JPS58168703A - Elastic support with reduced constant of springiness and production thereof - Google Patents

Elastic support with reduced constant of springiness and production thereof

Info

Publication number
JPS58168703A
JPS58168703A JP4903282A JP4903282A JPS58168703A JP S58168703 A JPS58168703 A JP S58168703A JP 4903282 A JP4903282 A JP 4903282A JP 4903282 A JP4903282 A JP 4903282A JP S58168703 A JPS58168703 A JP S58168703A
Authority
JP
Japan
Prior art keywords
steel plate
reinforcing steel
elastic
rubber elastic
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4903282A
Other languages
Japanese (ja)
Other versions
JPS6226362B2 (en
Inventor
橘田 敏之
亘 安部
賢治 福入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan National Railways
Oiles Industry Co Ltd
Nippon Kokuyu Tetsudo
Original Assignee
Japan National Railways
Oiles Industry Co Ltd
Nippon Kokuyu Tetsudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan National Railways, Oiles Industry Co Ltd, Nippon Kokuyu Tetsudo filed Critical Japan National Railways
Priority to JP4903282A priority Critical patent/JPS58168703A/en
Publication of JPS58168703A publication Critical patent/JPS58168703A/en
Publication of JPS6226362B2 publication Critical patent/JPS6226362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、橋梁、高架その他構造物に使用されるゴム
弾性支承に関し、更に詳しくは、ばね定数を低減した弾
性支承及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to rubber elastic bearings used for bridges, elevated structures, and other structures, and more particularly to an elastic bearing with a reduced spring constant and a method for manufacturing the same.

一般に、弾性支承は、第1図及び第2図に示すように、
平面形状がおおむね方形または円形の一枚ものの板状ゴ
ム弾性体の上下平坦面に薄鋼板を加硫接着などによって
一体に結合したゴムパッドを構成し、上下部構造間に単
層または複層積み重ねた態様で配し、上下部構造の相対
水平変位や傾きなどを逃がす機能をもっている。すなわ
ち、上下部構造の相対水平変位はゴム弾性体のせん断変
形により、そして傾き(回転ともいう)はその圧縮ひず
みによりそれぞれ逃がすものである。ゴムパッドのこの
せん断変形量は、コム弾性体の厚さの50%程度、場合
によっては70%程度ヲ設計許容限度としており、回転
によるひずみ量はゴムパッドに負荷された垂直荷重によ
って生ずる圧縮ひずみ量y等しいがまたはそれ以下とし
ている。
In general, elastic bearings, as shown in Figures 1 and 2,
A rubber pad is constructed by integrally bonding thin steel plates to the upper and lower flat surfaces of a single plate-shaped rubber elastic body whose planar shape is approximately square or circular, using vulcanization adhesive, etc., and is stacked in a single layer or in multiple layers between the upper and lower structures. It has the function of escaping relative horizontal displacement and inclination of the upper and lower structures. That is, the relative horizontal displacement of the upper and lower structures is caused by shear deformation of the rubber elastic body, and the inclination (also called rotation) is caused by its compressive strain. The amount of shear deformation of the rubber pad is set at the design allowable limit of about 50%, and in some cases about 70%, of the thickness of the comb elastic body, and the amount of strain due to rotation is the amount of compressive strain y caused by the vertical load applied to the rubber pad. Equal to or less than.

ところで、近年、橋梁が大型化するにつれ、一つの支承
に作用する上部構造の荷重が太き(なり、使用されるゴ
ム支承は許容支圧応力(通常60kN/i以下)の関係
で次第に面積が大きなものとなる傾   。
By the way, in recent years, as bridges have become larger, the load of the superstructure acting on one support has become thicker, and the area of the rubber bearings used has gradually increased due to the allowable bearing stress (usually 60 kN/i or less). It tends to become something big.

向にある。このため、一枚のコムパッドのばネ定数は予
想以上の大きなものとなり、弾性が極めて乏しいものと
なる。
It's across the street. For this reason, the spring constant of one Compad becomes larger than expected, resulting in extremely poor elasticity.

