JPS58169516A - Improved production process for carbon fiber - Google Patents

Improved production process for carbon fiber

Info

Publication number
JPS58169516A
JPS58169516A JP4902082A JP4902082A JPS58169516A JP S58169516 A JPS58169516 A JP S58169516A JP 4902082 A JP4902082 A JP 4902082A JP 4902082 A JP4902082 A JP 4902082A JP S58169516 A JPS58169516 A JP S58169516A
Authority
JP
Japan
Prior art keywords
fibers
water
yarn
acrylic
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4902082A
Other languages
Japanese (ja)
Inventor
Naoki Mochida
望田 直規
Takashi Kaneko
孝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Acetate Co Ltd
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Acetate Co Ltd
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Acetate Co Ltd, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Acetate Co Ltd
Priority to JP4902082A priority Critical patent/JPS58169516A/en
Publication of JPS58169516A publication Critical patent/JPS58169516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:Acrylic yarn is pretreated with a dilute aqueous solution of a water- soluble high-molecular substance, then calcined and carbonized to prevent the yarn from filament-loosening at the preoxidation process, to produce carbon fibers without fluffing, yarn breakage and fusing between filaments. CONSTITUTION:An aqueous solution of a water-soluble high-molecular substance, preferably gua gum, pectin, PVA or polyethyene glycol, preferably with a concentration of 0.01-5%, is applied to an acrylic yarn by spraying, print-rolling or dipping so that the pick-up becomes 50-500% based on the precursor. Then, preferably after drying to increase collecting properties, the resultant yarn is calcined and carbonized. The application of the dilute solution is made, preferably after yarn making, during or after finishing.

Description

【発明の詳細な説明】 本発明は炭素繊維の改良された製造方法に関するもので
あり、更に詳しくは特定の前処理を施したアクリル系繊
維を焼成して炭素繊維を作る方法にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing carbon fibers, and more particularly to a method for producing carbon fibers by firing acrylic fibers that have been subjected to a specific pretreatment.

従来、炭素繊維の製造方法には各種の方法が開示されて
いるがとりわけ前駆物質としてアクリル系繊維を用い、
まず200〜400℃の濡出で耐炎化処理を行い、つい
で400〜16001:の温度で炭素化せしめる方法が
一般的である。
Conventionally, various methods have been disclosed for producing carbon fibers, but in particular, methods using acrylic fibers as precursors,
A common method is to first perform flameproofing treatment by wetting at 200 to 400°C, and then carbonize at a temperature of 400 to 16,000°C.

しかし、アクリル系繊維は耐炎化の工程で一部が熱分解
してタール化し炉内を汚染し、またかかる分解物の繊維
への再封4fによって製品として供される炭素繊維の物
性が低下してしまうという欠点を有している。
However, during the process of making the acrylic fibers flameproof, some of them thermally decompose and turn into tar, contaminating the inside of the furnace, and the resealing of the decomposed products into the fibers deteriorates the physical properties of the carbon fibers used as products. It has the disadvantage of being

プレカーサーの焼成炉の通過特性向上の見地からアクリ
ル系繊維の収束性を良好ならしめることが必要であるが
、この収束性の向上は上記不都合な現象の増大につなが
るばかりでな(該分解物によって繊維が相互に付着し更
に加熱により繊維間融着を引起こし、フィラメント状炭
素繊維として分繊性不良という重大な欠点を露呈するに
至る。       、 従って、かかる処理に際して、発熱分解を抑制せしめる
物質をアクリル系繊維に添加する方法が試みられている
が、未だに良好な添加物や添加の方法が見出されていな
い現状にある。
It is necessary to improve the convergence of acrylic fibers from the viewpoint of improving the passage characteristics of the precursor through the firing furnace. The fibers adhere to each other and heating causes inter-fiber fusion, exposing the serious drawback of poor fibrillation properties as filamentary carbon fibers.Therefore, during such treatment, substances that suppress exothermic decomposition are added. Although attempts have been made to add it to acrylic fibers, no good additive or method of addition has yet been found.

一方、加熱処理を施した繊維の分繊性を良好に保たしめ
る方法の検討もなされているが、このような方法によっ
ては逆に糸条の拡がり、毛羽立ちが顕著となり、また緊
張下の処理においてもいわゆる「ばらけ」、「糸切れ」
等の不都合な現象が頻繁に起こすようになりもって工程
通過性不良、製品の物性の不均一という炭素繊維の製造
に際して重大な問題点が発現するのである。
On the other hand, methods to maintain good splitting properties of heat-treated fibers have been studied, but these methods tend to cause the yarns to spread out and become fluffy. Also, so-called "unraveling" and "thread breakage"
These and other inconvenient phenomena occur frequently, leading to serious problems in the production of carbon fibers, such as poor processability and non-uniform physical properties of the product.

