JPS58173397A - Waste heat recovery method of corrosive gas - Google Patents

Waste heat recovery method of corrosive gas

Info

Publication number
JPS58173397A
JPS58173397A JP5588582A JP5588582A JPS58173397A JP S58173397 A JPS58173397 A JP S58173397A JP 5588582 A JP5588582 A JP 5588582A JP 5588582 A JP5588582 A JP 5588582A JP S58173397 A JPS58173397 A JP S58173397A
Authority
JP
Japan
Prior art keywords
temperature
tube wall
heat
exhaust gas
resulting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5588582A
Other languages
Japanese (ja)
Inventor
Kunihiko Minami
南 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP5588582A priority Critical patent/JPS58173397A/en
Publication of JPS58173397A publication Critical patent/JPS58173397A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To prevent sulfurous acid and sulfuric acid from being formed on tube wall and consequently prevent the tube wall from being corroded by a method wherein the temperature of the tube wall of heating part is controlled within a predetermined temperature range above dew point regardless of the change of exhaust gas temperature. CONSTITUTION:When the temperature of exhaust gas stream 1 falls down too much due to the cause such as load change or the like, a temperature detector 20 provided at exhaust gas outlet side issues a signal in order to actuate a flow control valve 11 to close, resulting in causing the decrease of the amount of pure water circulating in the radiating part 5 and then the temperature rise in the radiating part 5. Because the temperature of the tube wall of the heating part 3 rises accompanying with said temperature rise in the radiating part 5, the temperature of the tube wall can be controlled above acid dew point. In this case, the flow rate in a by- pass 10 increases, resulting in causing to lower the temperature of a feed water heater 9. On the contrary, when the temperature of exhaust gas rises too much, the flow control valve 11 is actuated to open itself by the signal issued from the detector 20, resulting in causing the circulation of a large amount of pure water in the radiating part 5 and then the lowering of the temperature in the radiating part 5 and the consequent lowering of the temperature of the tube wall of the heating part 3. In this time, the flow rate in the by-pass 10 decreases, resulting in causing to raise the temperature of the feed water heater 9. In such a manner as described above, the temperature of the tube wall of the heating part 3 of a heat pipe is controlled above acid dew point, resulting in preventing the tube wall of the heat pipe from being corroded.

Description

【発明の詳細な説明】 本発明はSOx等の腐食性ガスを含むボイラー、工業炉
等の排ガスよりヒートパイプを利用して廃熱を回収する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of recovering waste heat from exhaust gas from boilers, industrial furnaces, etc. containing corrosive gases such as SOx using a heat pipe.

従来よりボイラー排気から熱を回収する場合、エコノマ
イザ−があるが、燃焼排ガスが直接水管に接触しても水
の熱容量が大であるため管!ti!ii1度は余り上昇
せず、管壁に酸が結露する場合がある。
Traditionally, economizers have been used to recover heat from boiler exhaust, but even if the combustion exhaust gas comes into direct contact with water pipes, the heat capacity of the water is large, so water pipes are used! Ti! ii) The temperature does not rise much above 1 degree, and acid may condense on the tube wall.

一般に管壁温度は次式で示される。Generally, the tube wall temperature is expressed by the following formula.

Tw=  T−(r−t ) − Tw:  管壁温度 T : 排ガス温度 t : 給水入口温度 R: 総括伝熱抵抗値 r :、管内側伝熱抵抗値 例えば給水が20℃、排ガスが200℃でも管壁温度I
/′i50℃前後にとどまり、sOxの酸露点110〜
150℃以下となり木管は亜硫酸、硫酸によって腐食す
る。このような腐食を防ぐため従来は木管に耐食材料を
使用し、あるいは排ガス温度を高くするなどの手段が講
じられているが、製作費が高騰し、また省エネルギー的
見地より好ましくない。
Tw = T-(r-t) - Tw: Pipe wall temperature T: Exhaust gas temperature t: Water supply inlet temperature R: Overall heat transfer resistance value r: Tube inside heat transfer resistance value, for example, 20°C for feed water and 200°C for exhaust gas But the tube wall temperature I
/'i stays around 50℃, sOx acid dew point 110 ~
At temperatures below 150℃, woodwinds corrode due to sulfurous acid and sulfuric acid. Conventionally, measures have been taken to prevent such corrosion, such as using corrosion-resistant materials for the wood pipes or raising the temperature of the exhaust gas, but these methods increase production costs and are undesirable from an energy-saving standpoint.