しかるに、ゴムパッドを使用した弾性支承においては、
常に上部構造の荷重をその全支圧面で支えていることが
必要であり、適度の弾性が必要とされる。なぜなら、ゴ
ムパッドの回転ひずみが、所定の圧縮ひずみ量以上にな
ると、ゴムパッドは上部構造の荷重を全支圧面で受ける
ことができず、片当り支持状態となって支圧面積が減少
し、ゴム弾性体の一部が許容荷重を超えた面圧となり、
該弾性体の破損を生ずる危険があるからである。
However, in elastic bearings using rubber pads,
It is necessary that the load of the superstructure is always supported by its entire bearing surface, and appropriate elasticity is required. This is because when the rotational strain of the rubber pad exceeds a predetermined amount of compressive strain, the rubber pad is unable to receive the load of the upper structure on its entire bearing surface, and is supported unevenly, reducing the bearing area and reducing the rubber elasticity. Part of the body experiences surface pressure that exceeds the allowable load,
This is because there is a risk of damage to the elastic body.

したがって、一定の支圧面積を有するゴムパッドにおい
て、水平方向の変位や回転変位を太き(とりたい場合は
、通常要求されろ変位に見合った変位ができるように、
ゴムパッドを複数枚重ねて使用するという態様がとられ
ている。このゴムパッドの積み重ねには、相互に特別な
係合手段はとらない。上述した水平変位や回転変位を生
じても、各ゴムパッド間(補強鋼板同志の接触面)には
すべりを生じない。換言すれば、各パッド間にはすべり
を生じない範囲でゴム弾性体に機能させろものである。
Therefore, in a rubber pad that has a certain bearing pressure area, if you want to have a large horizontal displacement or rotational displacement, it is necessary to
A method is used in which multiple rubber pads are stacked one on top of the other. This stack of rubber pads does not require any special means of engagement with each other. Even if the above-mentioned horizontal displacement or rotational displacement occurs, no slipping occurs between the rubber pads (the contact surfaces between the reinforcing steel plates). In other words, the rubber elastic body should be allowed to function within a range that does not cause slippage between the pads.

しかしながら、コムパットの積み重ね枚数が増加すれば
するほど支承としては不安定となり、座屈を起し易(な
り、かつ永久圧縮ひずみが有害な大きさとなって上部構
造面に段差を発生することになる。更に、構造物の全高
が高(なり、その結果不経済となるという種々の欠点を
生ずる。
However, as the number of COMPATs stacked increases, the bearing becomes unstable and buckling is more likely to occur (and the permanent compressive strain becomes harmful, causing a step on the superstructure surface. Furthermore, the overall height of the structure is high, resulting in various disadvantages such as being uneconomical.

本発明は、上記実情に鑑みなされたものであって、上記
従来技術のゴムバットの欠点を解消すべく、ゴムパッド
の積み重ね枚数を増加することな(、所要の機能を発揮
せしめろことができろ新規な弾性支承及びその製造方法
を得ろことを技術的課題とするものである。
The present invention has been made in view of the above-mentioned circumstances, and in order to eliminate the drawbacks of the conventional rubber bats described above, the present invention is a novel method that allows the required functions to be exhibited without increasing the number of stacked rubber pads. The technical problem is to obtain a flexible elastic bearing and a method for manufacturing the same.

本発明は、この技術的課題を解決するために、単位厚さ
当りの弾性支承のばね定数を低減することに着目してな
されたものである。
In order to solve this technical problem, the present invention was made by focusing on reducing the spring constant of the elastic bearing per unit thickness.

本発明の弾性支承及びその製造方法は次の技術的手段(
構成)を採る。
The elastic bearing of the present invention and its manufacturing method are provided by the following technical means (
configuration).

