JPS58168924A - Device for measuring photoelectric characteristic of photoelectric transducer - Google Patents

Device for measuring photoelectric characteristic of photoelectric transducer

Info

Publication number
JPS58168924A
JPS58168924A JP5248282A JP5248282A JPS58168924A JP S58168924 A JPS58168924 A JP S58168924A JP 5248282 A JP5248282 A JP 5248282A JP 5248282 A JP5248282 A JP 5248282A JP S58168924 A JPS58168924 A JP S58168924A
Authority
JP
Japan
Prior art keywords
light source
spectral
wavelength
photoelectric conversion
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5248282A
Other languages
Japanese (ja)
Other versions
JPH039412B2 (en
Inventor
Shigeru Horii
滋 堀井
Yoshiharu Oosaki
吉晴 大崎
Teruaki Shigeta
照明 重田
Hideo Nishiyama
西山 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5248282A priority Critical patent/JPS58168924A/en
Publication of JPS58168924A publication Critical patent/JPS58168924A/en
Publication of JPH039412B2 publication Critical patent/JPH039412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To facilitate a radiation comparison between light sources by finding the spectral sensitivity of a photoelectric transducer under the condition of a reference light source, finding illuminance on the surface of a photoelectric transducer and a coefficient of exposure conversion with regard to a light source to be tested, and calculating a photoelectric output from those data. CONSTITUTION:A spectral device 2 separates radiation from the light source 1 to be tested into spectral components and then photoelectric conversion. Photoelectric outputs differing in unit wavelength are A/D-converted in a storage part 3 for radiation intensity by wavelength and stored in a memory. Then, an arithmetic part 4 for the amount of metered light stores data on every unit wavelength corresponding to standard spectral luminous efficiency in a standard spectral luminous efficiency memory and receives data from said storage part 3 and data from a storage part 8 for spectral radiation intensity of reference light source to multiply both data of every unit wavelength by each other. Similarly, a radiant quantity arithmetic part 5 multiplies the data of the storage part 3 by that of a storage part 7 for the spectral sensitivity of a photoelectric transducer to be tested, wavelength by wavelength, and further sums up the products of respective wavelengths. Then, an arithmetic part 6 for the conversion coefficient of the amount of exposure finds the output ratio between the arithmetic parts 5 and 4 to obtain the coefficient of conversion.

Description

【発明の詳細な説明】 本発明は分光感度がそれぞれ異なる光電変換素子に対し
て、分光分布の異なる光源の放射を測光計をもとに定量
化する測光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photometric device that quantifies radiation from light sources with different spectral distributions for photoelectric conversion elements having different spectral sensitivities based on a photometer.

主に可視光に分光分布をもつ光源の放射は通常測光量と
して取扱われ、分光感度が標準比視感度に合致した受光
器により測定される。これにより光源の分光分布のいか
んを問わず、光源間の放射比較が容易にできる。
The radiation of a light source with a spectral distribution mainly in visible light is usually treated as a photometric quantity, and is measured by a photoreceiver whose spectral sensitivity matches the standard luminous efficiency. This makes it easy to compare radiation between light sources, regardless of the spectral distribution of the light sources.

−これに対して、標準比視感度に合致しない一般の光電
変換素子の光電出力は、通常、単位放射照度に対する光
電流で表わされる。一般に放射照度を測定するにはサー
モパイルやボロメータなど放射による温度上昇を測定す
るタイプの受光器が知られるが、測定対象物からの放射
と背景放射との分離・校正に時間を要するなどの点で実
用上問題が多い。
- In contrast, the photoelectric output of a general photoelectric conversion element that does not meet the standard luminous efficiency is usually expressed as a photocurrent per unit irradiance. Generally, to measure irradiance, thermopiles, bolometers, and other types of receivers that measure temperature rise due to radiation are known, but they have some drawbacks, such as the time it takes to separate and calibrate the radiation from the object to be measured and the background radiation. There are many practical problems.

