JPS58172212A - Manufacture of isotropic carbonaceous material of high density - Google Patents

Manufacture of isotropic carbonaceous material of high density

Info

Publication number
JPS58172212A
JPS58172212A JP57054803A JP5480382A JPS58172212A JP S58172212 A JPS58172212 A JP S58172212A JP 57054803 A JP57054803 A JP 57054803A JP 5480382 A JP5480382 A JP 5480382A JP S58172212 A JPS58172212 A JP S58172212A
Authority
JP
Japan
Prior art keywords
coal
pulverized
product
heat
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57054803A
Other languages
Japanese (ja)
Other versions
JPS627124B2 (en
Inventor
Mikio Oyabu
大薮 巳喜男
Kenji Fukuda
憲二 福田
Hideto Kabashima
樺島 秀人
Koichi Shimakawa
嶋川 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Coke Co Ltd
Original Assignee
Mitsui Coke Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Coke Co Ltd filed Critical Mitsui Coke Co Ltd
Priority to JP57054803A priority Critical patent/JPS58172212A/en
Publication of JPS58172212A publication Critical patent/JPS58172212A/en
Publication of JPS627124B2 publication Critical patent/JPS627124B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a carbonaceous material of high density and high strength by carrying out oxidation and prelimiary molding between pulverization and molding stages when the heat treated product of depolymerized coal is pulverized, molded, and carbonized or graphitized. CONSTITUTION:Depolymerized coal obtd. by treating coal with a solvent under elevated pressure of hydrogen is heat treated. At this time, beta-resin which is considered to be a contributor to the caking capacity is held by an adequate amount. By holding the beta-resin, the volatile matter content is increased to cause bubbling. In order to reduce the volatile matter content, the heat treated product is finely pulverized and oxidized. The oxidation is carried out by heating to a relatively low temp. in air without requiring a long time. The oxidized heattreated product is preliminarily molded and immediately pulverized again. The fine power is molded again, and the molded body is carbonized or graphitized to obtain an isotropic carbonaceous or graphitic material of high density. Thus, bubbling during the carbonization is prevented, and the density and strength of the carbonaceous material can be increased furthermore by applying preliminary molding.

Description

【発明の詳細な説明】 しくは、等方性高密度炭素材および黒鉛材の製造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION In particular, the present invention relates to the production of isotropic high-density carbon materials and graphite materials.

一般に石油系コークスを微粉砕し、これにバインダーを
用いて成型し、焼成後再びピッチ含浸′を行い、さらに
焼成をくり返す方法がとられている。この方法は極めて
繁雑な工程と。
Generally, petroleum-based coke is finely pulverized, molded using a binder, impregnated with pitch again after firing, and fired again. This method is an extremely complicated process.

長期の製造日数を必要とするばかりでなく。Not only does it require a long manufacturing time.

焼成時において骨材であるコークスとバインダーの収縮
の割合の相違により微小り2ツクが生成すること、また
脱ガスによる気孔がバインダー相に生成するために、五
枚密で高強度な炭素材は得られ(くい、このために近年
バインダーを用いないで勢力性高密度炭素材を製造する
方法が椎々開発されている。例えば炭素誌(m 88)
によれば1石油系ピッチ又はコールタール系ピッチの炭
化初期に生成する光学的異方性小球体を抽出し成型炭化
する方法。
Due to the difference in shrinkage ratio between the aggregate coke and the binder during calcination, small particles are generated, and pores are generated in the binder phase due to degassing, so the high-strength carbon material with five-sheet density is For this reason, in recent years many methods have been developed to produce strong, high-density carbon materials without using binders. For example, Carbon Magazine (m88)
According to 1. A method of extracting optically anisotropic spherules generated at the initial stage of carbonization of petroleum pitch or coal tar pitch, and molding and carbonizing them.

あるいは王化誌(72及び73巻)によればコールター
ルピッチを熱−門し次いでオシ゛ン、塩素等の強力な酸
化剤による酸化後成飄炭化する方法や成型体を非常にゆ
っくりと空気中で予備焼成したのちに炭化する方法が取
られている。
Alternatively, according to Wangka Ji (Volumes 72 and 73), there is a method in which coal tar pitch is heated, then oxidized with a strong oxidizing agent such as oxygen or chlorine, and then carbonized, and a molded product is pre-calcined very slowly in air. The method used is to carbonize it afterwards.

前者の方法においては出発原料となる石油ピッチあるい
はコールタールピッチからの炭素前駆体としての光学的
異方性小球体の収率が低く、また抽出、f#剤回収等の
複雑な工程を必要とする欠点がある。後者の方法におい
ては強力な酸化剤を必要とするので取扱いが容易でなく
、また成飄体を空気中で予備焼成する場合は非常に長時
間の予備焼成時間を必要とするばかりでなく、成型体内
部までは酸化が進行せず炭化時に発泡するという欠点が
ある。
In the former method, the yield of optically anisotropic spherules as a carbon precursor from petroleum pitch or coal tar pitch as a starting material is low, and complex steps such as extraction and recovery of f# agent are required. There are drawbacks to doing so. The latter method requires a strong oxidizing agent, which makes it difficult to handle, and pre-firing the cast body in air not only requires a very long pre-firing time, but also makes it difficult to mold. It has the disadvantage that oxidation does not progress to the inside of the body and foams when carbonized.

