JPS58169076A - Scintillation camera - Google Patents

Scintillation camera

Info

Publication number
JPS58169076A
JPS58169076A JP5286882A JP5286882A JPS58169076A JP S58169076 A JPS58169076 A JP S58169076A JP 5286882 A JP5286882 A JP 5286882A JP 5286882 A JP5286882 A JP 5286882A JP S58169076 A JPS58169076 A JP S58169076A
Authority
JP
Japan
Prior art keywords
collimator
plate
scintillator
distribution data
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5286882A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hattori
服部 博幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP5286882A priority Critical patent/JPS58169076A/en
Publication of JPS58169076A publication Critical patent/JPS58169076A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To achieve a higher sensitivity by a method wherein a parallel flat- plate-shaped collimator is arranged rotatably in front of a scintillator to introduce light emitted therefrom to a photoelectric converter and a number of incident radiation distribution data to reconstruct an image. CONSTITUTION:A parallel flat-plate-shaped collimator 7 made up of flat-plate- shaped shield plates arranged in plurality is arranged rotatably in front of a flat-plate-shaped scintillator 1 with a bearing 71. The collimator 7 is provided with a rack 72 in the perimeter thereof and turned with a motor 74 through a pinion 73. The angle of the collimator 7 is detected with a rotary encoder 76 through a pinion 75 meshed with the rack 72. Thus, the collimator 7 is rotated to obtain a number of distribution data from various angles for one turn, thereby enabling the reconstruction of an RI distribution image as original.

Description

【発明の詳細な説明】 この発明は被写体中に存在するRI(放射性同位元素)
の分布像を撮影するシンチレーシ冒ンカメラに関する。
[Detailed Description of the Invention] This invention is based on the RI (radioactive isotope) present in the subject.
This invention relates to a scintillation camera that captures distribution images of .

従来のシンチレーシ■ンカメラでは第1図にボすように
平板状シンチレータ1の前面に格子状コリメータ2を配
置し、被写体5の病巣6に集積したI’tIから発せら
れる放射線のうち平板状シンチレータ1に直角な方向に
入射するもののみを平板状シンチレータ1に入射させる
ようにし、その発光をシンチレータ1の背面に多数配列
され九PMT(フォトマルチグライブ)轡の光電変換器
3.3.・・・に導き、これら光電変換器3,3.・・
・の出力を位置演算回路4に送って、光電変換器3,3
.・・・の各出力の大きさが発光位置までの距離に対応
していることからこれらの出力の大小関係よ)発光位置
を求めてX方向位置信号とY方向位置信号とを得るよう
にしている。
In a conventional scintillation camera, a grid collimator 2 is arranged in front of a flat scintillator 1 as shown in FIG. Only light incident in a direction perpendicular to the scintillator 1 is allowed to enter the flat scintillator 1, and the emitted light is transferred to a large number of photoelectric converters 3.3. ..., these photoelectric converters 3, 3 .・・・
・Sends the output of
.. ... Since the magnitude of each output corresponds to the distance to the light emitting position, the magnitude relationship of these outputs is determined.) The light emitting position is determined and the X direction position signal and Y direction position signal are obtained. There is.

従って、従来のシンチレーシ冒ンカメラではしており、
Klから発せられる放射線のうち他の方向に向かった大
部分は検出されないため感度が低いという問題がある。
Therefore, conventional scintillation cameras do not use
There is a problem in that sensitivity is low because most of the radiation emitted from Kl going in other directions is not detected.

本発明は上記に鑑み、感度を高め九シンチレーシ日ンカ
メラを提供することを目的とする。
In view of the above, an object of the present invention is to provide a nine-scintillation sun camera with increased sensitivity.

以下、本発明の一実施例について図面を参照しながら欽
明する。第2図及び第3図に示すように、平板状シール
ド板を多数平行に配列してなる平行平板状コリメータ7
をベアリング71による平板状シンチレータ1の前面に
回転可能に配置する。そしてこのコリメータ7の周囲に
ラック72を設けてこれに噛み合うビニオン73を介し
てモータ74によシコリメータ7を回転させるようにす
るとともに、ラック721)C噛み合うビニオン75を
介してロータリエンコーダ76によシコリメータ7の回
転角度を検出する。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. As shown in FIGS. 2 and 3, a parallel flat collimator 7 is formed by arranging a large number of flat shield plates in parallel.
is rotatably arranged on the front surface of the flat scintillator 1 by a bearing 71. A rack 72 is provided around the collimator 7, and the collimator 7 is rotated by a motor 74 via a pinion 73 that meshes with the rack 72, and a rotary encoder 76 is rotated by a rack 721) via a pinion 75 that meshes with the rack 72. The rotation angle of the sicolimator 7 is detected.