したがって前記光電変換素子の光電出力は実用上単位照
度に対応した光電流(A / Ix  )で表わされる
。この場合、照度計と光電変換素子の分光感度が食違う
ため、分光分布が互いに異なる光源に対しては同じ照度
値であっても、光電変換素子の光電出力は異なった値を
とる。また逆に照度が異なっていても光電変換素子の光
電出力は同じ値をとることがある。すなわち、光電変換
素子の種類と光源の種類に応じて、おのおのの光電出力
は様々に変動する。したがって、これらの値を求めるに
は、それぞれの光電変換素子と光源を用意して実測しな
ければならず、その都度繁雑な作業を伴なう欠点を有す
る。
Therefore, the photoelectric output of the photoelectric conversion element is practically expressed as a photocurrent (A/Ix) corresponding to unit illuminance. In this case, since the spectral sensitivities of the illuminance meter and the photoelectric conversion element differ, the photoelectric output of the photoelectric conversion element takes different values even if the illuminance value is the same for light sources with different spectral distributions. Conversely, even if the illuminance is different, the photoelectric output of the photoelectric conversion element may take the same value. That is, each photoelectric output varies depending on the type of photoelectric conversion element and the type of light source. Therefore, in order to obtain these values, it is necessary to prepare and actually measure each photoelectric conversion element and light source, which has the drawback of requiring complicated work each time.

本発明は前記従来の欠点をなくした新しい光電特性測定
装置に関するもので以下にその詳細を説明する。
The present invention relates to a new photoelectric characteristic measuring device that eliminates the above-mentioned conventional drawbacks, and the details thereof will be explained below.

一般に光電変換素子は電荷蓄積形と非蓄積形に分類でき
る。前者は固体撮像素子、各種感光材料。
Generally, photoelectric conversion elements can be classified into charge storage type and non-storage type. The former includes solid-state imaging devices and various photosensitive materials.

後者は7リコン光電池などで代表される。上記光電変換
素子のうち電荷蓄積形を例にとって以下に −説明する
が、非蓄積形についても同様の扱いができる。
The latter is typified by a 7-recon photocell. Of the above photoelectric conversion elements, a charge storage type will be explained below as an example, but non-storage types can also be treated in the same way.

電荷蓄積形の光電変換素子の感度を表わすには一般に飽
和露光量(I! @S )が用いられる。いま基準光源
の下で11Iの時と試験光源の下で17 Ke Ix 
 の時にともに試験光電変換素子の飽和露光量すなわち
光電出力が等しいとする。この時、照度計の出力E1.
E2は、基準光源下でEl: f PT(λ)V(λ)
dλ−・−・=・(1)試験光源下で E  =fP0(J)V(λ)dλ−−−−−=・(2
)となる。また試験光電変換素子の出力E3.E4は基
準光源下で E3= f PT(λ)S(λ)dλ    ・・・・
・・・・・(3)試験光源下で E4=fP0(λ)S(λ)dλ    ・・・・・・
・・(4)となる。
Saturation exposure (I!@S) is generally used to express the sensitivity of a charge storage type photoelectric conversion element. Now 11I under the reference light source and 17 Ke Ix under the test light source
It is assumed that the saturation exposure amount, that is, the photoelectric output of the test photoelectric conversion element is the same at both times. At this time, the output E1 of the illumination meter.
E2 is El under the reference light source: f PT(λ)V(λ)
dλ−・−・=・(1) Under the test light source E = fP0(J)V(λ)dλ−−−−=・(2
). Also, the output E3 of the test photoelectric conversion element. E4 is under the reference light source.E3= f PT(λ)S(λ)dλ...
・・・・・・(3) Under the test light source E4=fP0(λ)S(λ)dλ ・・・・・・
...(4).

■ ここに、Po(λ)は基準光源の相対分光分布。■ Here, Po(λ) is the relative spectral distribution of the reference light source.

PT(λ)は試験光源の相対分光分布である。またV(
λ)は標準比視感度、S(λ)は試験光電変換素子の相
対分光感度、El、E2は照度計出力・E3・E4は試
験光電変換素子の出力を表わす。(1)、(2) 、 
(3)。
PT(λ) is the relative spectral distribution of the test light source. Also V(
λ) is the standard luminous efficiency, S(λ) is the relative spectral sensitivity of the test photoelectric conversion element, El and E2 are the illumination meter outputs, and E3 and E4 are the outputs of the test photoelectric conversion element. (1), (2),
(3).

(4)式から(5)式が得られる。Equation (5) is obtained from equation (4).