ならに従来の製造方法においてはすべて石油基ピッチや
コールタール系ピッチを原料としているために5石油ピ
ッチを原料とする場合はピッチ性状の変動が激しく、ま
たNl、V等の重金属の混入は不可避である。またコー
ルタール系ピッチを原料とする場合、量的に安定供給す
ることが国難な状況にある。
In contrast, all conventional manufacturing methods use petroleum-based pitch or coal tar-based pitch as raw materials, so when petroleum pitch is used as raw material, the pitch properties fluctuate dramatically, and heavy metals such as Nl and V are unavoidable. It is. Furthermore, when coal tar-based pitch is used as a raw material, it is a national problem to provide a stable supply in quantity.

本発明は従来の方法とは全く異った原料を用い、また比
較的簡単な工程から成る等方性高密度炭素材および黒鉛
材のより改良された製造方法に関するものである。本発
明における原料とは石炭類を水素加圧雰囲気下で溶剤抽
出後脱灰し、さらに溶剤を回収して得られた石炭解重合
一である。石炭解重合物の性状は原料とする石炭の石炭
化度やその他の性状によらず解重合条件にのみはぼ依存
するため、あらゆる石炭化度の石炭−を原料とすること
が出来る。また、コールタールピッチの石炭からの収率
がわずか数チにすぎないのに対して、石炭解重合物の石
炭類からの転換率はほぼ100%に近いものである故に
従来の方法に比較してはるかに安価にかつ高収率で安定
して原料を供給することが可能である。さらに石炭解重
合物は脱灰により石炭解重合物中σ)金属分は除去され
る。もとより石炭中に含有され、る重金属類は石油系ピ
ッチに比べはるかに少ないために、さらに有利である。
The present invention relates to an improved method for producing isotropic high-density carbon materials and graphite materials, which uses raw materials completely different from conventional methods and which involves relatively simple steps. The raw material in the present invention is depolymerized coal obtained by extracting coal with a solvent in a hydrogen pressurized atmosphere, deashing it, and recovering the solvent. Since the properties of the coal depolymerized product depend solely on the depolymerization conditions, regardless of the degree of coalification or other properties of the coal used as the raw material, coal of any degree of coalification can be used as the raw material. In addition, while the yield of coal tar pitch from coal is only a few centimeters, the conversion rate of coal depolymerized product from coal is nearly 100%, which makes it far superior to conventional methods. It is possible to stably supply raw materials at a much lower cost and with a higher yield. Furthermore, the coal depolymerized product is deashed to remove σ) metal content in the coal depolymerized product. Coal is even more advantageous because it contains far fewer heavy metals than petroleum-based pitch.

また従来方法においては原料の嶽化性状詳しくは黒鉛化
性、組織勢な管理、調整することは困難であったが、拳
法によると解重合条件を選ぶことにより原料の炭化性状
の管理、調整することが可能である。
In addition, in conventional methods, it was difficult to control and adjust the graphitization properties of raw materials in detail, but according to Kempo, it is possible to control and adjust the carbonization properties of raw materials by selecting depolymerization conditions. Is possible.

本発明者らは上述の石炭解重合物を原料とし作業が容易
でしかも原料からの収率が高く黒鉛化性にも秀れた勢力
性高密度炭素材の製造方法を完成するに到った。
The present inventors have completed a method for producing a forceful high-density carbon material using the above-mentioned coal depolymerized material as a raw material, which is easy to work with, has a high yield from the raw material, and has excellent graphitization properties. .

即ち本発明は石炭類を水素加圧下で溶剤抽出した石炭解
重合物を熱処理し、熱処理物を粉砕し成型後、炭化及び
黒鉛化して等方性高密度炭素材および黒鉛材を製造する
方法において、石炭解重合物を熱処理し、熱処理物を粉
砕したのちに粉砕物を酸化し、続いて酸化物を予備成型
したのちに粉砕し、更に成型、炭化及び黒鉛化すること
を特徴とする等方性高密度炭素材および黒鉛材の製造方
法である。
That is, the present invention provides a method for producing an isotropic high-density carbon material and a graphite material by heat-treating a coal depolymerized product obtained by solvent extraction of coal under hydrogen pressure, crushing and molding the heat-treated product, and then carbonizing and graphitizing it. isotropic, characterized in that a coal depolymerized product is heat treated, the heat treated product is pulverized, the pulverized product is oxidized, the oxide is preformed and then pulverized, and further molded, carbonized and graphitized. This is a method for producing a high-density carbon material and a graphite material.

従来の方法において石炭−重合物を熱処理し、熱処理物
を粉砕後成型しさらに炭化する場合は、熱処理条件を厳
しくすると、具体的には高温度、または長時間の熱処理
を行うゞと熱処理物の揮発分及びβ−797分が低くな
る。この場合は熱処理物の成型性は良いが炭化物即ち、
焼成体のカサ比重、は低いという欠点がある。また、逆
に熱処理条件をおだやかにすると熱処理物の揮発分及び
β−797分が高くなり、炭化時に成型体は発泡し焼成
が困難である。本発明者らは熱処理物を粉砕し。
In the conventional method, when coal-polymer is heat-treated and the heat-treated product is pulverized, molded, and further carbonized, the heat treatment conditions are stricter. Volatile content and β-797min are lower. In this case, the moldability of the heat-treated product is good, but the carbide, i.e.
The disadvantage is that the bulk specific gravity of the fired body is low. On the other hand, if the heat treatment conditions are moderate, the volatile content and β-797 content of the heat-treated product will increase, and the molded product will foam during carbonization, making firing difficult. The present inventors pulverized the heat-treated product.