そこで本発明者らはかかる現状に鑑み、良好な炭素繊維
を製造すべ(鋭意研究を重ねた結果本発明に到達したも
のである。
In view of the current situation, the inventors of the present invention aimed to produce a good carbon fiber (the present invention was achieved as a result of extensive research).

本発明の要旨とするところは焼成工程に先立ち、アクリ
ル系繊維に水溶性高分子の希薄水溶液を添加し、しかる
のち常法に従って焼成し炭素化せしめることを特徴とす
る炭素繊維の改良された製造方法にあり、本発明によっ
てプレカーサーの工程通過性を良好ならしめ、かつ、品
質優良な炭素繊維を提供することができる。
The gist of the present invention is to provide improved production of carbon fibers, which is characterized in that prior to the firing process, a dilute aqueous solution of a water-soluble polymer is added to acrylic fibers, and then the fibers are fired and carbonized according to a conventional method. According to the present invention, it is possible to improve the process passability of the precursor and provide carbon fibers of excellent quality.

本発明の第一の効果は水溶性高分子の希4 水溶液をア
クリル系繊維に添加するものであるから、その付着状態
は極めて均一であり、それ放油剤等の不着斑に基ず(炭
素繊維性能のバラツキが少な(なることであり、その第
二はアクリル系繊維が200〜400℃の熱履歴を受け
る際における糸条の収束性が良好であって、たとえ緊張
下の処理においてもプレカーサーを構成する各糸条の熱
収縮の不均一さに一起因する糸条の「ばらげ」 「糸切
れ」等の不都合が生じないこと、その第3はプレカーサ
ーがロール等に接触した際にも損傷を受けにくく、極め
て優れた炭素繊維を作ることができることである。
The first effect of the present invention is that since a dilute aqueous solution of a water-soluble polymer is added to acrylic fibers, the adhesion state is extremely uniform, and there is no possibility of non-adhesion caused by oil release agents (carbon fibers). The second reason is that the acrylic fibers have good yarn convergence properties when subjected to heat history of 200 to 400°C, and even when processed under tension, the precursors do not disintegrate. First, there is no inconvenience such as "unraveling" or "thread breakage" of the yarn due to uneven thermal contraction of each yarn, and thirdly, there is no damage when the precursor comes into contact with rolls, etc. It is possible to make extremely high-quality carbon fibers that are resistant to oxidation.

その第4は本発明の方法によると200〜400℃の熱
履歴を与えた糸束状物は炭素化工程を経由すると収束性
を失い、分繊性良好となり継続して行われる300〜1
700℃での糸条の炭素化工程ζ において繊維間相互融着等の不都合を防止することであ
り、その第四はプレカーサー糸条にコ;六加する添加剤
が希薄な水溶性高分子水溶液であるので、加熱によって
可燃性ガスの発生がなく安全であること、第五は糸条物
の炭素化において殆んど痕跡を残すことなく酸化され、
力)かる!VjK水溶性高分子は殆んど灰分を残さない
ため炭素繊維特性の低下がないこと、第六に本発明の方
法によって製造した炭素繊維は本来炭素繊維のもつ強度
、弾性率を損うことな(、かつ均一優秀な性能を発揮す
ることがあげられる。
The fourth reason is that according to the method of the present invention, the yarn bundle that has been subjected to a thermal history of 200 to 400°C loses convergence after passing through the carbonization process, has good splitting properties, and is continuously carried out at 300 to 400°C.
The fourth purpose is to prevent inconveniences such as mutual fusion between fibers in the yarn carbonization process at 700°C, and the fourth purpose is to add a dilute water-soluble polymer aqueous solution to the precursor yarn. Therefore, it is safe because no flammable gas is generated by heating, and the fifth is that the yarn is oxidized without leaving any traces during carbonization.
Power) Karu! The VjK water-soluble polymer leaves almost no ash, so there is no deterioration in carbon fiber properties.Sixth, the carbon fibers produced by the method of the present invention do not impair the strength and elastic modulus originally possessed by carbon fibers. (and exhibits uniform and excellent performance.

