JPS58168926A - Measuring method of surface temperature distribution of material - Google Patents

Measuring method of surface temperature distribution of material

Info

Publication number
JPS58168926A
JPS58168926A JP57051644A JP5164482A JPS58168926A JP S58168926 A JPS58168926 A JP S58168926A JP 57051644 A JP57051644 A JP 57051644A JP 5164482 A JP5164482 A JP 5164482A JP S58168926 A JPS58168926 A JP S58168926A
Authority
JP
Japan
Prior art keywords
temperature
camera
temperature distribution
signal
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57051644A
Other languages
Japanese (ja)
Other versions
JPH0123051B2 (en
Inventor
Kenichi Matsui
健一 松井
Tatsuo Hiroshima
龍夫 廣島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57051644A priority Critical patent/JPS58168926A/en
Publication of JPS58168926A publication Critical patent/JPS58168926A/en
Publication of JPH0123051B2 publication Critical patent/JPH0123051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve a measuring range and accuracy, by scanning a licenser camera in a period suitable for temperature of a material and measuring the temperature distribution of the material and then, combining the value of this temperature distribution with the absolute value of the temperature obtained by a radiation thermometer which is provided separately. CONSTITUTION:A licenser camera 2 directed toward a moving mterial 1 is provided and also, a radiation thermometer 3 is disposed as directing toward the middle point of a scanning line crossing at right angles to its moving direction. The scanning for each element of the camera 2 is carried out with high speed and a period of the scanning is varied by instructions of an operational processing device 6 basing on a signal obtained by digitalizing the output signal of the camera 2 by an A/D converter 5 and is automatically controlled to have a period suitable for the temperature of the material. On one hand, the signal of the thermometer 3 is inputted into the device 6 through an A/D converter 8 because the absolute value of the temperature is not made known by only the camera 2. Then, said signal is compared with the result obtained by the camera 2 and is outputted into a display device 9 after correcting a temperature drift etc. of the camera 2.

Description

【発明の詳細な説明】 本発明は、連続鋳造スラブ等の高温移動材料の表面温度
分布をラインセンサーカメラおよび放射温度計を用いて
測定する表面温度分布測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface temperature distribution measuring method for measuring the surface temperature distribution of a high temperature moving material such as a continuously cast slab using a line sensor camera and a radiation thermometer.

従来、材料表面の温度分布を非接触で行う装置トシては
、サーモカメラまたは赤外線テレビカメラ等がある。サ
ーモカメラは、温度の絶対値を知ることができるものの
、検出素子を冷却するために液体窒素を必要とする点や
分解能が低いなどの欠点がある。また赤外線テレビカメ
ラは、温度の高低分布を知ることはできるが、その絶対
値が分らない、残像が大きい、さらに検出素子が撮像管
であるため、歪の発生や長期安定性に欠ける等の欠点が
あシ、これらいずれの方法も移動材料の表面温度分布を
簡易かつ正確にオンラインで測定する目的には適当でな
い。またスポット温度測定装置である放射温度計を機械
的に走査させてその分布測定を行う試みもなされたが、
走査速度に限界があり、しかも粉塵等の悪条件下では、
走査機構部の故障が多く実用化に問題がある。
Conventionally, there are thermo cameras, infrared television cameras, and the like as devices for measuring the temperature distribution on the surface of a material in a non-contact manner. Although thermo cameras can determine the absolute value of temperature, they have drawbacks such as requiring liquid nitrogen to cool the detection element and having low resolution. Furthermore, although infrared television cameras can detect the temperature distribution, they do not know the absolute value, have large afterimages, and because the detection element is an image pickup tube, they have disadvantages such as distortion and lack of long-term stability. Unfortunately, none of these methods is suitable for the purpose of simply and accurately measuring the surface temperature distribution of a moving material online. Attempts have also been made to mechanically scan a radiation thermometer, which is a spot temperature measurement device, and measure its distribution.
There is a limit to the scanning speed, and under adverse conditions such as dust,
There are many failures in the scanning mechanism, which poses problems for practical use.

他方、鋼片、鋼板の製造工程において、材料の温度測定
は重要な事項であシ、より厳密な温度管理が求められて
いる近年、従来の単なる点の測定から面としての温度把
握が要求されている。たとえば、連続鋳造によシスラブ
を製造する場合、スラブ表面の温度分布を知ることは、
この情報に基づいて冷却水の散布状態をコントロールし
、スンプ品質を向上させる上できわめて重要なことであ
る。
On the other hand, in the manufacturing process of steel slabs and steel plates, temperature measurement of materials is an important matter, and in recent years, where stricter temperature control has been required, it has become necessary to grasp the temperature of a surface rather than just measuring a point. ing. For example, when manufacturing a cis slab by continuous casting, knowing the temperature distribution on the slab surface is
This information is extremely important in controlling the distribution of cooling water and improving the quality of the pump.