粉砕物を空気にて軽度に酸化させることによって、熱処
理物の揮発分及びβ−797分を過当貴保持したまま炭
化することにより、炭化時の発泡を防止し高強度、高密
度等方性の焼成体が得られることを見出した。
By slightly oxidizing the pulverized material with air, the volatile matter and β-797 of the heat-treated material are carbonized while retaining an excessive amount of oxygen, thereby preventing foaming during carbonization and creating a high-strength, high-density, isotropic material. It has been found that a fired body can be obtained.

さらに1本発明においては前述の如く酸化物を成製した
後、ただちに炭化する場合よりも、酸化物を予備成型し
更に成型炭化する方法、即ち酸化物を予備成型し1次に
成型体を微粉砕し、さらKこの微′粉砕愉を再度成型し
炭化した場合の方がより高密度、高強度σ】炭素材が得
られることを見出し、本発明を完成させたものである。
Furthermore, in the present invention, rather than immediately carbonizing the oxide after forming the oxide as described above, a method of preforming the oxide and then forming and carbonizing the oxide, that is, a method in which the oxide is preformed and then the formed body is finely formed. The present invention was completed based on the discovery that a carbon material with higher density and strength can be obtained by pulverizing, further molding and carbonizing the finely pulverized material.

本発明をさらに詳細に欽4明すると以下σ】如くである
The present invention will be described in more detail as follows.

適当な粒直に粉砕した石炭・類と炭化水素系溶剤たとえ
ば石炭乾留タールの沸点範囲が200℃ないし400℃
の留分とを石炭/溶剤比(重°量ベース)が約1:1な
いしl:10になる如く混合してスラリー状’hして、
こσ)混合スラリーを3〜300%G加圧下に300℃
ないし500℃の温度範囲で加熱溶解する・水素加圧は
石炭成分の溶剤への解膠に有効であり、石炭溶解率は著
しく向上する。加熱溶解時間はスラリーが十分濾過容易
な粘度となるように設定する。原料石炭の種類によって
異なるが通常10分ないし240分である6石炭σ)可
溶成分が十分に溶解したのち、未溶解残渣をたとえばフ
ィルターまたは遠心分離盤等により分離除去し、ついで
ろ液は蒸留し溶剤を′回収する。回収溶剤は本工程に循
環使用する。
Appropriate pulverized coal and a hydrocarbon solvent such as carbonized coal tar with a boiling point range of 200℃ to 400℃
and a distillate of 1:2 to form a slurry at a coal/solvent ratio (by weight) of about 1:1 to 1:10,
σ) The mixed slurry was heated at 300℃ under 3-300%G pressure.
Melting by heating in a temperature range of 500°C to 500°C. Hydrogen pressurization is effective for peptizing coal components into a solvent, and the coal dissolution rate is significantly improved. The heating and dissolving time is set so that the slurry has a viscosity that is sufficiently easy to filter. 6 Coal σ) After the soluble components are sufficiently dissolved, the undissolved residue is separated and removed using a filter or centrifugal separator, etc., and the filtrate is then distilled. and recover the solvent. The recovered solvent is recycled for use in this process.

この蒸留残渣たる石炭解重合物を尋方性高密度炭素材の
N料として使用する。
The coal depolymerized product, which is the distillation residue, is used as an N material for the hygrotropic high-density carbon material.