一方、ヒートパイプは密封管内壁にクイックがコーテン
クサれておす、水、フロン、ベンゼン。
On the other hand, in heat pipes, the inner wall of the sealed pipe is coated with water, fluorocarbons, and benzene.

アヤトン、アン゛モニア、アルコール等の適蝋の作動液
が封入されていて、該管の両端における気化。
A working fluid of suitable wax such as Ayaton, ammonia, alcohol, etc. is sealed and vaporized at both ends of the tube.

RMの相・変換サイクルが利用され、熱を高温と低温の
間を搬送する。作動液の相変換の際に授受する熱エネル
ギーは熱伝達に比べて犬であり、多量の熱エネルギーヲ
移送できる利点がある。このヒ−ドパイブの両端は隔離
されて各々別の流体と熱交換するため、と−ドパイブの
一端の低温側テある放熱部はSOxの雰囲気に接咳せず
酸結露の心配はないか、他端の受熱部は高温排ガス中に
あってもその管壁温度は放熱部の温度の影響を受けて酸
露点以上となる場合がある。
The RM phase conversion cycle is utilized to transport heat between high and low temperatures. The thermal energy exchanged during phase conversion of the working fluid is smaller than that of heat transfer, and has the advantage of being able to transfer a large amount of thermal energy. Both ends of this heat pipe are isolated and exchange heat with different fluids, so the heat dissipation part on the low temperature side at one end of the heat pipe does not come in contact with the SOx atmosphere, so there is no risk of acid condensation. Even if the heat receiving section at the end is in high temperature exhaust gas, the temperature of the tube wall may be influenced by the temperature of the heat dissipating section and exceed the acid dew point.

本発明はSOxを含む高温の排ガスより廃熱を回収する
際に、ヒートパイプを利用して歯環する熱媒に大量の熱
エネルギーを吸収させ、該熱媒と給水とta交換させる
ことによって腐食性排ガスより間接的に廃熱を回収し、
従来のエコノマイザ−による腐食を防ぎ、しかも出口1
i1J排ガス温度を検出しm壇熱媒量を調節してヒート
パイプ受熱部の管壁温度を常にV露点以上に保ち、さら
に確#i熱媒の過冷却を防ぎ、かつ始動も円滑に実施で
きることを目的としてなされたものであり、以下その一
実施例全添付の図面によって説明する。
When recovering waste heat from high-temperature exhaust gas containing SOx, the present invention uses a heat pipe to absorb a large amount of thermal energy into a toothed heating medium, and causes corrosion by causing the heating medium to exchange Ta with supplied water. Collect waste heat indirectly from exhaust gas,
Prevents corrosion caused by conventional economizers, yet has only one outlet
It is possible to detect the exhaust gas temperature and adjust the amount of heat medium to keep the tube wall temperature of the heat pipe heat receiving part above the V dew point at all times, to prevent overcooling of the heat medium, and to ensure smooth startup. An embodiment thereof will be explained below with reference to the accompanying drawings.