すなわち本発明の弾性支承は、■所要の間隔を有する空
隙部を保持して相隣れろ2以上のゴム弾性体と、■該コ
ム弾性体の全体を上下に挾着固定されろ補強鋼板とから
なり、■該ゴム弾性体は個々に等しいばね定数をもつ平
面形状に形成されてなる構成を採るものである。
In other words, the elastic bearing of the present invention consists of: (1) a rubber elastic body with two or more adjacent rubber elastic bodies that maintain a gap having a required interval; and (2) a reinforcing steel plate that is clamped and fixed to the top and bottom of the entire comb elastic body. (2) The rubber elastic bodies are each formed into a planar shape having the same spring constant.

この構成を採ることにより、弾性支承の単位厚さ当りの
ばね定数を同一支圧面積を有する他の弾性支承に比べて
格段に低減することができろ。
By adopting this configuration, the spring constant per unit thickness of the elastic bearing can be significantly reduced compared to other elastic bearings having the same bearing pressure area.

゛本発明の弾性支承は次の実施態様ケ採ることができる
゛The elastic bearing of the present invention can take the following embodiments.

■ 相隣れろゴム弾性体が構成する空隙部は一様な断面
形状をなし、かつ、ゴム弾性体の圧縮によろ膨出変形を
許容するに足る隙間を有していること。
(2) The void formed by the adjacent rubber elastic bodies has a uniform cross-sectional shape, and has a gap sufficient to allow expansion and deformation due to compression of the rubber elastic bodies.

■ 該空隙部は、好ましくは、コム弾性体の自由側面の
膨出形状を勘案して、実質的に円弧状に形成されている
こと。
(2) The void portion is preferably formed into a substantially arcuate shape, taking into consideration the bulging shape of the free side surface of the comb elastic body.

■ 本発明の弾性支承と上部構造の下面とをすべり接触
させろこと。これは、本弾性支承のばね定数が十分に小
さく、丈高が低いとき、その丈高で上部構造の水平変位
を吸収できない場合に対して適用される態様である。
■ Bring the elastic bearing of the present invention into sliding contact with the lower surface of the superstructure. This is a mode applied when the spring constant of the present elastic bearing is sufficiently small and the height is low, and the horizontal displacement of the upper structure cannot be absorbed by the height.

本発明の弾性支承について、更に付言すれば、補強鋼板
間に配されたコム弾性体は、その平面形状が個々に等し
いばね定数をもつように多分割され、個々のゴム弾性体
の平面形状は、実用上正方形もしくは長方形が採用され
る。ゴムパッドの平面形状が正方形である場合は、コム
弾性体が二分割、三分割の分割態様では分割されろ個々
のゴム弾性体は必然的に長方形となる。また、四分割の
場合あるいは九分割の場合では、個々のゴム弾性体は正
方形態様か長方形態様のいずれかを採り得る。支圧面積
が変わらなければ、個々のゴム弾性体は正方形に多分割
することもでき、また長方形に多分割する態様とするこ
ともできる。
Regarding the elastic bearing of the present invention, it is to be noted that the comb elastic body placed between the reinforcing steel plates is divided into multiple parts so that each of its planar shapes has the same spring constant, and the planar shape of each rubber elastic body is In practice, a square or rectangle is adopted. When the planar shape of the rubber pad is a square, when the comb elastic body is divided into two or three parts, the individual rubber elastic bodies are necessarily rectangular. Furthermore, in the case of four divisions or nine divisions, each rubber elastic body can take either a square shape or a rectangular shape. As long as the bearing area remains unchanged, each rubber elastic body can be multi-divided into squares or rectangles.

いずれにしても、ゴムパッドは同一平面形状のものを単
独もしくは積み重ねて使用するが、積み重ねて使用する
場合は、個々のコムパッドは必スしも同様のもの、すな
わち、同一分割態様のコム     。
In any case, rubber pads with the same planar shape are used singly or stacked, but when used in stacks, the individual com pads must be of the same type, that is, combs with the same split pattern.

弾性体を配してなるものを使用する必要はない。There is no need to use one made of elastic material.