次に石炭解重合物の熱処理を行う、熱処理は窒素等の不
活性ガス雰囲気において300℃ないし500℃、好ま
しくは410℃ないし500℃においてl−ないし12
 hV熱処理して炭素前駆体を生成せしめ、さらに成長
、発達させて品質化を進めると同時に熱処理物の分解ガ
ス及び分解油を系外に抜き出し、熱処理物の揮発分とβ
−797分を駒節する。熱処理物の揮発分とβ−797
分とは比例関係にあり、粘結性に寄与すると考えられる
β−797分はできるだけ多い方がwIましいが同時に
揮発分も大となり発泡の原因となる。つまりβ−797
分は可能な限り最大に、揮発分は逆に可能4限り最小に
なるような相反する条件を同時に満足させることが必要
である。本発明では揮発分がlO〜35vtチ、β−7
97分が1〜50wt%程度にl14mすることが望ま
しい。揮発分力jiowiS未洞においてはβ−797
分もl wt%未満となり、成型体内粘結性はなくなり
成型できなくなる。また揮発分が3 b wtliを超
え、β−797分が50wtチを超える場合は炭化時に
発泡し焼成体を得ることは困難である。しかして最も好
ましい揮発分は15〜28vt−1β−レジン分は3〜
3 0 vt−である−拳 続いて、#熱処理物を微粉砕する。このときの粒度は1
00メツシ:L(149μ)以下であることが望ましい
。次にこの熱処理微粉砕物の酸化を行う。酸化にはオゾ
ン、過酸化物、ノ10ゲン化物等の強力な酸化剤は必要
とせず、空気を使用して酸化させることが可能である・
酸化は均質かつ迅速に行うために流動状態で行うことが
好ましく、この為には100メツシユ以下に粉砕した熱
処理物を流動床あるいはロータリーキルンを用いて空気
を通じながら室温より所定の酸化温度まで昇温し、酸化
温度にて所定時間保持することKより酸化を行うことが
できる。このときの昇温速度は任意の昇温速度を選ぶこ
とができるが通常は装置の能力等の点から5〜20 ℃
/−程度の昇温速度で十分!ある。ここで酸化温度はコ
ールタ−ルビ多チ等の場合が200 ℃〜300 C以
上の高温で長時間の酸化時間を必要とするのに対、t、
’C,本発明においては酸化温度Zoo ’C〜280
℃の比較的低温で酸化反応が十分進行する。これは本発
明における原料である石炭解重合物は低度水添分解生成
物であるため石炭の化学構造を#1ぼ継承しており、縮
合芳香環が発達したコールタールピッ−等に比べて。
Next, the coal depolymerized product is heat-treated. The heat treatment is performed at 300°C to 500°C, preferably 410°C to 500°C, in an atmosphere of an inert gas such as nitrogen.
The hV heat treatment is performed to generate a carbon precursor, which is further grown and developed to improve its quality.At the same time, the cracked gas and cracked oil of the heat-treated product are extracted from the system, and the volatile matter and β of the heat-treated product are extracted.
-Komabushi is 797 minutes. Volatile matter and β-797 of heat-treated products
It is preferable to have as much β-797 as possible, which is considered to contribute to caking properties, but at the same time, the volatile content becomes large and causes foaming. In other words, β-797
It is necessary to simultaneously satisfy contradictory conditions such as maximizing the amount of volatile matter as much as possible and minimizing volatile matter as much as possible. In the present invention, the volatile content is 1O~35vt, β-7
It is desirable that 97 minutes is about 1 to 50 wt%. β-797 in volatile component jiowiS
The content also becomes less than 1 wt %, and the caking within the molding disappears, making molding impossible. Further, if the volatile content exceeds 3 bwtli and the β-797min exceeds 50wtli, foaming occurs during carbonization, making it difficult to obtain a fired product. The most preferable volatile content is 15-28vt-1β-resin content is 3-28vt.
30 vt-fist Subsequently, # the heat-treated product is pulverized. At this time, the particle size is 1
00 mesh: It is desirable that it is less than L (149μ). Next, this heat-treated finely pulverized material is oxidized. Oxidation does not require strong oxidizing agents such as ozone, peroxides, or oxidants; air can be used for oxidation.
In order to carry out oxidation homogeneously and quickly, it is preferable to carry out the process in a fluidized state. For this purpose, the heat-treated material is ground into 100 mesh pieces or less and heated from room temperature to a predetermined oxidation temperature while passing air through a fluidized bed or rotary kiln. The oxidation can be carried out by holding the oxidation temperature for a predetermined time. At this time, any heating rate can be selected, but it is usually 5 to 20 degrees Celsius depending on the capacity of the equipment, etc.
A heating rate of /- is sufficient! be. Here, the oxidation temperature is t, whereas coal tar ruby polyethylene requires a long oxidation time at a high temperature of 200 °C to 300 °C or more.
'C, in the present invention, the oxidation temperature Zoo 'C ~ 280
The oxidation reaction proceeds sufficiently at a relatively low temperature of °C. This is because the coal depolymerized product, which is the raw material in the present invention, is a low-grade hydrogenolysis product, so it inherits the chemical structure of coal to the highest degree, and compared to coal tarpi, etc., which has developed fused aromatic rings. .

°酸化を容易に行うことができるためである。°This is because oxidation can be easily performed.

しかし酸化温度が100 ℃未満においては酸化反応に
非常に長時間を必要とするために好ま度か280℃を超
える− 合に;いては酸化反応が急激に進行し、反応の制御が困
難となる。しかして過度に酸化が進行したものは成製性
が雫くなり、炭化時にクラック等が入りやすくなる。好
ましくは酸化温度が120℃〜240℃であり、酸化時
間が1−〜8 hrで行う。例えば酸化温度が低い場合
は酸化時間を長くする必要があり、酸化温度が高い場合
は酸化時間を短くできる。これらは操作性と経済性とに
よって条件が決定される。このときの酸化物の性状は揮
発分が12〜27 vt%、酸素含有量が2〜10wt
9Gになるように調節することが好ましい。揮発分が2
7wt%を超えるときにおいては成層体は炭化時に発泡
しやすく、また12vt%未満においては粘結成分も低
下するために成型性が下る。同様に酸素含有量が@vt
$未満では酸化反応が殆んど進行していないと考えられ
、酸素含有量が10wt%を超えるときは過度の酸化と
なり成製性が低下する。
However, if the oxidation temperature is less than 100°C, the oxidation reaction requires a very long time, so if the temperature exceeds 280°C, the oxidation reaction will proceed rapidly and it will be difficult to control the reaction. . However, if the oxidation progresses excessively, the workability deteriorates and cracks are likely to occur during carbonization. Preferably, the oxidation temperature is 120°C to 240°C, and the oxidation time is 1-8 hr. For example, when the oxidation temperature is low, the oxidation time must be lengthened, and when the oxidation temperature is high, the oxidation time can be shortened. These conditions are determined by operability and economy. The properties of the oxide at this time include a volatile content of 12 to 27 vt% and an oxygen content of 2 to 10 wt%.
It is preferable to adjust it to 9G. Volatile content is 2
If it exceeds 7wt%, the laminated body is likely to foam during carbonization, and if it is less than 12wt%, the viscosity content also decreases, resulting in poor moldability. Similarly, the oxygen content @vt
When the oxygen content is less than $, it is considered that the oxidation reaction hardly progresses, and when the oxygen content exceeds 10 wt%, excessive oxidation occurs, resulting in a decrease in formability.

