遮断弁に
よって、−次回路の封鎖を回復することができる〇 一次回路の圧力制限のためのその他の処置は、−次回路
にあるガス浄化設備を介して手動的に一開始することが
できる。
Even if the liner cooling system is defect-free, pressure will still be generated inside the pressure vessel, so when overheating temperatures appear after a long accident period, pressure relief must be planned in order to avoid failure due to overpressure in the pressure vessel. must be carried out. -Limiting of the pressure in the next circuit is carried out by a safety valve. If the failure of the safety valve on reaching the response pressure cannot be ruled out (resulting in the leakage of the entire contents of the next circuit into the reactor protection building), emergency procedures may be carried out, e.g. by manually operated auxiliary shutoff. By means of a valve, the blockage of the secondary circuit can be restored; further measures for pressure limitation of the primary circuit can be initiated manually via the gas purification equipment located in the secondary circuit.

高い炉心温度のために、強い放射能を有する一次ガスが
原子炉防護建物に流出した後、核分裂生成物の環境漏出
に対する最後の障壁として残るのは原子炉防護建物であ
る。原子炉防護建物はその設計と機能によシ、放射能の
閉じこめを確保する。補助的に手動操作遮断フラッグに
よって、原子炉防護建物の封鎖を高い冗長度で保証する
ことができる。原子炉防護建物に対して許容圧力を保持
するために、フィルタ区間と連結されたパイノクス弁が
操作される。核分裂生成物は上記のフィルタ区間に保留
され、そのために環境への不当な放射能もれがほぼ防止
される。パイノクス弁は自動的に、また時間的にずらせ
て手動的に操作することができる。
After the highly radioactive primary gas has leaked into the reactor protection building due to the high core temperature, it is the reactor protection building that remains as the last barrier to the environmental leakage of fission products. Reactor protection buildings, by their design and function, ensure the containment of radioactivity. In addition, manually operated shutoff flags can ensure the closure of the reactor protection building with a high degree of redundancy. In order to maintain a permissible pressure for the reactor protection building, a pinox valve connected to the filter section is operated. The fission products are retained in the filter section, thereby substantially preventing any undue radioactivity leakage into the environment. The pinox valve can be operated automatically or manually in a staggered manner.

ライナー冷却系統の停止の結果、圧力容器のコンクリー
トが分解し、それと共に大量のガスが原子炉防護建物に
漏出した場合は、上記の装置が作動する。この装置まで
も動作不能となった場合は(仮想事故)、可燃性または
非凝縮性ガスが原子炉防護建物内に集積し、燃焼ま九は
過圧によって放射能の閉じこめが不確実となる。
If, as a result of the shutdown of the liner cooling system, the concrete of the pressure vessel decomposes and with it a large amount of gas leaks into the reactor protection building, the above-mentioned device is activated. If even this equipment becomes inoperable (hypothetical accident), flammable or non-condensable gases will accumulate within the reactor protection building, and the containment of radioactivity will become uncertain due to overpressure in the combustion chamber.

この事故(発生確率的10/I)をも克服するために、
事故発生の際に破裂板を用いた安全弁を介して、更に圧
力の緩和を行なうことができる。
In order to overcome this accident (probability of occurrence 10/I),
Further pressure relief can be achieved in the event of an accident via a safety valve using a rupture disc.

このときの排出路も放射能保留装置、例えばフィルタ区
間または貯水層と連結される。従ってこの場合も環境の
被害が起こることはないと言ってよい。
In this case, the discharge channel is also connected to a radioactive storage device, for example a filter section or a water reservoir. Therefore, it can be said that no environmental damage will occur in this case either.

Claims (1)