本発明になる水溶性高分子物質とは分解することなく水
に溶解し増粘効果を与える物質であり、多糖類、多糖類
誘導体及びポリオール類であり、多糖類としてクアーガ
ム、ローカストビーンガム、クィンシードガム、タラガ
ム、カラギーナン、ファセレラン、アラビアガフクタン
The water-soluble polymer substances of the present invention are substances that dissolve in water without decomposition and give a thickening effect, and include polysaccharides, polysaccharide derivatives, and polyols, and the polysaccharides include quar gum, locust bean gum, and quince. Seed gum, tara gum, carrageenan, phaseleran, arabic fuctan.

アラビアガム、トラガカントガム、カラヤガム。Gum Arabic, Gum Tragacanth, Gum Karaya.

ペクチン、澱粉、トロロアオイ、ザ/す/ガム。Pectin, starch, mallow, the/su/gum.

カードラン、プルラン、サクシノグルカー等があげられ
多糖類誘導体としては、澱粉、グアガム、ローカストビ
ーンガム、セルロース、アルギン酸の酸化誘導体、カル
ボキシメチル誘導体、ヒドロキシアルキル誘導体、アル
キレングリコールとのエステル誘導体、グラフト化誘導
体等をあげることができる。
Examples of polysaccharide derivatives include starch, guar gum, locust bean gum, cellulose, oxidized derivatives of alginic acid, carboxymethyl derivatives, hydroxyalkyl derivatives, ester derivatives with alkylene glycol, grafted derivatives, etc. can be given.

またポリオールとしては、ポリビニルアルコール、ポリ
エチレングリコール等を例示することができる。
Examples of polyols include polyvinyl alcohol and polyethylene glycol.

これらの水溶性高分子はそのいずれも本発明に適用する
ことができるが、特にこれらの水溶液をアクリル系繊維
に添加した時に均一に付着することができ、更にゲル化
等を起こさないものが好適である。
Any of these water-soluble polymers can be applied to the present invention, but those that can be uniformly adhered to acrylic fibers when their aqueous solutions are added and that do not cause gelation are particularly preferred. It is.

以上の理由から好ましい水溶性高分子としては、グアガ
ム、ローカストビーンガム、増粘型カラギーナン、ペク
チン、ザンサンガム、ポリビニルアルコール、ポリエチ
レングリコール及びグアガムのヒドロキシアルキル誘導
体、ヒドロキシアルキルセルロースが例示される。
For the above reasons, preferred water-soluble polymers include guar gum, locust bean gum, thickened carrageenan, pectin, xanthan gum, polyvinyl alcohol, polyethylene glycol, hydroxyalkyl derivatives of guar gum, and hydroxyalkylcellulose.

本発明において水溶性高分子を水に溶解する際には「&
春ミ」が生じないよう均一に溶解させることが必要であ
る。
In the present invention, when dissolving a water-soluble polymer in water, “&
It is necessary to dissolve it uniformly so that "Harumi" does not occur.

また、ことさらに高濃度溶液を作成することは意味のな
いことであり、かえってその場合には「ガムアップ」等
の工程通過性不良を招く。
Moreover, it is pointless to prepare a particularly highly concentrated solution, and in that case, it would actually lead to poor processability such as "gum-up".

水浴性高分子の希薄水溶液の濃度は、アクリル系繊維に
添加し乾燥した時点でアクIJ )し系繊維の相互接着
性を損わない程度に希薄であることがのぞましく、水溶
性高分子の濃度で0.01〜5%なる水wWをプレカー
サーに対し、50〜500%なる割合となるように付着
せしめるのがよ(・0また、水浴性高分子物質の希薄浴
液のアクリル系繊維への添加方法にはスプレー法、プリ
ントロール法、ディップ法等、いずれであっても良い。
The concentration of the dilute aqueous solution of the water-based polymer should preferably be so dilute that it does not impair the mutual adhesion of the acrylic fibers when added to the acrylic fibers and dried. It is recommended that water wW with a molecular concentration of 0.01 to 5% be attached to the precursor at a ratio of 50 to 500% (・0Also, acrylic water in dilute bath solution for water-based polymeric substances) The addition method to the fibers may be any method such as a spray method, a print roll method, or a dipping method.

また場合によりスクイズロールな用(・ることも可能で
ある。
In some cases, it may also be used as a squeeze roll.

アクリル系繊維に水浴性高分子物質の希薄水浴液を添加
する時期としては、アクリル系糸条な製造後、仕上工程
中、或、いは仕上げ工程後に行うことがのぞましい。
It is preferable to add the dilute water bathing solution of the water bathable polymer substance to the acrylic fibers after the production of the acrylic yarn, during the finishing process, or after the finishing process.