SOxを含む高温排ガス気流1中にヒートパイプ2の受
熱部6が位置し、隔壁4を隔てて放熱部5が熱媒例えば
純水が流れる一環回路6に設けられている。この(I1
1回路6には前記ヒートパイプ放熱部5のは力島、膨張
タンク7、歯環ポンプ8、多管式給水加熱器9、バイパ
ス管路10、流量調節弁11が設置され、さらに蒸気吹
込管12が連絡している。
A heat receiving part 6 of a heat pipe 2 is located in a high-temperature exhaust gas flow 1 containing SOx, and a heat radiating part 5 is provided in a continuous circuit 6 through which a heat medium such as pure water flows, with a partition wall 4 in between. This (I1
1 circuit 6 is equipped with the heat pipe heat dissipation section 5, an expansion tank 7, a toothed ring pump 8, a multi-tube feed water heater 9, a bypass pipe 10, a flow rate control valve 11, and a steam blowing pipe. 12 are in contact.

上記のように構成された装置において、例えば5Oxt
含む約250〜280℃の排ガスは、ヒートパイプの受
熱部3を通過し、作動液と熱交換し九のち出口側13か
ら約150〜180℃となって排出され、作動液は気化
して放熱部5に熱エネルギーを搬送して画壇する純水に
熱を与え、自らは凝縮し、クイック金経て受熱部乙に戻
入し、かかる作#を繰返す。
In the apparatus configured as described above, for example, 5Oxt
The exhaust gas containing about 250 to 280 degrees Celsius passes through the heat receiving part 3 of the heat pipe, exchanges heat with the working fluid, and is then discharged from the outlet side 13 at a temperature of about 150 to 180 degrees Celsius, and the working fluid vaporizes and radiates heat. Thermal energy is transferred to part 5 to give heat to the pure water in the painting stage, where it condenses itself and returns to the heat receiving part 5 after passing through the water, and this process is repeated.

放熱部5で熱交換し約120〜150℃に昇温した純水
は膨張タンク7に至る。この膨張タンク7は純水補給用
ポンプ14及びニアコンプレッサ15を有し、必要に応
じて該ニアコンプレッサー15ヲ運転して純水を加圧し
、IIIIIポンプ8のキャビテーションを防止する。
The pure water, which undergoes heat exchange in the heat radiating section 5 and is heated to about 120 to 150° C., reaches the expansion tank 7. This expansion tank 7 has a pure water replenishment pump 14 and a near compressor 15, and the near compressor 15 is operated as necessary to pressurize the pure water and prevent cavitation of the III pump 8.

膨張タンク7を通過した純水は(JlifjJポンプ8
で圧送され多管式給水加熱器9に至り、入口管16より
導入された約20〜400の給水と熱交換したのち約1
10〜140℃となって管17を通過する。この熱交換
によって給水は廃熱全回収して約80〜120℃まで加
熱されて出口管18より外部に取出され、例えばボイラ
給水に利用される。弁21は過大負荷調節用である。
The pure water that has passed through the expansion tank 7 is
After being pressure-fed to the multi-tube feed water heater 9 and exchanging heat with about 20 to 400 feed water introduced from the inlet pipe 16, about 1
It passes through the tube 17 at a temperature of 10 to 140°C. Through this heat exchange, the feed water recovers all waste heat, is heated to about 80 to 120° C., and is taken out from the outlet pipe 18 and used, for example, as boiler feed water. Valve 21 is for overload adjustment.

管17を通過する純水は、一部はパルプ19t′有する
バイパス管路10に分流して菌環ポンプ8の入口側に導
入され、残部は流量調節弁11を経たのち110〜14
0℃となってヒートパイプ放熱部5に戻り再@梁する。
A portion of the pure water passing through the pipe 17 is diverted to the bypass pipe 10 having the pulp 19t' and introduced into the inlet side of the bacterial ring pump 8, and the remainder passes through the flow control valve 11 and then flows into the bypass pipe 10 containing the pulp 19t'.
When the temperature reaches 0° C., the heat pipe returns to the heat dissipating section 5 and is beamed again.