ここでコリメータフのシールド板に直角な方向を人とす
ると、入射放射−は人の方向には規制されるがAに直角
な平面内では規制されることがないので、この平面内に
おける種々の方向からの放射線がシンチレータlに入射
することになる。そのため感度が飛躍的に高まる。この
放射線入射に応じた発光の位置は従来と同様の位置演算
回路によりX、Yの位置信号として検出されるが、この
位置信号を座標変換しA方向にのみ並べる(A方向に直
角な成分は問わない)と、入射放射線数の入方向の分布
データP#1が第4図に示すように得られる。コリメー
タ7を回転してA方向が角度θにであるときには同様に
分布データP−kが得られる。コリメ〜り7を回転して
1回転分の種々の角度からの分布データPakを多数得
れば第4図からも分るように1数学的な処理により原画
像であるRI分布偉を再構成することができる。
Here, if we assume that the direction perpendicular to the shield plate of the collimator is the direction of the person, the incident radiation is regulated in the direction of the person, but not within the plane perpendicular to A. Radiation from this direction will be incident on the scintillator l. Therefore, sensitivity increases dramatically. The position of the light emitted according to the incident radiation is detected as X and Y position signals by a position calculation circuit similar to the conventional one, but this position signal is coordinate-transformed and arranged only in the A direction (the component perpendicular to the A direction is (doesn't matter) and distribution data P#1 of the number of incident radiations in the direction of incidence are obtained as shown in FIG. When the collimator 7 is rotated so that the A direction is at the angle θ, distribution data Pk is similarly obtained. By rotating the collimator 7 and obtaining a large number of distribution data Pak from various angles for one rotation, as can be seen from Figure 4, the RI distribution, which is the original image, can be reconstructed through mathematical processing. can do.

そこでこの実施例では第5図においてメモリ81にイン
ターフェイス82t−介り、てCPU(中央演算装置)
83の制御のもとに角度#にとこの角度θkに対応する
分布データPakとを収集1・IJ、d−fi“1転し
″′″″収集“終      。
Therefore, in this embodiment, the memory 81 is connected to a CPU (central processing unit) via an interface 82t in FIG.
Under the control of 83, the distribution data Pak corresponding to the angle # is collected.

わったとき分布データを読み出してコンゲルツク84で
コンノリューシ璽ン(重畳積分)シ、そののちパックグ
ロジェクタ85で逆投影して画像メモリ86に書き込む
ようにする。すると画像メモリ86には九とえば256
X256のビットイメージの原画像が再構成されている
。この画像メモリ86を読み出してCRT装置87等の
表示装置に表示すれば再構成され九に1分布倫を見るこ
とができる。
When the distribution data is changed, the distribution data is read out, converted into convolutions (convolution integral) by a congelstork 84, then back-projected by a pack projector 85, and written into an image memory 86. Then, the image memory 86 contains 9, for example 256.
The original image of the X256 bit image is reconstructed. If this image memory 86 is read out and displayed on a display device such as a CRT device 87, it will be reconstructed and a 1 in 9 distribution can be seen.

表お、画像再構成の丸めのデータ処理手法は上記のコン
d IJ z−シlン法だけでなく、他のフィルタ補正
逆投影法等を用いることができる。
Note that the rounding data processing method for image reconstruction is not limited to the above-mentioned cond IJ z-shine method, but other filter correction back projection methods and the like can be used.

平行平板状コリメータは必ずしも平板状シンチレータl
に対して直角に向いている必賛はなく、第6図に示すよ
うに所定の角度(例えば600)傾けるようにしてもよ
い。このような傾いた平行平板状コリメータ9を用いて
得られる分布データP#にの各々の中心位置をずらして
画像再構成の丸めのデータ処理を行なえば、シンチレー
タ1よ抄所定の距離の平面上に関する情報のみが収束し
、この平面の前後の情報は分散してぼけてしまうため、
この平面に分布するR、IO像すなわちシンチレータl
の面よや所定の深さの平面における被写体の断層偉を得
ることができる。
A parallel plate collimator is not necessarily a flat plate scintillator.
It does not necessarily have to be oriented perpendicularly to the surface, but may be inclined at a predetermined angle (for example, 600 degrees) as shown in FIG. By shifting the center position of each of the distribution data P# obtained using such an inclined parallel plate collimator 9 and performing rounding data processing for image reconstruction, the scintillator 1 can be placed on a plane at a predetermined distance from the scintillator 1. Only the information about this plane converges, and the information before and after this plane is dispersed and blurred.
R distributed on this plane, IO image, that is, scintillator l
It is possible to obtain the tomographic image of the object in the plane of the plane or at a given depth.