続いて、酸化した熱処理物を成型する。成型はラバープ
レスや金製等を用いた通常の方法で行う。本発明におい
ては通常の方法で成型を行った後、成層体をただちに再
度粉砕することが好ましい。この成型及び再粉砕の工程
を本発明者勢は予備成製と称している。しかしてこの予
備底蓋はへ6t〜3 t/cdの成型圧が好ましく、予
備成型を行った場合、炭化後の焼成体のカサ比重及び強
度がさらに向上することを本発明者等は見出した。予儂
成型後、粉砕された微粉砕物を再度所望する成型圧で成
型を行い、成型体を炭化及び黒鉛化して尋方性高密度炭
素材及び勢力性高密度黒鉛材を得ることができる。  
゛ 嶌だ炭化温度(1000℃)tでの炭化昇゛温速度はL
 6 、 ’C,All ’〜8ルーであることが望ま
しい。
Subsequently, the oxidized heat-treated product is molded. Molding is carried out in the usual way using a rubber press, metal, etc. In the present invention, it is preferable to immediately re-pulverize the layered product after molding by a normal method. This shaping and re-grinding process is referred to by the inventors as pre-forming. However, the preliminary bottom cover of the lever is preferably formed at a molding pressure of 6 t/cd to 3 t/cd, and the inventors have found that when preforming is performed, the bulk specific gravity and strength of the fired body after carbonization are further improved. . After preforming, the finely ground material is molded again at a desired molding pressure, and the molded product is carbonized and graphitized to obtain a hygrotropic high-density carbon material and a high-strength high-density graphite material.
The carbonization temperature increase rate at t is L
6, 'C, All' to 8 Roux is desirable.

昇温速度が8!−を超えるときは、急速な昇温のため縦
化物即ち焼成体に大きなりラックを生成する。また昇温
速”度”b” ’L6’Cy−未満では焼成体は破壊さ
れてばら°ばらになるためである。
The heating rate is 8! - When the temperature exceeds -, a large rack is formed in the fired product due to rapid temperature rise. Further, if the temperature increase rate is less than ``degrees ``b''``L6'Cy-'', the sintered body will be destroyed and fall into pieces.

又、原料の石炭層1台物の0/Cはα040以下である
ことが望ましい0石炭層重合物の元素組成比o7cが炭
化物の性状に大きく影響することは周知の事実で藪るが
1石炭層重合物のo7c ′力ζα040を超えると炭
化物の真比重が板<、従ってカサ比重も低くなるために
石炭解重合一のO/Cはへ040  以下であることが
好ましい。
It is also well known that the elemental composition ratio o7c of the coal seam polymer greatly affects the properties of the carbide, but it is desirable that the 0/C of one coal seam as raw material is α040 or less. If the o7c' force of the layer polymer exceeds ζα040, the true specific gravity of the carbide becomes less than the plate, and therefore the bulk specific gravity also becomes low, so it is preferable that the O/C of the coal depolymerized product is less than 040.

以下実施例を示し本発明をさらに具体的に説明する。The present invention will be explained in more detail below with reference to Examples.

実施例1 灰分1&7 vt fkを含有する豪州産亜歴青炭を′
3倍量のタール中油中水素灰60%G加圧下。
Example 1 Australian subbituminous coal containing ash content of 1 & 7 vtfk was
Hydrogen ash in oil in 3 times the amount of tar under pressure of 60% G.

410℃で2時間加熱し溶剤可溶分を溶解させ。Heat at 410°C for 2 hours to dissolve solvent-soluble components.