Ke  f PT(λ)V(λ)dλ  f pT(λ
)S(λ)dλfP (λ)■(λ)dλ  fPo(
λ)S(λ)dλ・・・・・・・・・(5) (5)式において基準光源の分光分布P。(λ)を標準
光源Aに定めると、KeはPT(λ)とS(λ)の函数
になる。このKeを露光量換算係数と呼ぶことにする。
Ke f PT(λ)V(λ)dλ f pT(λ
)S(λ)dλfP (λ)■(λ)dλfPo(
λ)S(λ)dλ (5) In equation (5), the spectral distribution P of the reference light source. When (λ) is defined as the standard light source A, Ke becomes a function of PT(λ) and S(λ). This Ke will be referred to as an exposure amount conversion coefficient.

ただし、(3)式における4つの積分値はすべて零でな
いこと、すなわち、試験光源の分光分布および試験受光
器の分光感度の一部が可視波長域にあることが条件で、
たとえば反射形原稿を取扱うファクシミリ、電子複写機
、光学文字読取り装置などの情報読取り装置の光源およ
び光電変換素子の場合などに適用できる。
However, the condition is that all four integral values in equation (3) are not zero, that is, that the spectral distribution of the test light source and part of the spectral sensitivity of the test receiver are in the visible wavelength range.
For example, it can be applied to light sources and photoelectric conversion elements of information reading devices such as facsimile machines, electronic copying machines, and optical character reading devices that handle reflective originals.

以上のような検討にもとづき、試験光源に対して光電変
換素子の面上の照度値にKe をかけた値が、その充電
変換素子に標準光源Aの光を照射した時の照度値に対応
させることができる。
Based on the above considerations, the value obtained by multiplying the illuminance value on the surface of the photoelectric conversion element by Ke for the test light source corresponds to the illuminance value when the charging conversion element is irradiated with light from standard light source A. be able to.

このような理論にもとづけは、ある光電変換素子の分光
感度を求めておくと異なる分光分布をもつ光源に対して
わざわざこの光電変換素子の光電出力を測定しなくても
、その光電変換素子面上の照度と露光量換算係数を求め
ることにより、その光電出力を求めることができる。
This theory is based on the idea that if you determine the spectral sensitivity of a photoelectric conversion element, you can easily calculate the spectral sensitivity of the photoelectric conversion element without having to go to the trouble of measuring the photoelectric output of this photoelectric conversion element against light sources with different spectral distributions. By determining the illuminance on the surface and the exposure amount conversion coefficient, the photoelectric output can be determined.

このような考えにもとづいて光源の放射を測定・定量化
する方法について実施例をあげて説明する。
Based on this idea, a method for measuring and quantifying the radiation of a light source will be explained using examples.

第1図は、本発明の基本構成図を示す。本発明は、試験
光源1、分光装置2、波長別放射強度記憶部3、試験光
電変換素子分光感度記憶部7、基準光源分光放射強度記
憶部8、測光量演算部4、放射量演算部5、露光量換算
係数演算部6および表示部9から構成する。
FIG. 1 shows a basic configuration diagram of the present invention. The present invention includes a test light source 1, a spectrometer 2, a wavelength-based radiation intensity storage section 3, a test photoelectric conversion element spectral sensitivity storage section 7, a reference light source spectral radiation intensity storage section 8, a photometric amount calculation section 4, a radiation amount calculation section 5. , an exposure amount conversion coefficient calculation section 6, and a display section 9.

第2図は、分光装置2の内部を示したもので、分光器2
aと分光感度が既知の光電変換素子から構成する。
Figure 2 shows the inside of the spectrometer 2.
It consists of a photoelectric conversion element whose spectral sensitivity and a are known.

第3図は、波長別放射強度記憶部3の内部を示したもの
で、A/D変換器3a、分光放射強度演算回路3b、メ
モIJ 3 cから構成する。
FIG. 3 shows the inside of the wavelength-specific radiant intensity storage unit 3, which is composed of an A/D converter 3a, a spectral radiant intensity calculation circuit 3b, and a memo IJ 3c.

第4図は、測光量演算部4の内部を示したもので、標準
比視感度メモIJ4a、乗算器4b、4d。
FIG. 4 shows the inside of the photometric amount calculation unit 4, which includes a standard luminous efficiency memo IJ4a and multipliers 4b and 4d.

加算器4c 、4e 、除算部4fとから構成する。It consists of adders 4c, 4e, and a divider 4f.

第6図は、放射量演算部5の内部を示したもので、乗算
器5a、6c、加算器sb 、 sd 、除算器5eか
ら構成する。
FIG. 6 shows the inside of the radiation amount calculation unit 5, which is composed of multipliers 5a, 6c, adders sb, sd, and a divider 5e.