たとえば、二分割のものと三分割のものを組み合わせで
積み重ねて使用することができろ。平面形状が正方形の
ゴムパッドにおいては、空隙孔部の軸線を同一方向に揃
えて積み重ねてもよく、また直交させて積み重ねてもよ
い。
For example, you can use a combination of two-part and three-part parts stacked on top of each other. In rubber pads having a square planar shape, the axes of the voids may be stacked with their axes aligned in the same direction, or may be stacked with their axes orthogonal to each other.

次に、紙上の構成の弾性支承を製造する方法は、■補強
鋼板の一枚を金型に入れ、■その上にコム弾性体成形材
料をそれぞれ所定の間隔をもって載せ、■この間隔を埋
めろような凸条を設けた上型をもって押圧し、■しかる
後、全体を所定時間加熱してまず補強鋼板上に等しいば
ね定数をもつ平面形状を有するコム弾性体が結合された
成形物を得ろ。■次いでこのゴム弾性体上に他方の補強
鋼板を接着剤を用いて結合せしめてなる。
Next, the method for manufacturing an elastic bearing with the structure on paper is: 1) Place one reinforcing steel plate in a mold, 2) Place comb elastic molding material on top of it at a predetermined interval, and 3) Fill this gap. (2) Then, the whole is heated for a predetermined period of time to obtain a molded product in which a comb elastic body having a planar shape with an equal spring constant is bonded to a reinforcing steel plate. (2) Next, the other reinforcing steel plate is bonded onto this rubber elastic body using an adhesive.

この成形方法においては、ゴム弾性体に対する上下の補
強鋼板の結合態様が異なるが使用上問題はない。
In this molding method, although the manner in which the upper and lower reinforcing steel plates are connected to the rubber elastic body is different, there is no problem in use.

上下補強鋼板に対して、一様な結合態様を有する弾性支
承を得るには次のようにする。すなわち、■補強鋼板の
一枚を金型に入れ、■該鋼板上に断面形状の等しい棒状
の鋼中子を適宜間隔に配し、中子と金型壁、あるいは中
子と金型壁および中子同志で画定された部分の補強鋼板
上にゴム弾性体成形材料を載せ、■ついで該成形材料上
に他方の補強鋼板を載せ、■該補強鋼板上から上型をも
って押圧し、■しかる後、全体を所定時間加熱して上下
面に補強鋼板が一体に結合されてなる成形物を得ろ。
To obtain elastic bearings with a uniform connection pattern for the upper and lower reinforcing steel plates, proceed as follows. In other words, ■ one reinforcing steel plate is placed in a mold, and ■ bar-shaped steel cores with the same cross-sectional shape are placed on the steel plate at appropriate intervals, and the core and the mold wall or the core and the mold wall and Place a rubber elastic molding material on the reinforcing steel plate in the area defined by the cores, ■ then place the other reinforcing steel plate on the molding material, ■ press the reinforcing steel plate with an upper mold, and ■ then , heat the whole for a predetermined period of time to obtain a molded product with reinforcing steel plates integrally bonded to the upper and lower surfaces.

この成形方法において、中子は加熱加圧されている間は
、ゴム弾性体に加わる圧力を阻害しないよう上下補強鋼
板に当接した態様を保持せしめろことが必要である。
In this molding method, while the core is heated and pressurized, it is necessary to keep it in contact with the upper and lower reinforcing steel plates so as not to impede the pressure applied to the rubber elastic body.

このようにして得た成形物から、棒状中子を順次引抜く
ことにより、コム弾性体が個々に等しいばね定数をもつ
平面形状に多分割され、かろ相隣れろコム弾性体同志が
適宜の間隔をもって配されてなるゴムパラ1′:が得ら
れる。
By sequentially pulling out the rod-shaped cores from the molded product obtained in this way, the comb elastic bodies are divided into multiple planar shapes each having an equal spring constant, and the comb elastic bodies are separated from each other at appropriate intervals. Rubber parallax 1': is obtained.