ここで、もし排ガス気流1の温度が負荷変動などの原因
によって下降し過ぎた場合、徘ガス出口側に設けた温度
検出器20が信号を発し、流量調節弁11は閉じる方向
に働き、放熱部5に循環する純水量は減少するから放熱
部5の温度は上り、これに伴い受熱部ろの管壁温度は、
上昇し酸露点以上に制飢できる。この際バイパス管路1
0の流量は増大し給水加熱器9は温度低下する。逆VC
#!:ガス温度が上昇し過きれば温度検出器20の発す
る信号によって流量調節弁11け開く方向に作動し、多
量の純水が放熱部5に画壇し放熱部5の温度は下り、よ
って受熱部6の管壁温度は低下する。このときバイパス
管路10の流量は減少し、給水加熱器9は温度上昇する
。このようにしてヒートパイプ受熱部5の管壁温度を酸
露点以上に制御して、ヒートパイプ管壁の腐食を防止で
きる。
Here, if the temperature of the exhaust gas airflow 1 drops too much due to a cause such as load fluctuation, the temperature detector 20 installed on the wandering gas outlet side issues a signal, the flow rate control valve 11 operates in the closing direction, and the heat dissipation section Since the amount of purified water circulating in 5 decreases, the temperature of the heat dissipating section 5 increases, and the temperature of the tube wall of the heat receiving section 5 increases accordingly.
The temperature rises to above the acid dew point and starvation can be achieved. At this time, bypass pipe line 1
0 flow rate increases and the temperature of the feed water heater 9 decreases. reverse VC
#! : If the gas temperature rises too much, the flow control valve 11 is operated in the direction of opening by the signal issued by the temperature detector 20, and a large amount of pure water flows into the heat radiating part 5, and the temperature of the heat radiating part 5 decreases, so that the heat receiving part 6, the tube wall temperature decreases. At this time, the flow rate of the bypass pipe 10 decreases, and the temperature of the feed water heater 9 increases. In this way, the temperature of the tube wall of the heat pipe heat receiving section 5 can be controlled to be higher than the acid dew point, thereby preventing corrosion of the heat pipe tube wall.

一環回路6に連絡した蒸気吹込管12は、急速な負荷変
動によって起る循環する純水の過冷却を防止し、かつ運
転開始時の純水の加熱に役立つ。
A steam inlet pipe 12 connected to the loop circuit 6 prevents overcooling of the circulating pure water caused by rapid load fluctuations and serves to heat the pure water at the start of operation.

熱媒は上記の実施例では純水全使用したが、油。Although pure water was used as the heating medium in the above examples, oil was used as the heating medium.

その他の熱媒も利用でき、また外部熱源に電力火力等の
利用も可能である。
Other heat media can also be used, and electric thermal power or the like can also be used as an external heat source.

本発明は、ヒートパイプの受熱部で吸収した腐食性排ガ
スの保有熱エネルギーを、放熱部を通過して画壇する熱
媒に放出させるに際し、排ガス出口温度を検出して重環
熱媒流量を調節し、ヒートパイプ受熱部の管壁温度を酸
露点以上の所定湿炭範囲内に制御することを特徴とする
腐食性ガス廃熱回収方法であり、ヒートパイプの採用に
より大蝋の廃熱の回収が0]″能となり、更に熱媒を介
在させたからボイラー給水などの加熱に際して酸結四の
心配はない。またこのようなヒートパイプと傭壊する熱
媒及び流量調節弁との組合せにより排ガスス温度が下降
し過ぎた場合は、熱媒流微調節介が閉じる方向に作動し
、熱媒流量を減少させるからヒートパイプ放熱部の温度
は上昇し、これに伴って受熱部の管壁温度は酸露点温度
以上にでき、逆に排ガス温度が上昇し過ぎれば流量調節
弁が開いて熱媒の鏑壌量は増大し、放熱部は低温となり
受熱部管壁温度全低下させ、このようにして排ガスの変
動にかかわらず受熱部管壁温度を露点温度以上の所定湿
炭範囲内に制御でき、管壁に亜硫酸。
The present invention detects the exhaust gas outlet temperature and adjusts the flow rate of the heavy ring heating medium when the thermal energy retained in the corrosive exhaust gas absorbed by the heat receiving part of the heat pipe is released to the heating medium passing through the heat radiating part. This is a corrosive gas waste heat recovery method characterized by controlling the tube wall temperature of the heat pipe heat receiving part within a predetermined wet coal range above the acid dew point. Furthermore, since a heating medium is used, there is no need to worry about oxidation when heating boiler feed water. Also, the combination of such a heat pipe, a heating medium that decomposes, and a flow rate control valve reduces exhaust gas emissions. If the temperature drops too much, the heat medium flow fine adjustment mechanism operates in the direction of closing and reduces the heat medium flow rate, causing the temperature of the heat pipe heat dissipation section to rise, and the temperature of the tube wall of the heat receiving section to decrease accordingly. If the temperature of the exhaust gas exceeds the acid dew point temperature, and conversely the exhaust gas temperature rises too much, the flow control valve opens and the amount of heat transfer medium increases, and the heat radiating section becomes low temperature, causing the total temperature of the heat receiving section tube wall to drop. Regardless of fluctuations in exhaust gas, the temperature of the tube wall of the heat receiving section can be controlled within a predetermined wet coal range above the dew point temperature, and the tube wall is free of sulfur dioxide.