しかし、かかる高温、多湿かつ粉塵の多い厳しい環境Q
下で、さらに設置スペースも限られている条件の下で、
なおかつ安定的にかつ高い精度をもって測定可能な方法
がなく、強くその開発が望まれている。
However, the harsh environment of high temperature, humidity and dust
Under conditions where the installation space is also limited,
Furthermore, there is no method that can measure it stably and with high precision, and its development is strongly desired.

本発明はこのような要請に適確に答えるもので、その要
旨とするところは、材料の移動路に材料表面に対向して
ラインセンサーカメラおよび放射温度計をそれぞれ設け
、前記ラインセンサーカメラからの出力信号の大小に対
応してラインセンサーカメラの走査周期を変え、材料温
度に適した走査周期で材料表面の温度分布を測定し、こ
の温度分布と前記放射温度計から得られた温度絶対値と
を総合して材料の表面温度分布を測定すること、にある
The present invention accurately answers such demands, and its gist is that a line sensor camera and a radiation thermometer are provided in the material movement path facing the material surface, and that the line sensor camera detects the The scanning period of the line sensor camera is changed according to the magnitude of the output signal, the temperature distribution on the material surface is measured at a scanning period suitable for the material temperature, and this temperature distribution is compared with the absolute temperature value obtained from the radiation thermometer. The objective is to measure the surface temperature distribution of the material by integrating the above.

ところで、近年の半導体集積回路の進歩は目覚しく、赤
外域にも実用的感度を有する光センサーが多種市販され
ている。
Incidentally, semiconductor integrated circuits have made remarkable progress in recent years, and many types of optical sensors that have practical sensitivity even in the infrared region are commercially available.

本発明において用いるラインセンサーもこの種の集積回
路技術を応用したもので、イメージセンサ−や−次元固
体撮像素子等とも呼ばれる。そこで、このラインセンサ
ーを温度分布測定に適用することが一部に試みられてい
るが、次のようなラインセンサーに伴う問題点を解決し
ないため実用化にいま一歩の感がある。
The line sensor used in the present invention also applies this type of integrated circuit technology, and is also called an image sensor or a -dimensional solid-state image sensor. Therefore, some attempts have been made to apply this line sensor to temperature distribution measurement, but it seems that there is still a long way to go to put it into practical use because the following problems associated with line sensors have not been solved.

ラインセンサーは、光電変換エレメントを、多いもので
2000工レメント以上線上に配列したもので、1個の
エレメント寸法は14μm×14μm程度で、全体寸法
上2000エレメントのもので30mm程度である。各
エレメントの受光量は、光電変換され、電気信号として
時系列的に順次出力される。出力信号の大小は、信号比
カスタードパルスから次のスタートパルスまでの時間内
に、各エレメントが受光した光量に依存する。そして、
このスタートパルス間の時間間隔を蓄積時間または走査
周期と呼   。
A line sensor has at most 2,000 or more photoelectric conversion elements arranged in a line, and the dimensions of each element are about 14 μm x 14 μm, and the overall size of a sensor with 2,000 elements is about 30 mm. The amount of light received by each element is photoelectrically converted and sequentially output in time series as an electrical signal. The magnitude of the output signal depends on the amount of light received by each element within the time from the signal ratio custard pulse to the next start pulse. and,
The time interval between these start pulses is called the accumulation time or scan period.

び、被測定材料および信号出力との関係は、第1図に示
す通りである。
The relationship between the measurement target material, the material to be measured, and the signal output is as shown in FIG.

同図から、蓄積時間が12m5ecの場合には約830
度まで、6m5ecの場合には約750〜920r 、
 3m5ecの場合には850〜1000Cの材料温度
範囲域のも−のをカバーし得るが、たとえば材料温度が
700〜100OCの大きな温度分布を示す場合、蓄積
時間を固定してしまうと、全域の温度分布を知ることが
できないことが判明する。
From the same figure, if the accumulation time is 12m5ec, approximately 830
degree, approximately 750-920r in the case of 6m5ec,
In the case of 3m5ec, it can cover the material temperature range of 850 to 1000C, but if the material temperature shows a large temperature distribution of 700 to 100OC, for example, if the storage time is fixed, the temperature of the entire range will be covered. It turns out that the distribution cannot be known.