【特許請求の範囲】 1)  fレストレストコンクリート圧力容器に格納さ
れ、その球形燃料要素が黒鉛基質に埋設され被覆された
核分裂物質粒子から成るガス冷却形高温原子炉と、ブレ
ストレストコンクリート圧力容器を取囲む原子炉防護建
物と、少くとも1個の連断系統および余熱排出装置と、
核分裂物質の保留のための複数個の障壁とを有し、核分
裂物質粒子の被覆が第1の障壁、黒鉛基質が第2の障壁
をなし、第3の障壁はブレストレストコンクリート圧力
容器によって実現され、原子炉防御建物が第4の障壁を
なす原子力発電所の設計基準事故および仮想事故克服の
方法において、複数個の順次続く段階すなわちa)第1
の段階は自動的に始動される防護対策により、またこの
防護対策が始動しない時に ま九はこの防護対策の補助
として、手動的に実施される緊急処置により、かつ高温
原子炉特有の負の温度係数を利用して、不当な温度上昇
を阻止することによって、@1および第2の障壁の機能
を保証することを包含し、 b)第2の段階は第1および#!2の障壁が不調の場合
に、一方ではブレストレストコンクリート圧力容器とそ
のシールの温度制限のための処置により、他方では圧力
制限のための処置により、第3の障壁のゆ能を保証する
ことを包含し、その際自動的に始動される防護対策がま
ず使用され、この防護対策が始動しない時に、またはと
の防護対策の補助として、緊急処置が手動的に実ttt
s”sれ、C)第3の段階は、一方では原子炉防鏝欅物
の封鎖処置により、他方では核分裂生成物保留装置を介
して圧力を緩和する処置により、ブレストレストコンク
リート圧力容器からの一次ガス流…の際に第4の障壁の
機能を保1することを包含し、その際自動的に始動され
る防護対策がまず使用され、この防護対策が始動しない
時に、またはこの防護対策の補助として、緊急処置が手
動的に実施され、補助的に受動的防護装置を介して圧力
の緩和を行うことができる ことを特徴とする方法。 2) 自動的および手動的に始動される防護対策の少く
とも一部が、種々異なる構造の冗長度を附与するための
装置によりて行われることを特徴とする特許請求の範囲
第1項に記載の方法0 3)第1段階の実施のために1一方では高温原子炉の遮
断を行い、他方では余熱排出装置を作動させることを特
徴とする特許請求の範囲第1項に記載の方法。 4)高温原子炉の遮断のために、第1の遮断系統をなす
吸収棒を炉心と側部反射材に挿入し、その際挿入が自動
的に始動され、自動装置が不調の時は手動的に行われ、
第1の速断系統が不調の時は、小さな吸収球の供給を包
含する、手動操作の第2の遮断系統を使用し、第117
)遮断系統を反応させるための処置を講することを特徴
とする特許請求の範囲第3項に記載の方法。 5)第1および第2の遮断系統がいずれも停止した場合
に、負の温度係数によって高温原子炉の清新を行うこと
を特徴とする特許請求の範囲第3項又は第4項に記載の
方法。 6)−次回路部品の特殊な配列と構造により十分な自然
循環流を利用できる高温原子炉において、すべての循環
送風機が鍛終的に+IIになった場合に、この自然循環
流によって炉心から余熱を排出することを特徴とする特
許請求の範囲第3項又は第5項に記載の方法。 7)余熱の排出のために、熱交換器と循環送風機から成
る余熱排出のための装置を作動させ、その際始動が自動
的に行われ、あるいはこの装置が停止し九場合は補修処
置と緊急処置の実施の後に手動的に行われることを特徴
とする特許請求の範囲第3項に記載の方法。− 8)ケイプを内張シするライナーの冷却系統を利用でき
る高温原子炉において第2段階の実施のために、このラ
イナー冷却系統を一次回路からの排熱のために使用し、
かつ安全弁を介して一次回路の圧力を制限することを特
徴とする特許請求の範囲第1項に記載の方法。 9)−次回路の圧力制限のための補助的処置が、−次回
路に設けたガス浄化設備を介して手動的に行われること
を特徴とする特許請求の範囲第8項に記載の方法。 10)第3段階の実施のために遮断フラッグを操作する
ことによって、原子炉防護建物の封鎖を保証し、かつ原
子炉防護建物内に許容圧を保持するために、フィルタ区
間と連結され九ノ譬イ・ぐス弁を操作することを特徴と
する特許請求の範囲第1項に記載の方法。 11)破裂板を装備しフィルタ区間と連通ずる安全弁を
介して、原子炉防護建物の補助的圧力緩和を行うことを
特徴とする特許d青求の範囲第1項又は第10項に記載
の方法。
[Claims] 1) A gas-cooled high-temperature nuclear reactor housed in an f-rested concrete pressure vessel, the spherical fuel elements of which are composed of fissile material particles embedded and coated in a graphite matrix; an enclosing reactor protection building, at least one interconnection system and a residual heat evacuation device;
a plurality of barriers for retention of fissile material, the coating of fissile material particles being the first barrier, the graphite matrix being the second barrier, and the third barrier being realized by a breast-stressed concrete pressure vessel. , a method for overcoming design basis accidents and hypothetical accidents in nuclear power plants in which the reactor defense building constitutes the fourth barrier involves several successive steps, namely: a) first;
The second stage is achieved by automatically activated protective measures, and when this protective measure is not activated, by manually implemented emergency measures as an adjunct to these protective measures, and by the negative temperatures characteristic of high-temperature reactors. b) the second step involves ensuring the functionality of the @1 and second barriers by preventing unreasonable temperature rises by utilizing the coefficients; In the event of failure of the second barrier, measures to limit the temperature of the breast-stressed concrete pressure vessel and its seals, on the one hand, and pressure limits, on the other hand, ensure the effectiveness of the third barrier. A protective measure that includes and is automatically triggered is first used, and when this protective measure fails, or as an adjunct to the protective measure, emergency measures are manually activated.