硫酸は生成せず腐食は防止できる。従ってヒートパイプ
は耐食性とする必要はなく製作費は安価となり、従来の
ように排ガスを再加熱する手1kFi不要で、エネルギ
ー的に有利になるなどの効果がある。また熱媒vti環
回路に外部熱源を接続すれば、熱媒の過冷却を防止して
ヒートパイプ放熱部における管壁温度の低下を防き、運
転開始時、低温の熱媒体を昇温させ速かに正常運転に移
行できるなどの効果を併せ持っている。
No sulfuric acid is generated and corrosion can be prevented. Therefore, the heat pipe does not need to be corrosion resistant, the manufacturing cost is low, and there is no need for 1 kFi of reheating the exhaust gas as in the past, which is advantageous in terms of energy. In addition, if an external heat source is connected to the heating medium VTI ring circuit, overcooling of the heating medium can be prevented and the tube wall temperature in the heat pipe heat dissipation section can be prevented from decreasing. It also has the effect of quickly returning to normal operation.

以上のとおり本発明においては廃熱回収に際して腐食部
分が無すので長期にわたって運転管理が容易となり、信
頼性に富むなど、その効果は多大である。
As described above, in the present invention, since there are no corroded parts during waste heat recovery, operation management becomes easy over a long period of time, and reliability is high.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例におけるフローシートである。 1・・・高温排ガス気流     2・・ヒートパイプ
3・・・受熱部  4・・・隔壁  5・・・放熱部6
・・・画壇回路  7・・・膨張タンク  8・・・C
1項ポンプ  9・・・多管式給水加熱器  10・・
バイパス管路  11・・・流量調節弁  12・・蒸
気吹込管15・・・出口側  14・・・純水補給用ポ
ンプ15・・・ニアコンプレッサー  20・・温度検
出器特許出願人 株式会社笹貧機械製作所
The figure is a flow sheet in one embodiment of the present invention. 1... High-temperature exhaust gas flow 2... Heat pipe 3... Heat receiving section 4... Partition wall 5... Heat radiation section 6
...Art world circuit 7...Expansion tank 8...C
Item 1 Pump 9...Multi-tube water heater 10...
Bypass pipe line 11...Flow rate control valve 12...Steam blowing pipe 15...Outlet side 14...Pump for pure water replenishment 15...Near compressor 20...Temperature detector patent applicant Sasafumi Co., Ltd. machine shop

Claims (1)