フィルターで固液分離後、減圧蒸留を行い溶剤を回収し
た。石炭解重合物の収率は6&9vt% (daf)で
あった。また石炭解重合物の虻はα035である。この
石炭解重合物を窒素気流中で430℃で4時間熱処理を
行った。熱処理物の収率は780 vt慢1分解油収率
は1&4 vtチ、分解ガス及び損失は合わせて&6v
t%であった。熱処理物の性状は揮発分2L1 vt 
%、β−レジン&191である。熱処理物を100メツ
シユ以下に粉砕し、さらに160℃で1時間ロータリー
キルン中で空気を通過させ酸化を行った。lI2化物の
性状は揮発分1&5 wt% 、 WR素置有量43%
であった。酸化物を37箇φのシリンダーに入れ、1 
ton/jで予備成型を行い、次いで成型体をただちに
再粉砕したのち、再度前述のシリンダーに入れ2 to
V−で成製したのちにλ3″Cy′Ikの昇温速度で窒
素気流中にて1000℃まで昇温し、P1温度で1時間
保持して炭化焼成した。焼成体のカサ比重五64、真比
重L87.気孔率123−1圧縮強度は成製方向でλ9
 toV−s垂直方向で龜7t or47’−1であっ
た。上記で得られたZoo℃焼成体をさらに2800℃
まで焼成黒鉛化したものの性状はカサ比重190、真比
重λ22、気孔率144−1圧縮強度は成型方向でL 
6 tO−1垂直方向で1.5 toV−であった。
After solid-liquid separation using a filter, vacuum distillation was performed to recover the solvent. The yield of coal depolymerized product was 6&9 vt% (daf). Moreover, the coal depolymerized horsefly is α035. This coal depolymerized product was heat treated at 430° C. for 4 hours in a nitrogen stream. The yield of the heat-treated product is 780 vt, the yield of cracked oil is 1&4 vt, and the cracked gas and loss are combined &6 vt.
It was t%. The properties of the heat treated product are volatile content 2L1 vt
%, β-resin &191. The heat-treated product was pulverized to 100 meshes or less, and further oxidized by passing air through a rotary kiln at 160° C. for 1 hour. The properties of lI2 are volatile content 1&5 wt%, WR element content 43%.
Met. Put 37 oxides into a φ cylinder and add 1
ton/j, and then the molded body was immediately re-pulverized and then put into the aforementioned cylinder again for 2 to
After forming V-, the temperature was raised to 1000°C in a nitrogen stream at a heating rate of λ3″Cy′Ik, and carbonized by holding at P1 temperature for 1 hour.The bulk specific gravity of the fired body was 564, True specific gravity L87. Porosity 123-1 Compressive strength is λ9 in the forming direction
The toV-s was 7 tors or 47'-1 in the vertical direction. The Zoo℃ fired body obtained above was further heated to 2800℃.
The properties of the graphitized product are: bulk specific gravity 190, true specific gravity λ22, porosity 144-1, and compressive strength L in the molding direction.
It was 1.5 toV- in the vertical direction of 6 tO-1.

実施例2 灰分LOvt%を含有する豪州量リグナイト、′1 を5倍量のタール油中に仕込み、さらにリグナイトに対
して3 wt %の酸化鉄の水和物を主成分とする鉄鉱
石(黄土)を仕込んだ。水素圧100 V G加圧下4
20℃で1時間加熱し、溶剤可溶分を溶解させフィルタ
ーで固液分離後減圧蒸留を行い溶剤を回収した。石炭解
重合物の収率は61Ovt % (a、 *−f)であ
った。石炭解重合物のりはα032であった。この石炭
解重合物を窒素気流中において450 Cで1時間熱処
理を行った。熱′46埋物の収率は8!6wt%、分解
油収率は1!7 vt%、分解ガス及び損失は(7vt
%であった。熱処理分の揮発分は2L9 vt 16 
、β−レジ7分は& s wt%である。
Example 2 Australian lignite '1 containing ash content LOvt% was charged into 5 times the amount of tar oil, and iron ore (loess) containing iron oxide hydrate as a main component of 3 wt% relative to lignite was added. ) was prepared. Hydrogen pressure 100 V G pressurized 4
The mixture was heated at 20° C. for 1 hour to dissolve the solvent-soluble components, and after solid-liquid separation using a filter, vacuum distillation was performed to recover the solvent. The yield of the coal depolymerized product was 61 Ovt% (a, *-f). The coal depolymerized glue was α032. This coal depolymerized product was heat treated at 450 C for 1 hour in a nitrogen stream. The yield of heat '46 is 8!6wt%, the cracked oil yield is 1!7vt%, the cracked gas and loss is (7vt%), and the cracked oil yield is 1!7vt%.
%Met. Volatile content of heat treated portion is 2L9 vt 16
, β-regi7min is &s wt%.

熱処理物を100メツシ二以下に粉砕し、さらに140
℃で3時間円筒層反応器中で空気を下部より吹き込み流
動状態で空気酸化を行った。
The heat-treated product is pulverized to 100 mesh or less, and further pulverized to 140 mesh or less.
Air oxidation was carried out in a fluidized state by blowing air from the bottom in a cylindrical bed reactor at ℃ for 3 hours.

酸化物の揮発分は2Q7 vtチ、酸素含有量&6wt
9Gテあった。酸化物を37■φのシリンダーに入れ2
 t/jで予備成型後、粉砕したbこれをさらに同一の
シリンダーに入れて2 toamで4jjg&成型を行
った。晟源体を窒素気流下で飄3℃/―の昇温速度で1
000℃まで昇温し、同温度で1時間保持した。得られ
た焼成体のカサ比重はL66、真比重187.気孔率I
L2弧圧縮強度は成型方向で@ 9 tet%cd、垂
直方向でL 8 toV−であった。上記で得られた1
000℃焼成体をさらK 2800″Cまで焼成黒鉛化
した場合の性状は、カサ比重L93、真比重122゜気
孔率1&L−1圧縮強度は成型方向で入7ton/cd
、 垂直方向で1,6 taV−であった。
Volatile content of oxide is 2Q7vt, oxygen content &6wt
There was 9G. Put the oxide into a 37■φ cylinder 2
After preliminary molding at t/j, the pulverized b was further placed in the same cylinder and subjected to 4jjg & molding using 2 toams. The source material was heated at a heating rate of 3°C/- under a nitrogen stream.
The temperature was raised to 000°C and maintained at the same temperature for 1 hour. The bulk specific gravity of the obtained fired body was L66, and the true specific gravity was 187. Porosity I
The L2 arc compressive strength was @ 9 tet% cd in the molding direction and L 8 toV- in the vertical direction. 1 obtained above
When the 000°C fired body is further fired and graphitized to K 2800″C, its properties are as follows: bulk specific gravity L93, true specific gravity 122°, porosity 1 & L-1, compressive strength 7ton/cd in the molding direction.
, 1,6 taV- in the vertical direction.