一方、ラインセンサーからの出力は、雰囲気温度によっ
て変化し、また時間ドリフトもあり、そのまま素子の出
力信号から温度の絶対値を知ることは困難である。
On the other hand, the output from the line sensor changes depending on the ambient temperature and also has time drift, making it difficult to directly determine the absolute value of the temperature from the output signal of the element.

そこで、本発明では、ラインセンサーからの出−力信号
の大小によシ走査周期を変えて、広範囲の温度分布を示
す材料であってもその全域をカバーするようになし、ま
た温度の絶対値を知るだめに、放射温度計を付設するも
のである。
Therefore, in the present invention, the scanning period is changed depending on the magnitude of the output signal from the line sensor, so that even if the material exhibits a wide range of temperature distribution, the entire area is covered, and the absolute value of the temperature is In order to know this, a radiation thermometer is attached.

本発明の具体例を第2図を参照しながら説明すると、移
動材料1に対して、これを睨むラインセンサーカメラ2
が設けられ、まだその移動方向と直交する走査ラインの
たとえば中点を睨んで放射温度計3が配設されている。
A specific example of the present invention will be described with reference to FIG. 2. A line sensor camera 2 that looks at a moving material 1
is provided, and a radiation thermometer 3 is disposed facing, for example, the midpoint of the scanning line perpendicular to the direction of movement thereof.

そしてラインセンサーカメラ2の各エレメントに対する
走査は高速で行われ、これによって材料1の全面の温度
分布を行うようになっている。
The scanning of each element by the line sensor camera 2 is performed at high speed, thereby providing temperature distribution over the entire surface of the material 1.

ラインセンサー2に取込まれた信号出力は、クロック発
生器4からのクロック信号を受けて、順次A/D変換器
5に取込まれ、そこでデジタル信号化された後、演算処
理装置6に入力される。ここで、クロック周波数は、材
料1の温度の最大値で決定される最小蓄積時間中に、全
エレメントの信号を出力しA/D変換し得るように選択
される。たとえば、必要とされる最小蓄積時間が1m5
ecで、エレメント数が1000の場合には、少くとも
1μ池ごとに1個のエレメント信号を出力させる必要が
あるので、クロック周波数としては1MHz以上が選定
される。
The signal output captured by the line sensor 2 receives a clock signal from the clock generator 4 and is sequentially captured by the A/D converter 5, where it is converted into a digital signal and then input to the arithmetic processing unit 6. be done. Here, the clock frequency is selected such that the signals of all elements can be output and A/D converted during a minimum accumulation time determined by the maximum temperature of the material 1. For example, the required minimum accumulation time is 1m5
When the number of elements is 1000 in ec, it is necessary to output at least one element signal for every 1μ cell, so a clock frequency of 1 MHz or more is selected.

かくして演算処理装置6に入力された信号の処理に当っ
て、材料温度と蓄積時間との関係が適切であれば、その
まま実行できるが、もしそうでないならば第1図の関係
があることを踏えて、次のような処理が行われる。すな
わち、たとえば6 m5et:の蓄積時間で測定したと
ころ、飽和出力値の90チを越える信号を出力するエレ
メントがある場合には、その状態を演算処理で判断して
、スタートパルス発生器8をコントロールし、材料温度
と対応させるべく、蓄積時間が3 m5ecとなるよう
設定し、再度の測定を行う。まだ6m5ecの蓄積時間
で、飽和出力値の10%以下の出力しかないエレメント
があるような場合には、蓄積時間を12 m5ecとし
て再度測定を行う。
Thus, when processing the signals input to the arithmetic processing unit 6, if the relationship between the material temperature and the storage time is appropriate, it can be executed as is, but if it is not, the relationship shown in Figure 1 can be used. Then, the following processing is performed. In other words, if there is an element that outputs a signal exceeding the saturated output value of 90ch when measured over an accumulation time of, for example, 6 m5et:, the state is determined by arithmetic processing and the start pulse generator 8 is controlled. Then, in order to correspond to the material temperature, the accumulation time was set to 3 m5ec, and the measurement was performed again. If there is still an element whose output is less than 10% of the saturated output value even though the accumulation time is 6 m5ec, the accumulation time is set to 12 m5ec and the measurement is performed again.

これによって、700C〜950Cの広範な温度分布を
有する材料に対して%  12FFZsec、 6m5
eC% 3m5ecの蓄積時間での測定により、全温度
範囲の測定が可能となる。
This allows % 12FFZsec, 6m5 for materials with wide temperature distribution from 700C to 950C
eC% Measurement with an accumulation time of 3 m5 ec allows measurement over the entire temperature range.