この成形方法において、成形操作を容易にするため、と
くに中子引抜きを容易にするため中子表面に非粘着性の
プラスチック被膜を設けろ実施態様を採ることができろ
In this molding method, an embodiment may be adopted in which a non-adhesive plastic coating is provided on the surface of the core in order to facilitate the molding operation, and in particular to facilitate the withdrawal of the core.

そして、中子表面に所定の断面形状を有する軟質の合成
樹脂からなるシース(鞘)を被嵌させておき、中子引抜
き時に該シースを成形物内に残して中子のみを引抜くな
どの成形方法は本発明の1つの方法を構成する。ここで
、軟質プラスチックとしては、ポリエステル・エーテル
、ポリウレタン、ポリオレフィン(たとえば、ポリブチ
レンなど)そして軟質塩化ビニルなどを例示することが
できる。このほか、ゴムパッドに使用されろコム弾性体
よりも軟質の合成ゴムなども使用することができる。
Then, a sheath made of a soft synthetic resin having a predetermined cross-sectional shape is fitted onto the surface of the core, and when the core is pulled out, the sheath is left inside the molded product and only the core is pulled out. The molding method constitutes one method of the present invention. Here, examples of the soft plastic include polyester ether, polyurethane, polyolefin (eg, polybutylene), and soft vinyl chloride. In addition, synthetic rubber, which is softer than the comb elastic material used for the rubber pad, can also be used.

これらの軟質プラスチック(ゴムを含む)からなろシー
スは、薄肉のもので、ゴム弾性体の膨出変形に抵抗を及
ぼすことのないことが必要である。
These sheaths made of soft plastics (including rubber) need to be thin and do not exert resistance to the bulging deformation of the rubber elastic body.

このようなシースな中子に被嵌せしめるに際しては、中
子表面に予め油やロウなどの潤滑油剤を塗布しておくと
よい。
When fitting into such a sheathed core, it is preferable to apply a lubricant such as oil or wax to the surface of the core in advance.

次に、本発明の弾性支承及qその製造方法を第3図ない
し第16図に示す実施例に基づいて説明する。
Next, the elastic bearing of the present invention and its manufacturing method will be explained based on the embodiments shown in FIGS. 3 to 16.

第3図は、本発明による弾性支承の一実施例を示す縦断
面図で、第4図は、その平面図である。
FIG. 3 is a longitudinal sectional view showing an embodiment of the elastic bearing according to the present invention, and FIG. 4 is a plan view thereof.

ここに、llはゴム弾性体で、このもの二枚で第1図及
び第2図に示した従来のゴム弾性支承のゴム弾性体lの
一枚と同じ支圧面積を有している事例を示しである。3
はゴム弾性体−11の自由側面と上下補強鋼板2とで構
成された空隙部である。
Here, ll is a rubber elastic body, and an example is shown in which two pieces of these have the same bearing area as one piece of rubber elastic body 1 of the conventional rubber elastic bearing shown in Figures 1 and 2. This is an indication. 3
is a gap formed by the free side surface of the rubber elastic body 11 and the upper and lower reinforcing steel plates 2.

第5図は、本発明の他の実施例を示す縦断面図で、第6
図は、その平面図である。ここに、12はコム弾性体で
、このもの三枚で上述したゴム弾性体lの一枚と同じ支
圧面積を有している事例である。31はそれぞれのゴム
弾性体12の自由側面と上下補強鋼板2とで構成された
空隙孔部である。
FIG. 5 is a vertical sectional view showing another embodiment of the present invention, and FIG.
The figure is a plan view thereof. Here, 12 is a comb elastic body, and this is an example in which three of these comb elastic bodies have the same bearing pressure area as one of the rubber elastic bodies 1 described above. Reference numeral 31 denotes a gap hole portion formed by the free side surface of each rubber elastic body 12 and the upper and lower reinforcing steel plates 2.