また、耐炎化処理を行う前に水溶性高分子物質の希薄溶
液を添加したアクリル系繊維は一旦乾燥して収束性を上
げてお(ことが好ましい。
In addition, it is preferable that the acrylic fiber to which a dilute solution of a water-soluble polymer substance is added is once dried to improve convergence before being subjected to flame-retardant treatment.

本発明になる炭素繊維の改良された製造方法を用いるこ
とにより耐炎化工程にあっては繊維束の「バラク」を防
ぎ、毛羽、糸切れを防ぎかつ均一な耐炎化を促進する効
果を生ぜしめることができ、更に炭素化工程にあっては
繊維束は分繊され、jit維相互の融着を防止し、かつ
、焼成後、添加物である水溶性高分子物質は完全に酸比
され、痕跡を残さないという効果をも生ぜしめることが
でき、もって、工程通過性、製品の物性共に優良な炭素
繊維を得ることができるのである。
By using the improved carbon fiber production method of the present invention, it is possible to prevent the fiber bundle from becoming loose in the flame-retardant process, prevent fuzz and yarn breakage, and promote uniform flame-resistance. Furthermore, in the carbonization process, the fiber bundle is divided into fibers to prevent the jit fibers from adhering to each other, and after firing, the water-soluble polymeric substance as an additive is completely acidified. It also has the effect of not leaving any traces, making it possible to obtain carbon fibers with excellent process passability and product physical properties.

以下実施例によって本発明の実施態様を更に詳しく説明
を加える。
Hereinafter, embodiments of the present invention will be explained in more detail with reference to Examples.

実施例1 アクリル系プレカーサーを通常の方法にて製造し、その
最終仕上げ段階でアクリル系プレカーサーを一旦水洗し
しかるのちディップロールを介してグアガム0.02%
水溶液と接触せしめ、一旦、ニップロールで水切りを行
ったのちに乾燥して、アクリル系プレカーサーを製造し
たニップロールにて水切り後の該アクリル系プレカーサ
ーの水分率は150%であった。
Example 1 An acrylic precursor was manufactured by a conventional method, and at the final finishing stage, the acrylic precursor was washed with water and then coated with 0.02% guar gum via a dip roll.
The acrylic precursor was brought into contact with an aqueous solution, drained with a nip roll, and then dried to produce an acrylic precursor.After draining with a nip roll, the moisture content of the acrylic precursor was 150%.

このアクリル系プレカーサーを200〜250℃で耐炎
化処理し、しかるのち窒素雰囲気下に1200℃に昇温
して炭素化を行った。かかる場合工程中における「バラ
ク」 「糸切れ」 「毛羽立ち」現象は見られなかった
。また炭素化処理を行った繊維はすでに完全に単繊維に
分繊し−(おり、相互接着等は観原されなかった。
This acrylic precursor was flame-proofed at 200 to 250°C, and then carbonized by raising the temperature to 1200°C in a nitrogen atmosphere. In such cases, no ``bulk'', ``thread breakage'' or ``fuzz'' phenomena were observed during the process. Furthermore, the carbonized fibers had already been completely separated into single fibers, and no mutual adhesion was observed.

かくして得られた炭素繊維は400 Ky/−の強度を
有し24t/−の弾性率を有していた。
The carbon fiber thus obtained had a strength of 400 Ky/- and an elastic modulus of 24 t/-.

実施例2 実施例1で製造したアクリル系プレカーサーをその最終
仕上げ段階でアクリル系プレカーサーを一旦水洗し、し
かるのちプリントロールスクイズロールを介してヒドロ
キシエチルセルロース0.2%水溶液と接触せしめ、一
旦スクイズロールで水切りを行ったのち、そのまま耐炎
化処理に導いた。
Example 2 In the final finishing stage of the acrylic precursor produced in Example 1, the acrylic precursor was once washed with water, and then brought into contact with a 0.2% aqueous solution of hydroxyethyl cellulose via a print roll and squeeze roll, and once squeezed with a squeeze roll. After draining, it was directly subjected to flame-retardant treatment.

耐炎化処理前におけるアクリル系プレカーサーの水分率
は150%であった。 200℃へ250℃の温度で耐
炎化処理を行い、引続き窒素雰囲気下に1200℃に昇
温して炭素化工程に導いセ。
The moisture content of the acrylic precursor before flame-retardant treatment was 150%. Flameproofing treatment was performed at a temperature of 200°C to 250°C, and then the temperature was raised to 1200°C in a nitrogen atmosphere to lead to a carbonization step.