前述のように、ラインセンサーカメラ2単独では温度の
絶対値が不明である。そこで、カメラ2視野内の1点を
測温する放射温度計3の信号をA、/D変換器8を介し
て演算処理装置6に入力させ、ラインセンサーカメラ2
で得た結果と突き合わせ、ラインセンサーカメラ2の温
度ドリフト等を補正し、その後結果を表示装置9に表示
させる。表示に際しては、第3図のような温度範囲毎の
凝似カラー区分表示、第4図のような位置〜温度レベル
表示等がある。第4図の方式の場合、材料の移動に伴っ
て、書き換えを行う。
As mentioned above, the absolute value of temperature is unknown when the line sensor camera 2 is used alone. Therefore, the signal from the radiation thermometer 3 that measures the temperature at one point within the field of view of the camera 2 is input to the arithmetic processing unit 6 via the A/D converter 8, and the line sensor camera 2
The temperature drift of the line sensor camera 2 and the like are corrected by comparing the results obtained in , and then the results are displayed on the display device 9 . The display may include a similar color division display for each temperature range as shown in FIG. 3, a position to temperature level display as shown in FIG. 4, and the like. In the case of the method shown in FIG. 4, rewriting is performed as the material moves.

さらに本発明法を、第5図〜第9図によって説明すると
、材料1のA−Hの走査ライン(第2図参照)の温度分
布が、第5図のような分布を示しているとき、単に6 
m5ecの蓄積時間の測定では、第6図のように750
〜920Cの範囲のみしか得られず、それ以外の範囲は
カットされる。これに対して、3m5etの蓄積時間で
第7図のように850tl’以上の分布を知り、12F
FZsecの蓄積時間で第8図のように830C以下の
分布を知シ、これら各蓄積時間での分布を第9図のよう
に合成し、さらにこのままでは分布は判るがラインセン
サーカメラの温度ドリフト等によシ絶対値が不明である
ため、放射温度計からの0点での測温結果に基づいて、
ライン■ センサーカメラによる指示値を補正する。
Further explaining the method of the present invention with reference to FIGS. 5 to 9, when the temperature distribution of the scanning line A-H of material 1 (see FIG. 2) shows the distribution as shown in FIG. simply 6
In the measurement of m5ec accumulation time, as shown in Figure 6, 750
Only the range of ~920C is obtained, and the other ranges are cut. On the other hand, with an accumulation time of 3m5et, we found a distribution of 850tl' or more as shown in Figure 7, and 12F
The distribution below 830C is known from the FZsec accumulation time as shown in Figure 8, and the distribution at each accumulation time is combined as shown in Figure 9.The distribution can be seen as is, but the temperature drift of the line sensor camera, etc. Since the absolute value is unknown, based on the temperature measurement result at the zero point from the radiation thermometer,
Line ■ Correct the value indicated by the sensor camera.

以上の通り、本発明は、ラインセンサーカメラ放射温度
計を併設したので、ラインセンサーカメラの温度ドリフ
ト等を補正して正確な温度測光を行うことができる。ま
た測温手段がコンパクトで、厳しい環境下でも使用でき
るから、きわめて実用的である。
As described above, since the present invention is provided with a line sensor camera radiation thermometer, it is possible to correct temperature drift of the line sensor camera and perform accurate temperature photometry. Furthermore, the temperature measuring means is compact and can be used even in harsh environments, making it extremely practical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は材料温度〜ラインセンサーカメラ出力値〜蓄積
時間相関図、第2図は本発明法を実施するだめの装置の
概要構成図、第3図および第4図は温度分布表示例の図
、第5図〜第9図は信号処理例を示す温度分布図である
。 1・・・材料        2・・・ラインセンサー
カメラ3・・・放射温度計     4・・・クロック
パルス発生器5.8・・・A/D変換器  6・・・演
算処理装置7・・・スタートパルス発生器 9・・・表
示装置特許出願人  住友金属工業株式会社 代理人 弁理士  永 井 義 久 12 官−11& 第2図 第5図 第6図
Fig. 1 is a correlation diagram between material temperature - line sensor camera output value - accumulation time, Fig. 2 is a schematic configuration diagram of a device for carrying out the method of the present invention, and Figs. 3 and 4 are diagrams of temperature distribution display examples. , FIGS. 5 to 9 are temperature distribution diagrams showing examples of signal processing. 1... Material 2... Line sensor camera 3... Radiation thermometer 4... Clock pulse generator 5.8... A/D converter 6... Arithmetic processing unit 7... Start Pulse generator 9...Display device patent applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Yoshihisa Nagai 12 Government-11 & Figure 2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)材料の移動路に材料表面に対向してラインセンサ
ーカメラおよび放射温度計をそれぞれ設け、前記ライン
センサーカメラからの出力信号の大小に対応してライン
センサーカメラの走査周期を変え、材料温度に適した走
査周期で材料表面の温度分布を測定し、この温度分布と
前記放射温度計から得られた温度絶対値とを総合して材
料の表面温度分布を測定することを特徴とする材料の表
面温度分布測定方法。
(1) A line sensor camera and a radiation thermometer are installed on the material movement path facing the material surface, and the scanning period of the line sensor camera is changed depending on the magnitude of the output signal from the line sensor camera, and the material temperature is The surface temperature distribution of the material is measured by measuring the temperature distribution on the surface of the material at a scanning period suitable for Surface temperature distribution measurement method.
JP57051644A 1982-03-30 1982-03-30 Measuring method of surface temperature distribution of material Granted JPS58168926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051644A JPS58168926A (en) 1982-03-30 1982-03-30 Measuring method of surface temperature distribution of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051644A JPS58168926A (en) 1982-03-30 1982-03-30 Measuring method of surface temperature distribution of material