第7図−1第8図は、四分割した場合の縦断面図とその
平面図を示すもので、13はゴム弾性体で、このもの四
枚で上述したコム弾性体lの一枚と同じ支圧面積′?:
有している。32はそれぞれのゴム   。
Figure 7-1 Figure 8 shows a vertical cross-sectional view and a plan view when it is divided into four parts. 13 is a rubber elastic body, and there are four pieces of this, the same as one piece of comb elastic body l mentioned above. Bearing pressure area′? :
have. 32 is each rubber.

弾性体13の自由側面と上下補強鋼板2とで構成された
空隙部である。
This is a gap formed by the free side surface of the elastic body 13 and the upper and lower reinforcing steel plates 2.

ここに示した各弾性支承は、それぞれの分割数のものを
単独(単層)もしくは複数枚(複層)積み重ねて使用す
ることができる。
Each of the elastic bearings shown here can be used singly (single layer) or by stacking multiple pieces (multilayer).

上述した各実施例は、同一支圧面積となるように、しか
もそれぞれのゴム弾性体11 、12.13が第2図に
示すゴム弾性体1に対して相似縮小された平面形状とな
る事例について示した。
Each of the embodiments described above is a case in which each of the rubber elastic bodies 11 and 12, 13 has a planar shape that is similarly reduced to the rubber elastic body 1 shown in FIG. 2 so as to have the same bearing area. Indicated.

この事例について、各ゴムパッドの圧縮ばね定数(tO
n/am)の比(分割なし=100として)を求めると
下表に示すようになる。
For this case, the compression spring constant (tO
n/am) (assuming no division = 100) is as shown in the table below.

この表より、支圧面積が同一でも分割数が増すにしたが
って圧縮ばね定数は小となり、同一圧縮荷重に対してゴ
ム弾性体11,12.13の変形が大きくなることがわ
かる。すなわち、2分割、3分割及び4分割のゴム支承
は、分割なしのゴム支承に比べて、高さをそれぞれ約1
/2.1/2.5.1/3に縮小することができろ。
From this table, it can be seen that even if the bearing area is the same, as the number of divisions increases, the compression spring constant decreases, and the deformation of the rubber elastic bodies 11, 12, 13 increases with respect to the same compression load. In other words, 2-split, 3-split, and 4-split rubber bearings each have a height of about 1% less than a non-split rubber bearing.
It can be reduced to /2.1/2.5.1/3.

第9図ないし第11図は、空隙部の他の態様を示j。す
なわち、33は円弧状の空隙部であり、34はシース4
を設けた円弧状の空隙部である。
FIGS. 9 to 11 show other embodiments of the cavity. That is, 33 is an arc-shaped cavity, and 34 is a sheath 4.
It is an arc-shaped cavity with a .

第12図は、本発明のゴム支承の上部補強鋼板2AKす
べり板5を固着したすべりゴム支承を示す。このすべり
板5は、ステンレス鋼、上部補強鋼板2Aにコーティン
グされた硬質クロムメッキ層、あるいは四ふつ化エチレ
ン樹脂(PTFE)等より構成されるが、上部補強鋼板
2Aの板面が十分に平滑かつ不銹性であれば勿論省略し
ても差しつかえない。6は上部構造の下面に取り付けら
れろ取付は鋼板、6aはアンカー(図示せず)の取付は
孔であって、該取付は鋼板6とすべりコム支承とはすべ
り板5を介して摺動することにより、上部構造の移動(
主として温度変化による橋軸方向移動)を逃がすもので
ある。
FIG. 12 shows a sliding rubber bearing to which the upper reinforcing steel plate 2AK sliding plate 5 of the rubber bearing of the present invention is fixed. The sliding plate 5 is made of stainless steel, a hard chrome plating layer coated on the upper reinforcing steel plate 2A, or tetrafluoroethylene resin (PTFE), but the plate surface of the upper reinforcing steel plate 2A is sufficiently smooth and Of course, it can be omitted as long as it is rust-free. Reference numeral 6 is a steel plate that is attached to the lower surface of the superstructure, and 6a is a hole that is used to attach an anchor (not shown), and the steel plate 6 and the slide comb support slide through the slide plate 5. By this, the movement of the superstructure (
This is mainly to release the movement of the bridge in the axial direction due to temperature changes.