かかる場合、工程中における「バラク」 「糸切れ」 
「毛羽立ち」現象は見られなかった。また炭素化処理を
行った繊維はすでに完とに単繊維に分繊しており、繊維
間相互接着等は観察されなかった。か(して得られた炭
素繊維は380Kg/−の強度と23t/−の弾性番を
有していた。
In such cases, "barak" and "thread breakage" occur during the process.
No "fluff" phenomenon was observed. Furthermore, the carbonized fibers had already been completely separated into single fibers, and no mutual adhesion between the fibers was observed. The carbon fiber thus obtained had a strength of 380 kg/- and an elasticity number of 23 t/-.

実施例3 アクリル系プレカーサーを製造し、その最終仕上げ段階
でアクリル系プレカーサーを一旦水洗し、しかるのちデ
ィップロールニップロールを介してグアガムのヒドロキ
シグロビルエーテルの0.1%水溶液と接触せしめ、一
旦水切りを行ったのちにそのまま耐炎化処理に導いた。
Example 3 An acrylic precursor was manufactured, and in the final finishing step, the acrylic precursor was once washed with water, and then brought into contact with a 0.1% aqueous solution of hydroxyglobyl ether of guar gum via a dip roll nip roll, and once drained. After that, it was immediately subjected to flame-retardant treatment.

耐炎化処理前のアクリル系プレカーサーの水分率は15
0%であった。
The moisture content of the acrylic precursor before flame-retardant treatment is 15.
It was 0%.

200℃〜250℃の温度で耐炎化処理を行い、引続き
窒素雰囲気下に1200℃に昇温しで炭素化工程に導い
た。
Flameproofing treatment was performed at a temperature of 200°C to 250°C, and the temperature was subsequently raised to 1200°C in a nitrogen atmosphere to lead to a carbonization step.

かかる場合工程中における「バラク」 「糸切れ」 「
毛羽立ち」現象は見られなかった。また炭素化処理を行
った繊維はすでに完全に単繊維に分繊しており、繊維間
相互接着等は観察されなかった。かくして得られた炭素
繊維の性能は均一であり、かつ420Kg/−の強度と
24 t/ mAの弾性率を有していた。
In such cases, "barak", "thread breakage", "
No "fluffing" phenomenon was observed. Furthermore, the carbonized fibers had already been completely separated into single fibers, and no mutual adhesion between fibers was observed. The performance of the carbon fiber thus obtained was uniform and had a strength of 420 Kg/- and an elastic modulus of 24 t/mA.

実施例4 アクリル系プレカーサーを製造し、その最終仕上げ段階
でアクリル系プレカーサーを一旦水洗し、しかるのちデ
ィップロールを介してザンサンガム0.02%水溶液と
接触せしめ、−、E]ニップロールで水切りを行ったの
ちに乾燥してアクリル系プレカーサーを製造した。ニッ
プロールにて水切り後のアクリル系プレカーサーの水分
率は150%であった。
Example 4 An acrylic precursor was manufactured, and in the final finishing step, the acrylic precursor was once washed with water, and then brought into contact with a 0.02% xanthan gum aqueous solution via a dip roll, and drained using a nip roll. It was later dried to produce an acrylic precursor. The moisture content of the acrylic precursor after draining with a nip roll was 150%.

このアクリル系プレカーサーを200〜250℃の温度
で耐炎化処理を行い、引続き屋素雰囲気下に1200℃
に昇温して炭素化工程に導いた。
This acrylic precursor was subjected to flameproofing treatment at a temperature of 200 to 250°C, and then heated to 1200°C under an outdoor atmosphere.
The temperature was raised to 100% to lead to the carbonization process.

かかる場合、工程中における「バラク」 「糸切れ」 
1毛羽立ち」現象は見られなかった。また炭素化処理を
行った繊維はすでに完全に単繊維に分繊しており、繊維
間相互接着等は観察されなかった。かくして得られた炭
素繊維の性能は均一であり、かつ415Kg/−の強度
と24.8V、1の弾性率を有していた。
In such cases, "barak" and "thread breakage" occur during the process.
No "fuzz" phenomenon was observed. Furthermore, the carbonized fibers had already been completely separated into single fibers, and no mutual adhesion between fibers was observed. The performance of the carbon fiber thus obtained was uniform, and had a strength of 415 Kg/- and an elastic modulus of 24.8 V and 1.