C) The third step is to remove the pressure from the breast-stressed concrete pressure vessel, on the one hand by sealing off the reactor shield and, on the other hand, by relieving the pressure via the fission product retention device. A protective measure which includes preserving the function of the fourth barrier during the primary gas flow and which is automatically activated is first used, and when this protective measure is not activated or A method characterized in that, as an auxiliary, emergency measures are carried out manually and pressure relief can be auxiliary carried out via passive protective devices. 2) Automatically and manually triggered protective measures. 3) For carrying out the first step 1. The method according to claim 1, characterized in that on the one hand the high-temperature nuclear reactor is shut down and on the other hand a residual heat evacuation device is activated. 4) For the shut-off of the high-temperature reactor, the first Absorber rods that form the isolation system are inserted into the reactor core and side reflectors, and the insertion is automatically initiated, or manually when the automatic device is malfunctioning.
When the first fast-acting system is malfunctioning, a manually operated second shut-off system, which includes the supply of small absorption bulbs, is used and the 117
3.) The method according to claim 3, characterized in that measures are taken to cause the cut-off system to react. 5) The method according to claim 3 or 4, characterized in that the high-temperature reactor is refreshed by a negative temperature coefficient when both the first and second shutdown systems are stopped. . 6) - In a high-temperature nuclear reactor where sufficient natural circulation flow can be utilized due to the special arrangement and structure of the next circuit components, if all circulation blowers reach +II at the end of forging, residual heat will be removed from the core by this natural circulation flow. A method according to claim 3 or 5, characterized in that the method comprises discharging. 7) To remove residual heat, activate the device for removing residual heat, consisting of a heat exchanger and a circulation blower, with automatic startup or, if this device stops, repair measures and emergency 4. A method according to claim 3, characterized in that it is carried out manually after the procedure has been carried out. - 8) for the performance of the second stage in high-temperature reactors where a cape-lining liner cooling system is available, this liner cooling system is used for the removal of heat from the primary circuit;
2. A method as claimed in claim 1, characterized in that the pressure in the primary circuit is limited via a safety valve. 9) A method according to claim 8, characterized in that the auxiliary measures for limiting the pressure in the secondary circuit are carried out manually via a gas cleaning installation installed in the secondary circuit. 10) By manipulating the shut-off flag for the implementation of the third stage, the nine points connected with the filter section are 2. A method according to claim 1, characterized in that the method comprises operating an analog valve. 11) The method according to item 1 or 10 of the scope of Patent d, characterized in that the auxiliary pressure relief of the reactor protection building is carried out via a safety valve equipped with a rupture disc and communicating with the filter section. .
JP58029604A 1982-04-02 1983-02-25 Method of conquering design standard accident and virtual accident of atomic power plant Pending JPS58173492A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE32123221 1982-04-02
DE19823212322 DE3212322A1 (en) 1982-04-02 1982-04-02 Method for controlling design basis and hypothetical accidents in a nuclear power station