試験光源1の放射は、分光装置2内の分光器2aによっ
て単位波長ごとに分光され、光電変換素子2bで電気信
号に変換される。光電変換素子2bとしては単位波長ご
とに設定した複数個の素子を用いれば分光器の波長送り
などが不要となり簡単である。この場合、分光器2aは
、連続干渉フィルタや回折格子形分光器を用い、光電変
換素子2bは一次元固体撮像装置などにより実現できる
。この単位波長ごとの光電出力は、波長別分光放射強度
記憶部3に伝達される。波長別放射強度記憶部3ではA
/D変換器3aにより単位波長ごとにディジタル化され
、分光放射強度演算回路3bで光に記憶される。すなわ
ち、メモIJ 3 cには、試験光源1の分光放射強度
がストアされることになる。
The radiation from the test light source 1 is separated into wavelengths by a spectrometer 2a in a spectrometer 2, and converted into electrical signals by a photoelectric conversion element 2b. If a plurality of elements set for each unit wavelength are used as the photoelectric conversion element 2b, it is easy to eliminate the need for wavelength feeding of a spectroscope. In this case, the spectrometer 2a can be realized using a continuous interference filter or a diffraction grating type spectrometer, and the photoelectric conversion element 2b can be realized by a one-dimensional solid-state imaging device or the like. This photoelectric output for each unit wavelength is transmitted to the wavelength-specific spectral radiation intensity storage section 3. In the wavelength-specific radiation intensity storage unit 3, A
The /D converter 3a digitizes each unit wavelength, and the spectral radiant intensity calculation circuit 3b stores it in optical form. That is, the spectral radiation intensity of the test light source 1 is stored in the memo IJ3c.

次に測光量演算部4では、標準比視感度メモリ4aに標
準比視感度に相当する各単位波長ごとのデータをディジ
タル値で記憶させておき、波長別分光放射強度記憶部3
からのデータと、基準光源分光放射強度記憶部8からの
データ(ディジタル値)を受は入れて、各単位波長ごと
にかけ合わせる。すなわち、乗算器4bでは、波長別分
光放射強度記憶部3からの試験光源分光放射強度データ
と、標準比視感度メモ1J4aがらのデータとを波長ご
とにかけ合わさる。さらに加算器4cで各波長の積を加
算する。その結果、加算器4cがらはfPo(λ)V(
λ)dλ なる出力が得られる。また乗算器4dでは、基準光源分
光放射強度記憶部8からのデータと標準比視感度メモリ
4aからのデータとを波長ごとにか       1け
合わせ、さらに加算器4eで各波長の積を加算する。そ
の結果、加算器4eからは、 fPT(λ)V(λ)dλ なる出力が得られる。
Next, in the photometric quantity calculating section 4, data for each unit wavelength corresponding to the standard luminous efficiency is stored as a digital value in the standard luminous efficiency memory 4a, and the spectral radiant intensity storage section 3 for each wavelength stores data for each unit wavelength corresponding to the standard luminous efficiency.
The data from the reference light source and the data (digital values) from the reference light source spectral radiation intensity storage section 8 are received and multiplied for each unit wavelength. That is, the multiplier 4b multiplies the test light source spectral radiant intensity data from the wavelength-specific spectral radiant intensity storage section 3 and the data from the standard luminous efficiency memo 1J4a for each wavelength. Further, an adder 4c adds the products of each wavelength. As a result, the adder 4c outputs fPo(λ)V(
An output of λ)dλ is obtained. The multiplier 4d multiplies the data from the reference light source spectral radiant intensity storage section 8 and the data from the standard luminous efficiency memory 4a by one digit for each wavelength, and the adder 4e adds the products of each wavelength. As a result, the output fPT(λ)V(λ)dλ is obtained from the adder 4e.

さらに、加算器4c、4eの出力は、除算器4fで除算
され除算器4fからは、 fPT(λ)■(λ)dλ/P0(λ)■(λ)dλな
る出力が得られる。これは、基準光源下および試験光源
下での照度比を示すもので定数である。
Further, the outputs of the adders 4c and 4e are divided by a divider 4f, and the output from the divider 4f is fPT(λ)(λ)dλ/P0(λ)(λ)dλ. This indicates the illuminance ratio under the reference light source and under the test light source, and is a constant.