比較例 すでに公知の方法でアクリル系プレカーサーを製造し、
その最終仕上げ段階でアクリル系プレカーサーを一旦水
洗し、しかるのちディップロールを介して水と接触せし
め、その後ニップロールで水切りを行い、水分率150
%のアクリルプレカーサーを製造した。
Comparative Example An acrylic precursor was produced by a known method,
In the final finishing step, the acrylic precursor is washed with water, then brought into contact with water via a dip roll, and then drained with a nip roll to achieve a moisture content of 150.
% of acrylic precursor was produced.

このアクリル系プレカーサーを200〜250℃で耐炎
化処理したところ処理後の繊維は相互に離散し、一定長
の処理においては「クルミ」「毛羽立ち」 「糸切れ」
等を起こし、工程通過性が甚だ悪い状態であった。
When this acrylic precursor was flame-resistant treated at 200 to 250°C, the treated fibers became separated from each other, and when treated with a certain length, they became ``walnut'', ``fluffy'', and ``thread breakage''.
etc., and the processability was extremely poor.

Claims (3)

【特許請求の範囲】[Claims] (1)アクリル系繊維に水溶性高分子物質の希薄水溶液
を添加し、しかるのち常法に従って焼成し炭素化せしめ
ることを特徴とする炭素繊維の改良された製造方法。
(1) An improved method for producing carbon fibers, which comprises adding a dilute aqueous solution of a water-soluble polymeric substance to acrylic fibers, and then carbonizing the fibers by firing according to a conventional method.
(2)水溶性高分子が天然糖およびその誘導体であるこ
とを特徴とする特許請求範囲第1項記載の炭素繊維の改
良された製造方法。
(2) The improved method for producing carbon fibers according to claim 1, wherein the water-soluble polymer is a natural sugar or a derivative thereof.
(3)  水溶性高分子がポリオールであることを特徴
とする特許請求範囲第1項記載の炭素繊維の改良された
製造方法。
(3) The improved method for producing carbon fibers according to claim 1, wherein the water-soluble polymer is a polyol.
JP4902082A 1982-03-29 1982-03-29 Improved production process for carbon fiber Pending JPS58169516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4902082A JPS58169516A (en) 1982-03-29 1982-03-29 Improved production process for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4902082A JPS58169516A (en) 1982-03-29 1982-03-29 Improved production process for carbon fiber

Publications (1)

Publication Number Publication Date
JPS58169516A true JPS58169516A (en) 1983-10-06

Family

ID=12819434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4902082A Pending JPS58169516A (en) 1982-03-29 1982-03-29 Improved production process for carbon fiber

Country Status (1)

Country Link
JP (1) JPS58169516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966518A (en) * 1982-10-08 1984-04-16 Toho Rayon Co Ltd Production of carbon or graphite fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966518A (en) * 1982-10-08 1984-04-16 Toho Rayon Co Ltd Production of carbon or graphite fiber
JPS6354808B2 (en) * 1982-10-08 1988-10-31 Toho Rayon Kk

Similar Documents

Publication Publication Date Title
US4284615A (en) Process for the production of carbon fibers
US3639953A (en) Method of producing carbon fibers
CA1045767A (en) Sulfonating polyethylene fibres prior to carbonization
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
US3242000A (en) Impregnated carbonized acrylic textile product and method for producing same
JP2001516404A (en) Method for producing active fabric made of carbon fiber
JPS6211089B2 (en)
US3639140A (en) Process for carbonized cellulose fiber or the products thereof
JPS58169516A (en) Improved production process for carbon fiber
JPH02242920A (en) Carbon fiber containing composite metal
JPS6354808B2 (en)
JPH03234824A (en) Yarn bundling agent for producing carbon yarn
CN111926415B (en) Carbon fiber production process capable of eliminating static electricity
JPS6357525B2 (en)
US1834388A (en) Treatment of textile materials containing carbonizable fibres and product thereof
JPH04257315A (en) Flame and high temperature resisting polyimide fiber and method for production thereof
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2017101350A (en) Manufacturing method of carbon material using cupra fiber material
JPH026629A (en) Production of carbon fiber
JP2016037689A (en) Method for producing carbon fiber
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JP3048449B2 (en) Acrylonitrile precursor fiber
JPS61174423A (en) Production of flameproofed fiber
JPS58214519A (en) Production of precursor for carbon fiber
JP4919410B2 (en) Carbon fiber manufacturing method