【特許請求の範囲】[Claims] ヒートパイプの受熱部で吸収した腐食性排ガスの保有熱
エネルギーを、放熱部を通過して1壊する熱媒に放出さ
せるに際し、排ガス出口温度を検出して鎖環熱媒流量を
調節し、ヒートパイプ受熱部の管壁温度を酸露点以上に
制御することを特徴とする腐食性ガス廃熱回収方法。
When the thermal energy retained in the corrosive exhaust gas absorbed by the heat receiving part of the heat pipe is released to the heat medium that passes through the heat radiating part and breaks down, the exhaust gas outlet temperature is detected and the flow rate of the chain ring heat medium is adjusted. A corrosive gas waste heat recovery method characterized by controlling the temperature of the pipe wall of the heat receiving part of the pipe to be higher than the acid dew point.
JP5588582A 1982-04-02 1982-04-02 Waste heat recovery method of corrosive gas Pending JPS58173397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5588582A JPS58173397A (en) 1982-04-02 1982-04-02 Waste heat recovery method of corrosive gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5588582A JPS58173397A (en) 1982-04-02 1982-04-02 Waste heat recovery method of corrosive gas

Publications (1)

Publication Number Publication Date
JPS58173397A true JPS58173397A (en) 1983-10-12

Family

ID=13011551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5588582A Pending JPS58173397A (en) 1982-04-02 1982-04-02 Waste heat recovery method of corrosive gas

Country Status (1)

Country Link
JP (1) JPS58173397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155599A (en) * 1984-08-25 1986-03-20 Matsushita Electric Works Ltd Heat exchanger
CN104949545A (en) * 2015-06-26 2015-09-30 柳州永生好茶油有限公司 External heating type softened water heating cylinder with recovery device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741588A (en) * 1980-08-20 1982-03-08 Snow Brand Milk Prod Co Ltd Waste heat recovery method preventing corrosion by sox

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741588A (en) * 1980-08-20 1982-03-08 Snow Brand Milk Prod Co Ltd Waste heat recovery method preventing corrosion by sox

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155599A (en) * 1984-08-25 1986-03-20 Matsushita Electric Works Ltd Heat exchanger
CN104949545A (en) * 2015-06-26 2015-09-30 柳州永生好茶油有限公司 External heating type softened water heating cylinder with recovery device

Similar Documents

Publication Publication Date Title
CN102734787B (en) Concurrent recycling system for boiler smoke afterheat
US3386798A (en) Method of removing sulfur compounds and precovering heat from combustion gases
JP2014009877A (en) Flue gas treatment equipment and method
US3910236A (en) Economizer for steam boiler
FI128782B (en) Arrangement for heat recovery surfaces in a recovery boiler
GB2099558A (en) Heat recovery steam generator
US4470449A (en) Economizer arrangement
JPS58173397A (en) Waste heat recovery method of corrosive gas
CN105841180A (en) Horizontal type phase change smoke waste heat recovering and double-effect heating system and control method thereof
CN103994458A (en) Composite phase change heat exchanger suitable for thermal power generating unit
CN109869710A (en) Waste heat boiler tail portion deoxygenation heating system
CN109297312A (en) A kind of separated phase transition smoke heat exchanging system
JPS5928838B2 (en) Waste heat recovery method to prevent corrosion caused by sulfur oxides
JP3661068B2 (en) Exhaust gas treatment system
JP3045289B2 (en) Exhaust gas waste heat recovery heat exchanger
CN210070689U (en) Composite phase change heat exchanger
CN205824998U (en) A kind of small scall coal-fired boiler integral economizer
CN212481362U (en) Energy-saving corrosion-resistant efficient heat exchange device
KR19980073721A (en) Heat exchanger for waste gas waste heat recovery using water fluidized bed
JPS599834B2 (en) Waste heat recovery equipment that prevents corrosion caused by sulfur oxides
CN212390884U (en) Regulation type phase transition heat medium heat transfer device
JP2011094901A (en) Gas-gas heater and control method of the gas-gas heater
SU1666855A1 (en) Boiler plant
CN209484578U (en) A kind of boiler of power plant flue gas waste heat recovery apparatus using heat pipe energy-saving technology
CN111678165A (en) Energy-saving corrosion-resistant efficient heat exchange device