同様に、放射量演算部6では、乗算器5aで波長別放射
強度記憶部3からの試験光源の分光放射強度データと、
試験光電変換素子分光感度記憶部7からのデータ(ディ
ジタル値)とを波長ごとにかけ合わせ、さらに加算器6
bで各波長の積を加算する。その結果、加算器5bから
は fPo(λ)S(λ)dλ なる出力が得られる。また乗算器5Cでは、基準光源の
分光放射強度記憶部8からのデータと、試験光電変換素
子分光感度記憶部7からのデータとを波長ごとにかけ合
わせ、さらに加算器6dで各波長の積を加算する。その
結果、加算器5dからは、 f pT(λ)S(λ)dλ なる出力が得られる。
Similarly, in the radiation amount calculation unit 6, the multiplier 5a uses the spectral radiation intensity data of the test light source from the wavelength-specific radiation intensity storage unit 3,
The data (digital value) from the test photoelectric conversion element spectral sensitivity storage section 7 is multiplied for each wavelength, and then the adder 6
Add the products of each wavelength at b. As a result, an output of fPo(λ)S(λ)dλ is obtained from the adder 5b. Further, the multiplier 5C multiplies the data from the reference light source spectral radiant intensity storage section 8 and the data from the test photoelectric conversion element spectral sensitivity storage section 7 for each wavelength, and the adder 6d adds the products of each wavelength. do. As a result, an output of f pT(λ)S(λ)dλ is obtained from the adder 5d.

さらに、加算器sb 、sdの出力は、除算器5eで除
算され、除算器5eからは fPT(λ)S(λ)dλ/fPo(λ)S(λ)dλ
なる出力が得られる。これは、基準光源下および試験光
源下での試験光電変換素子の出力比を示すものである。
Further, the outputs of adders sb and sd are divided by a divider 5e, and from the divider 5e, fPT(λ)S(λ)dλ/fPo(λ)S(λ)dλ
The following output is obtained. This indicates the output ratio of the test photoelectric conversion element under the reference light source and under the test light source.

次に測光量演算部4および放射量演算部5がらの出力は
、露光量換算係数演算部6に送ら些、露光量換算係数演
算部6では、放射量演算部5と測光量演算部4との出力
比を求めることにより(5)式の計算を行ない露光量換
算係数Ke を求める。
Next, the outputs of the photometric amount calculation section 4 and the radiation amount calculation section 5 are sent to the exposure amount conversion coefficient calculation section 6. By determining the output ratio of , the equation (5) is calculated and the exposure amount conversion coefficient Ke is determined.

さらにこの結果は表示部9で表示される。Furthermore, this result is displayed on the display section 9.

このようにして、試験光電変換素子の相対分光分布さえ
判れば、種々の光源に対して上記測定器の出力を読めば
測光量に対するその光電変換素子の感度係数が容易に判
明する。
In this way, once the relative spectral distribution of the test photoelectric conversion element is known, the sensitivity coefficient of the photoelectric conversion element with respect to the photometric amount can be easily determined by reading the output of the measuring device for various light sources.

上記装置によって得られる効果として次の2点を上げる
ことができる。
The following two points can be raised as effects obtained by the above device.

(1)  従来、ある試験光電変換素子に対する飽和露
光量は光源の種類によって異なっていた。したがって飽
和露光量と光源の名称の両方を併記しないと光電出力が
明らかにならなかった。本装置によればKeはすでに測
定できるから、照度測定値に上記のKe をかけるだけ
でその光電変換素子に基準光源(標準光源A)の光を照
射した時の照度値に対応させることができ、測光量と光
電出力との関係が系統的にもとまる。
(1) Conventionally, the saturation exposure amount for a certain test photoelectric conversion element differed depending on the type of light source. Therefore, the photoelectric output could not be clarified unless both the saturation exposure amount and the name of the light source were listed. Since Ke can already be measured with this device, by simply multiplying the illuminance measurement value by the above Ke, it is possible to make it correspond to the illuminance value when the photoelectric conversion element is irradiated with light from the reference light source (standard light source A). , the relationship between the photometric amount and the photoelectric output is determined systematically.

この結果、たとえば感光材料など光電出力の測定に特殊
な装置を必要とし、測定が繁雑な光電変換素子に対して
は、上記装置による露光量換算係数を一度求めておきさ
えすれば照度値を別途測定するだけで簡単にその光電出
力を測定し定鍛化できる。
As a result, for example, for photoelectric conversion elements such as photosensitive materials that require special equipment to measure photoelectric output and are complicated to measure, once the exposure conversion coefficient is determined using the above equipment, the illuminance value can be calculated separately. You can easily measure the photoelectric output and forge it by simply measuring it.