Publications (2)

Publication Number Publication Date
JPS58168926A true JPS58168926A (en) 1983-10-05
JPH0123051B2 JPH0123051B2 (en) 1989-04-28

Family

ID=12892554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051644A Granted JPS58168926A (en) 1982-03-30 1982-03-30 Measuring method of surface temperature distribution of material

Country Status (1)

Country Link
JP (1) JPS58168926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202528A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Temperature measuring device and temperature measuring method
JP2014206418A (en) * 2013-04-11 2014-10-30 Jfeスチール株式会社 Temperature measurement device and temperature measurement method
JP2016145846A (en) * 2016-05-19 2016-08-12 Jfeスチール株式会社 Temperature measuring device and temperature measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630337B2 (en) * 2011-03-09 2014-11-26 Jfeスチール株式会社 Steel sheet quality control temperature setting device and quality control temperature setting method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119823A (en) * 1980-02-27 1981-09-19 Nippon Kokan Kk <Nkk> Radiation thermometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119823A (en) * 1980-02-27 1981-09-19 Nippon Kokan Kk <Nkk> Radiation thermometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202528A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Temperature measuring device and temperature measuring method
JP2014206418A (en) * 2013-04-11 2014-10-30 Jfeスチール株式会社 Temperature measurement device and temperature measurement method
JP2016145846A (en) * 2016-05-19 2016-08-12 Jfeスチール株式会社 Temperature measuring device and temperature measuring method

Also Published As

Publication number Publication date
JPH0123051B2 (en) 1989-04-28

Similar Documents

Publication Publication Date Title
US4639774A (en) Moving target indication system
US4290693A (en) Arrangement for measuring the range or speed of an object
JPS58168926A (en) Measuring method of surface temperature distribution of material
JP2004530893A (en) Method and apparatus for reading composite microbolometer array
JPH03246428A (en) Infrared video device
KR20180126071A (en) Inspection device and inspection method
US20020125430A1 (en) Bolometer operation using fast scanning
JPH11305112A (en) Photoelectric converter
US4050821A (en) Linewidth measurement method and apparatus
JPH06178212A (en) Output correction device in dark state for solid-state image pickup element
JPS6191544A (en) Automatic exposure control for surface defect detection of hot metal material
RU87854U1 (en) IMAGE FORMING DEVICE
JPH0441290B2 (en)
JPS62203485A (en) Focal point detector
JPS5861436A (en) Photodetector of projection type mtf measuring instrument
JP2765285B2 (en) Displacement gauge
JPS593304A (en) Measuring method of size
JPH06109549A (en) Infrared imaging system
JPS58191938A (en) Optical measuring apparatus
SU1679216A1 (en) Method and device for measuring temperature
SU384028A1 (en) METHOD FOR AUTOMATIC MEASUREMENT OF THERMAL CONSTANT TIME OF THERMAL SENSOR
JPH05175106A (en) Apparatus and method for exposing with charged particle beam
JPH01242906A (en) Linearizing method by light cutting method
JPH1026528A (en) Shape-measuring apparatus and image-input device used therefor
JPH07142300A (en) Position detection equipment