Publications (1)

Publication Number Publication Date
JPS58173492A true JPS58173492A (en) 1983-10-12

Family

ID=6160092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029604A Pending JPS58173492A (en) 1982-04-02 1983-02-25 Method of conquering design standard accident and virtual accident of atomic power plant

Country Status (2)

Country Link
JP (1) JPS58173492A (en)
DE (1) DE3212322A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3335269A1 (en) * 1983-09-29 1985-04-18 Hochtemperatur-Reaktorbau GmbH, 4600 Dortmund HIGH TEMPERATURE REACTOR WITH A CORE PROTECTED FROM SPHERICAL FUEL ELEMENTS AND METHOD FOR SHUTDING OFF THE HIGH TEMPERATURE REACTOR
DE3401498A1 (en) * 1984-01-18 1985-07-25 Hochtemperatur-Reaktorbau GmbH, 4600 Dortmund HIGH TEMPERATURE REACTOR WITH SPHERICAL FUEL ELEMENTS
DE3524175A1 (en) * 1984-09-27 1986-04-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen METHOD FOR OPERATING A CORE REACTOR AND CORE REACTOR FOR IMPLEMENTING THE METHOD
US5301216A (en) * 1984-09-27 1994-04-05 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method of operating a nuclear reactor with emergency cooling system economy
DE3805736A1 (en) * 1988-02-24 1989-08-31 Hochtemperatur Reaktorbau Gmbh SAFETY SYSTEM FOR A GAS-COOLED HIGH-TEMPERATURE REACTOR

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863315A (en) * 1971-11-19 1973-09-03
JPS5198499A (en) * 1975-02-25 1976-08-30 Koongasurono hijojiroshinreikyakuhoho
JPS5221596A (en) * 1975-08-08 1977-02-18 Westinghouse Electric Corp Reactor auxiliary cooling system
JPS56150392A (en) * 1980-03-22 1981-11-20 Ght Hochtemperaturreak Tech Pebble bed type reactor having neutron absorber charging device , and its operation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2325823A1 (en) * 1973-05-22 1974-12-19 Envac Ets EAR PROTECTION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863315A (en) * 1971-11-19 1973-09-03
JPS5198499A (en) * 1975-02-25 1976-08-30 Koongasurono hijojiroshinreikyakuhoho
JPS5221596A (en) * 1975-08-08 1977-02-18 Westinghouse Electric Corp Reactor auxiliary cooling system
JPS56150392A (en) * 1980-03-22 1981-11-20 Ght Hochtemperaturreak Tech Pebble bed type reactor having neutron absorber charging device , and its operation method

Also Published As

Publication number Publication date
DE3212322A1 (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US11646123B2 (en) Three-way valve operational to both transfer steam to a decontamination water tank under one accident situation and discharge the steam to atmosphere under a different accident situation
JPH02268295A (en) Heat removing system for containment vessel
US4056436A (en) System for mitigating the effects of an accident at a nuclear power plant
JPS58173499A (en) Method and device for discharging systematically radioactivity from protective housing of gas cooled reactor
JPS58173492A (en) Method of conquering design standard accident and virtual accident of atomic power plant
JP5687440B2 (en) Reactor containment heat removal apparatus and heat removal method
Zhipeng et al. Discussion on the accident behavior and accident management of the HTGR
JP7095101B2 (en) Reactor containment building Spent fuel storage water pool vent with pool filter
JPS6073496A (en) Nuclear power plant and method of operating said plant
JPH0377096A (en) Vent device of reactor container
Dallman et al. Containment venting as an accident management strategy for BWRS with Mark I containments
JP2685902B2 (en) Primary containment vessel
JPS63109394A (en) Reactor-container protective device
Mazurok et al. Analytical Justifications As Part of the “Post-Fukushima” Upgrades Implementation on Zaporizhzhya NPP Unit 1
JPS61196196A (en) Protective device for container of nuclear reactor
Yubin et al. Accident Safety Evaluation Method for Spent Fuel Dry Storage Facilities
Cheng The Research and Simulation of Beyond Design Basis Accidents in PWR Nuclear Power Plant
Osborn et al. TSG Skill Set-Containment Performance.
Hanson et al. Analysis of containment venting at the Peach Bottom atomic power station
JPS6170492A (en) Air conditioner for housing of nuclear reactor
Buchholz Design features which mitigate severe accident challenges in the GE ABWR and SBWR
Noble Subatmospheric containment operating experience
Ragheb Containment Structures
Duco et al. PWR severe accident mitigation measures, the french point of view
JPS61241698A (en) Combustible gas concentration controller for nuclear reactorcontainer