(2)  また、ある光電変換素子に対して、分光分布
の異なる光源間の光電出力の比較を行なう場合その光電
変換素子が入手できなくても分光感度さえわかれは、そ
の比較は容易にできる。また、光源に種々の色ガラスフ
ィルりを挿入した時の光電出力の比較も同様に容易にで
きる利点を有し、情報機器用光源の評価や情報読みとり
機器の光学系の評価に絶大な効果を発揮する。
(2) Furthermore, when comparing the photoelectric output of light sources with different spectral distributions for a certain photoelectric conversion element, even if the photoelectric conversion element is not available, the comparison can be easily made even if the spectral sensitivity is different. It also has the advantage of making it easy to compare the photoelectric output when various colored glass filters are inserted into the light source, making it extremely effective for evaluating light sources for information devices and the optical systems of information reading devices. Demonstrate.

本発明において、試験光電変換素子分光感度記憶部の分
光感度データを外部から入力できるようにすることも可
能である。また本発明の実施例としてデータをディジタ
ル値として取扱ったが、アナログ値でも同様の効果が得
られる。
In the present invention, it is also possible to input the spectral sensitivity data of the test photoelectric conversion element spectral sensitivity storage section from the outside. Furthermore, although data is treated as digital values in the embodiments of the present invention, similar effects can be obtained with analog values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成を示すブロックダイヤグラム
、第2図は分光装置のブロックダイヤグラム、第3図は
波長別分光放射強度記憶部のブロックダイヤグラム、第
4図は測光量演算部のブロックダイヤグラム、第6図は
放射量演算部のブロックダイヤグラムであるっ 1・・・・・・試験光源、2・・・・・・分光装置、2
a・・・・・・分光器、2b・・・・・・光電変換素子
、3・・呻波長別分光     。 放射強度記憶部、3a・・・・・・A/D変換器、3b
・・・・・・分光放射強度演算回路、3C・・・・・・
メモリ、4・・・−・・・測光量演算部、6・・・・・
・放射量演算部、4a・・・・・・標準比視感度メモリ
、ab 、4d =5a 、5c・・・・・・乗算器、
4c 、4e 、sb 、sd・・・・・・加算器、4
f、se・・・・・・除算器、6・・・・・露光計換算
係数演算部、7・・・・・・試験光電変換素子分光感度
記憶部、8・・・・・・基準光源分光放射強度記憶部、
9・・・・・・表示部。
Fig. 1 is a block diagram showing the basic configuration of the present invention, Fig. 2 is a block diagram of the spectrometer, Fig. 3 is a block diagram of the wavelength-specific spectral radiant intensity storage section, and Fig. 4 is a block diagram of the photometric quantity calculation section. , Figure 6 is a block diagram of the radiation amount calculation section. 1...Test light source, 2...Spectroscopy device, 2
a...Spectroscope, 2b...Photoelectric conversion element, 3...Spectroscopy by wavelength. Radiation intensity storage unit, 3a...A/D converter, 3b
......Spectral radiant intensity calculation circuit, 3C...
Memory, 4...--Photometric amount calculation section, 6...
・Radiation amount calculation unit, 4a... Standard luminous efficiency memory, ab, 4d = 5a, 5c... Multiplier,
4c, 4e, sb, sd...adder, 4
f, se...Divider, 6...Exposure meter conversion coefficient calculating section, 7...Test photoelectric conversion element spectral sensitivity storage section, 8...Reference light source Spectral radiation intensity storage unit,
9...Display section.

Claims (1)