実施例3 灰分a1%を含む褐炭を4倍量のタール中油中、水素圧
100 % G加圧下、430℃で1時間加熱し溶剤可
溶分を溶解させ、フィルターで固液分離後減圧下で蒸留
を行い溶剤を回収した。石炭解重合物の収率は5&6 
vtチ((LIL、 f)であった0石炭層重合物の昭
はへ030であった。石炭解重物を窒素気流下で430
℃で2時閾熱処理したのちに、さらに続けて450℃で
30分間熱処理を行った。熱処理物の収率は7g、Ov
t% 、分解油収率ハ1&1 vt % 、ガス及び損
失は\9 vt %であった。熱処理物の揮発分は1&
9 wt % 、β−レジ7分は6.2 vtチである
。熱処理物を微粉砕し100メツシユ以下にした。これ
を180℃において20分間ロータリーキルン中で空気
を流通させ酸化を行った。酸化物の揮発分は17.2 
vt %−酸素含有量は41 vt 9Gである。これ
をラバープレスを使用して2 taV−で予備成型後、
さらに微粉砕した。これをさらにラバープレスで2 t
oneで再度成型を行った。成型体を窒素気流下で&7
℃/―の昇温速度で1000″Cまで昇温し、同i1&
で一1時間焼成した。得られた焼成体のカサ比重は14
68、真比重L86.気孔率1α8%、圧縮強匿は成製
方向で龜Q to$cj−1i直方向でλ9 to−で
あった。この1000℃焼成体をさらに2800℃で焼
成黒鉛化したときの性状はカサ比重LQ&、真比重λ2
3、気孔率l龜696、圧縮強度は成型方向で1,7 
to$ad、 *直方向でL6 ton/lIであった
Example 3 Lignite containing 1% ash was heated in 4 times the amount of oil in tar under 100% hydrogen pressure at 430°C for 1 hour to dissolve the solvent-soluble content, and after solid-liquid separation with a filter, it was heated under reduced pressure. Distillation was performed to recover the solvent. The yield of coal depolymerized product is 5 & 6
VTchi ((LIL, f) was 0.030% of the coal seam polymer was 0.030%.
After the threshold heat treatment at 450° C. for 2 hours, a further heat treatment was performed at 450° C. for 30 minutes. The yield of the heat-treated product is 7g, Ov
t%, cracked oil yield was 1&1 vt%, gas and loss was \9 vt%. The volatile content of the heat-treated product is 1 &
9 wt %, β-region 7 minutes is 6.2 vt. The heat-treated product was pulverized to 100 mesh or less. This was oxidized by circulating air in a rotary kiln at 180° C. for 20 minutes. Volatile content of oxide is 17.2
vt % - oxygen content is 41 vt 9G. After preforming this at 2 taV- using a rubber press,
It was further finely ground. This is further applied with a rubber press for 2 t.
One molding was performed again. Molded body under nitrogen stream &7
The temperature was raised to 1000"C at a heating rate of ℃/-, and the same i1&
It was baked for 11 hours. The bulk specific gravity of the obtained fired body is 14
68, true specific gravity L86. The porosity was 1α8%, and the compression strength was λ9 to− in the direction of production and Q to $cj−1i in the right direction. When this 1000℃ fired body is further fired and graphitized at 2800℃, the properties are bulk specific gravity LQ&, true specific gravity λ2
3. Porosity: 696, compressive strength: 1.7 in the molding direction
to$ad, *L6 ton/lI in the vertical direction.

実施例4 実施例2で得た石炭解重合物の熱処理酸化物を予備成型
の工程を導入した場合と通常の一回の成型の場合の10
00℃焼成体のカサ比重らに破壊し焼成体を得ることが
できなかった。
Example 4 10 cases in which the heat-treated oxide of the coal depolymerized product obtained in Example 2 was subjected to a pre-molding step and in the case of normal one-time forming.
The bulk specific gravity of the 00°C fired product was destroyed, and no fired product could be obtained.

Claims (7)