以上、実施例について説明したように、本発明によれば
、従来より10〜30倍も感度を飛躍的に向上させたシ
ンチレーシ目ンカメラを得ることができる。
As described above with respect to the embodiments, according to the present invention, it is possible to obtain a scintillating camera whose sensitivity is dramatically improved by 10 to 30 times compared to the conventional camera.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例のブロック図、第2図は本発明の一実施
例の斜視図、第3図は同実施例の断面図、第4図はコリ
メータの角度と分布データとの関係をボす模式図、第5
図はデータ処理系統のブロック図、第6図は他の実施例
の断面図である。 l・・・平板状シンチレータ  2・・・格子状コリメ
ータ3・・・光電変換器   4・・・位置演算回路5
・・・被写体      6・・・病巣7.9・・・平
行平板状コリメータ 71・・・ベアリング   72・・・ラック73.7
5・・・ビニオン  74・・・モータ76・・・ロー
タリエンコーダ 81・・・メモリ82・・・インター
フェイス  83・・・CPU84・・・コンIルパ 
   85・・・パック!ロノエクタ86・・・画像メ
モリ   87・・・CRT装置56″
Fig. 1 is a block diagram of a conventional example, Fig. 2 is a perspective view of an embodiment of the present invention, Fig. 3 is a sectional view of the same embodiment, and Fig. 4 is a diagram showing the relationship between the collimator angle and distribution data. Schematic diagram, 5th
The figure is a block diagram of the data processing system, and FIG. 6 is a sectional view of another embodiment. l... Flat scintillator 2... Grid collimator 3... Photoelectric converter 4... Position calculation circuit 5
... Subject 6 ... Lesion 7.9 ... Parallel flat collimator 71 ... Bearing 72 ... Rack 73.7
5...Binion 74...Motor 76...Rotary encoder 81...Memory 82...Interface 83...CPU 84...Controller
85...Pack! Ronoecta 86... Image memory 87... CRT device 56''

Claims (1)

【特許請求の範囲】[Claims] (1)  平板状のシールド板が平行に多数配列されて
なる平行平板状コリメータをシンチレータの前面に回転
可能に配置し、前記シンチレータにおける発光な光電変
換器に導いてとの光電変換器出力よ〉前記コリメータの
シールド板と直角な方向の入射放射−分布データを得、
前記プリメータを回転させ種々な方向における前記の入
射放射線分布データを多数収集し、これら多数の入射放
射線分布データを画像再構成処理することによって放射
性同位元素の分布像を再構成するようにし九シンチレー
シ箇ンカメラ。
(1) A parallel plate-shaped collimator consisting of a large number of plate-shaped shield plates arranged in parallel is rotatably arranged in front of a scintillator, and the output of the photoelectric converter is guided to a photoelectric converter that emits light in the scintillator. Obtaining incident radiation distribution data in a direction perpendicular to the shield plate of the collimator,
The premeter is rotated to collect a large number of incident radiation distribution data in various directions, and a radioisotope distribution image is reconstructed by performing image reconstruction processing on these large numbers of incident radiation distribution data. camera.
JP5286882A 1982-03-31 1982-03-31 Scintillation camera Pending JPS58169076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5286882A JPS58169076A (en) 1982-03-31 1982-03-31 Scintillation camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5286882A JPS58169076A (en) 1982-03-31 1982-03-31 Scintillation camera

Publications (1)

Publication Number Publication Date
JPS58169076A true JPS58169076A (en) 1983-10-05

Family

ID=12926848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5286882A Pending JPS58169076A (en) 1982-03-31 1982-03-31 Scintillation camera

Country Status (1)

Country Link
JP (1) JPS58169076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375338B1 (en) * 2007-03-07 2008-05-20 General Electric Company Swappable collimators method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375338B1 (en) * 2007-03-07 2008-05-20 General Electric Company Swappable collimators method and system

Similar Documents

Publication Publication Date Title
JPS6121048Y2 (en)
US20070007454A1 (en) High resolution photon emission computed tomographic imaging tool
JPS6315558B2 (en)
JPS6016246B2 (en) tomography device
Webb et al. Monte Carlo modelling of the performance of a rotating slit-collimator for improved planar gamma-camera imaging
DeVito et al. Energy-weighted acquisition of scintigraphic images using finite spatial filters
US4563583A (en) Scintillation camera
US4659935A (en) Bilateral collimator for rotational camera transaxial SPECT imaging of small body organs
US5324946A (en) Method and apparatus for reconstructing spect image with maintaining high spatial resolution
JPH0652301B2 (en) Emission CT device
JPS58169076A (en) Scintillation camera
JPH0457986B2 (en)
JP2841728B2 (en) SPECT device
Hua Compton imaging system development and performance assessment
JP4071765B2 (en) Nuclear medicine diagnostic equipment
JP3610655B2 (en) Positron ECT device
JP3818497B2 (en) Line projection-derived Compton camera
JPS61226674A (en) Method for absorbing and correcting single photon ect device
JP3061392B2 (en) Gamma camera device
JP3101308B2 (en) SPECT device
JPS6314983B2 (en)
Han Image reconstruction in quantitaive cardiac SPECT with varying focal-length fan-beam collimators
JPS61235782A (en) Emission ct device
JPH0564753B2 (en)
JPS6116536Y2 (en)