【特許請求の範囲】[Claims] 試験光源と、この試験光源の放射量を分光する手段と、
分光したそれぞれの波長に対応した電気信号を記憶する
波長別分光放射強度記憶部と、試験光電変換素子の分光
感度を記憶する試験光電変換素子分光感度記憶部と、基
準光源の分光放射強度を記憶する基準光源分光放射強度
記憶部と、標準比視感度を記憶し、これと前記波長別分
光放射強度記憶部の内容および前記基準光源分光放射強
度記憶部の内容をもとに測光量を演算する測光量演算部
と、前記試験光電変換素子分光感度記憶部、基準光源分
光放射照度記憶部および波長別分光放射強度記憶部出力
をもとに試験光電変換素子の放射量を演算する放射量演
算部と、前記測光量演算部および放射量演算部から露光
量換算係数−を求める露光量換算係数演算部から構成し
、任意の分光分布をもつ光源に対して試験光電変換素子
の露光量換算係数を測定することを特徴とする光電変換
素子の光電特性測定装置d
a test light source; a means for spectrally dispersing the amount of radiation of the test light source;
A wavelength-specific spectral radiant intensity storage unit that stores electric signals corresponding to each of the separated wavelengths, a test photoelectric conversion element spectral sensitivity storage unit that stores the spectral sensitivity of the test photoelectric conversion element, and a spectral radiant intensity storage unit that stores the spectral radiant intensity of the reference light source. A reference light source spectral radiant intensity storage unit to be used, and a standard luminous efficiency are stored, and a photometric amount is calculated based on this, the contents of the wavelength-specific spectral radiant intensity storage unit, and the contents of the reference light source spectral radiant intensity storage unit. A radiation amount calculation section that calculates the radiation amount of the test photoelectric conversion element based on the outputs of the photometric amount calculation section, the test photoelectric conversion element spectral sensitivity storage section, the reference light source spectral irradiance storage section, and the outputs of the wavelength-specific spectral irradiance storage section. and an exposure amount conversion factor calculation section that calculates an exposure amount conversion coefficient - from the photometric amount calculation section and the radiation amount calculation section, and calculates the exposure amount conversion coefficient of the test photoelectric conversion element for a light source with an arbitrary spectral distribution. Photoelectric characteristic measuring device d of a photoelectric conversion element characterized by measuring
JP5248282A 1982-03-30 1982-03-30 Device for measuring photoelectric characteristic of photoelectric transducer Granted JPS58168924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5248282A JPS58168924A (en) 1982-03-30 1982-03-30 Device for measuring photoelectric characteristic of photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5248282A JPS58168924A (en) 1982-03-30 1982-03-30 Device for measuring photoelectric characteristic of photoelectric transducer

Publications (2)

Publication Number Publication Date
JPS58168924A true JPS58168924A (en) 1983-10-05
JPH039412B2 JPH039412B2 (en) 1991-02-08

Family

ID=12915932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5248282A Granted JPS58168924A (en) 1982-03-30 1982-03-30 Device for measuring photoelectric characteristic of photoelectric transducer

Country Status (1)

Country Link
JP (1) JPS58168924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118512A (en) * 2014-12-24 2016-06-30 日置電機株式会社 Light-amount measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118512A (en) * 2014-12-24 2016-06-30 日置電機株式会社 Light-amount measurement device

Also Published As

Publication number Publication date
JPH039412B2 (en) 1991-02-08

Similar Documents

Publication Publication Date Title
Hardeberg et al. Multispectral image acquisition and simulation of illuminant changes
JPH10508940A (en) Apparatus and method for measuring and analyzing spectral radiation mainly for measuring and analyzing color characteristics
US20060146330A1 (en) Color measurements of ambient light
JP5012323B2 (en) Polychromator and method for correcting stray light
Simpson et al. Imaging colorimetry: a new approach
JPS58168924A (en) Device for measuring photoelectric characteristic of photoelectric transducer
JPH043492B2 (en)
Lesnichii et al. A technique of measuring spectral characteristics of detector arrays in amateur and professional photocameras and their application for problems of digital holography
JPH039413B2 (en)
JPS6140928B2 (en)
JPH0546885B2 (en)
Liu The development of a portable spectrophotometer for noncontact color measurement
JP2762775B2 (en) Spectroscopic measurement method
Kenta et al. Radiometric calibration method of the general purpose digital camera and its application for the vegetation monitoring
EP0463600A2 (en) Method of spectral measurement
JPS62289736A (en) Spectral measuring instrument
JP2683407B2 (en) Photoelectric colorimeter
Scarpace Densitometry on multi-emulsion imagery
Jackel et al. Auroral spectral estimation with wide-band color mosaic CCDs
Thorseth LEDMET Report: Simulation and correction of stray light in spectrometers
RU2366907C1 (en) Method for digital photoelectric colorimetry
Imura et al. Practical method for correcting heterochromatic stray light in dual‐channel spectrographs for colorimetry
JPH0545212A (en) Method and device for measuring quantity of light
JPS6238325A (en) Color discriminator
JPS6079248A (en) Spectrophotometer