【特許請求の範囲】[Claims] (1)石炭類を水素加圧下に溶剤処理した石炭解重合物
を熱処理し、熱処理物を粉砕、成型後戻化及び−黒鉛化
を行い等方性高密度炭素材及び勢力性高密度黒鉛材を製
造する方法において、熱処理物を粉砕した後に粉砕物を
酸化し、次いで予備成型をしたのちに粉砕し、更に成型
、炭化、黒鉛化を行うことを特徴とする等方性高密度炭
素材及び勢力性高密度黒鉛材の製造方法。
(1) A coal depolymerized product obtained by treating coal with a solvent under hydrogen pressure is heat-treated, and the heat-treated product is crushed, molded, reconstituted, and -graphitized to produce an isotropic high-density carbon material and a forceful high-density graphite material. In the method for producing isotropic high-density carbon material, the heat-treated material is pulverized, the pulverized material is oxidized, the pulverized material is preformed, and then pulverized, and further molded, carbonized, and graphitized. A method for manufacturing high-density graphite material.
(2)熱処理温度が410℃〜500℃、熱処理時間が
1−〜12 bYであり、且つ得られた熱処理物の性状
が揮発分が15〜28wttIb。 β−レジン分−が3〜B Ovt %である特許請求の
範囲第1項記載の製造方法。
(2) The heat treatment temperature is 410° C. to 500° C., the heat treatment time is 1 to 12 bY, and the property of the obtained heat treated product is that the volatile content is 15 to 28 wttIb. The manufacturing method according to claim 1, wherein the β-resin content is 3 to B Ovt %.
(3)  熱処理後の粉砕物の粒度が100メツシユ(
149μ)以下のものである特許請求の範囲第1項記載
の製造方法。
(3) The particle size of the pulverized product after heat treatment is 100 mesh (
149μ) or less, the manufacturing method according to claim 1.
(4)熱処理後の粉砕物の酸化に空気を使用し、酸化温
度が120℃〜240 ℃、酸化時間が1−〜8 hp
  であり、且つ得られる酸イ゛ヒ物の性状が揮発分が
12〜27wt%、酸票含有量が2〜1 ’Ovt%で
ある特許請求の範囲第1項記載の製造方法。
(4) Air is used to oxidize the pulverized material after heat treatment, the oxidation temperature is 120°C to 240°C, and the oxidation time is 1 to 8 hp.
2. The production method according to claim 1, wherein the properties of the obtained acidic substance include a volatile content of 12 to 27 wt% and an acid residue content of 2 to 1'Ovt%.
(5)  酸化物の予備成型として(L5t〜3V−の
成型圧で成型を行なう特許請求の範囲第1項記載の製造
方法。
(5) The manufacturing method according to claim 1, wherein the oxide is preformed at a molding pressure of L5t to 3V-.
(6) 炭化時の昇温速度を1,5℃/―〜8℃/―と
する特許請求の範囲第1項記載の製造方法0
(6) Manufacturing method 0 according to claim 1, in which the temperature increase rate during carbonization is 1.5°C/- to 8°C/-
(7)  石炭解重合物の0かへ040以下である特許
請求の範I!1II1項記載の製造方法。
(7) Claim I that the coal depolymerized product is 0 to 040 or less! 1II The manufacturing method according to item 1.
JP57054803A 1982-04-03 1982-04-03 Manufacture of isotropic carbonaceous material of high density Granted JPS58172212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57054803A JPS58172212A (en) 1982-04-03 1982-04-03 Manufacture of isotropic carbonaceous material of high density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054803A JPS58172212A (en) 1982-04-03 1982-04-03 Manufacture of isotropic carbonaceous material of high density

Publications (2)

Publication Number Publication Date
JPS58172212A true JPS58172212A (en) 1983-10-11
JPS627124B2 JPS627124B2 (en) 1987-02-16

Family

ID=12980893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054803A Granted JPS58172212A (en) 1982-04-03 1982-04-03 Manufacture of isotropic carbonaceous material of high density

Country Status (1)

Country Link
JP (1) JPS58172212A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138995A (en) * 1977-05-11 1978-12-04 Kawatetsu Kagaku Kk Method of making carbonaceous raw material easily convertible into graphite
JPS544896A (en) * 1977-06-15 1979-01-13 Mitsubishi Metal Corp Self-lubricating graphite member and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138995A (en) * 1977-05-11 1978-12-04 Kawatetsu Kagaku Kk Method of making carbonaceous raw material easily convertible into graphite
JPS544896A (en) * 1977-06-15 1979-01-13 Mitsubishi Metal Corp Self-lubricating graphite member and production thereof

Also Published As

Publication number Publication date
JPS627124B2 (en) 1987-02-16

Similar Documents

Publication Publication Date Title
JP5342794B2 (en) Carbon material manufacturing method
JP5101277B2 (en) Destructive electrodes for carbothermal reduction furnaces.
JP6273166B2 (en) Carbon material manufacturing method
JP5128351B2 (en) Carbon material manufacturing method
WO1980001683A1 (en) Process for producing high-density,high-strength carbon and graphite material
JPS5839770B2 (en) Tanso Shikei Tai no Seizouhou
US4883617A (en) Method of forming binderless carbon materials
JP5466106B2 (en) Method for producing iron ore-containing coke
KR101436523B1 (en) Method for manufacturing refractory material using waste fire brick
JPS58172212A (en) Manufacture of isotropic carbonaceous material of high density
JP5390977B2 (en) Iron ore-containing coke and method for producing the iron ore-containing coke
JP6193191B2 (en) Carbon material manufacturing method
JP3382986B2 (en) Sinterable carbon powder and method for producing the same
JPS5858284B2 (en) Tansozaino Seizouhouhou
JPS58156023A (en) Production of carbon fiber
KR101629601B1 (en) Manufacturing method for coke composed mainly of by-product coal
JP5491795B2 (en) Method for producing massive shaped body for iron making raw material and iron ore-containing coke
JPH0158125B2 (en)
JP6719342B2 (en) Method for producing coke for iron making and method for producing pig iron
JPH0151441B2 (en)
RU2628606C1 (en) Method of manufacturing carbon material and carbon material
KR101504836B1 (en) Apparatus for producing carbon composite metal oxide briquette and manufacturing method thereof
JPH0158124B2 (en)
JPS6213284B2 (en)
KR100638447B1 (en) Method for preparing carbonaceous material by using wasted cordress tire powder and fine graphite powder