第13図、第14図は、二分割のゴムパッドの成形態様
を示す実施例図で、それぞれ一部縦断面図、一部横断平
面図をもって示した。第15図、第16図は、四分割の
ゴムパッドの成形態様を示す実施例図で、それぞれ一部
縦断面図、−S横断平面図をもって示した。これらの図
において、7は金型で、71はその下型、72は上型、
そして81.82.83は中子を示す。
FIGS. 13 and 14 are embodiment views showing how a two-part rubber pad is formed, and are shown in a partially longitudinal sectional view and partially in a cross-sectional plan view, respectively. FIG. 15 and FIG. 16 are embodiment views showing how the rubber pad is formed into four parts, and are shown with a partial vertical sectional view and a -S cross-sectional plan view, respectively. In these figures, 7 is a mold, 71 is a lower mold, 72 is an upper mold,
And 81, 82, 83 indicate the core.

中子82は二分割されており、該中子82は中子83と
組み合わされて使用され、成形完了後成形物から中子8
2を引抜き、ついで中子83を引抜くようになっている
The core 82 is divided into two parts, the core 82 is used in combination with a core 83, and the core 82 is removed from the molded product after molding is completed.
2 is pulled out, and then the core 83 is pulled out.

これらの成形態様において、断面が円弧状に膨出した中
子な用いたとき第9図に示す空隙部33が得られ、更に
該中子にシース4を被嵌して用いたとき第10図に示す
空隙部34が得られろものである。
In these molding methods, when a core with a bulging arcuate cross section is used, the cavity 33 shown in FIG. 9 is obtained, and when the sheath 4 is fitted over the core and used, the cavity 33 shown in FIG. 10 is obtained. This results in a void 34 shown in FIG.

本発明は以下の特有の効果を有するものである。The present invention has the following unique effects.

■ 本弾性支承は、従来の同一の支圧面積の弾性支承に
比べ、格段のばね定数の低減を図ることができ、支承高
を小さくでき、経済的であるばかりでな(、座屈等を起
し難(・。
■ Compared to conventional elastic bearings with the same bearing area, this elastic bearing can significantly reduce the spring constant, reduce the bearing height, and is not only economical (but also prevents buckling, etc.). Difficult to wake up (・.

■ 本弾性支承は、個々に等しいばね定数をもつ平面形
状のゴム弾性体を用いろことにより、標準化されたゴム
弾性体よりなるので、設計が容易となり、天川性が高い
■ By using planar rubber elastic bodies each having the same spring constant, this elastic bearing is made of standardized rubber elastic bodies, which makes it easy to design and has high properties.

■ 本弾性支承の製造方法によれば、いずれも加硫成形
によるので、弾性支承の成形が確実で、強固な製品を得
ろことができろ。
■ According to the present method for manufacturing elastic bearings, since vulcanization molding is used, the elastic bearings can be molded reliably and a strong product can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のゴム支承の縦断面図、第2図はその平面
図、第3図ないし第16図は本発明の実施例図であって
、第3図は本発明の弾性支承の縦断面図、第4図はその
平面図、第5図及び第6図は本発明の弾性支承の他の実
施例の縦断面図及び平面図、第7図及び第8図は本発明
の弾性支承の更に他の実施例の縦断面図及び平面図、第
9図ないし第11図は空隙部の他の態様を示す縦断面図
、第12図はすべりゴ□ム支承の態様を示す斜視図、 
    訃第13図は本発明の弾性支承の製造方法を示
す一部縦断面図、第14図はその一部横断平面図、第1
5図は他の実施例の弾性支承の製造方法を示す一部縦断
面図、第16図はその一部横断平面図である。 11.12.13・・・・・・ゴム弾性体、2・・・・
・・補強鋼板、2A・・・・・・上部補強鋼板、2B・
・・・・・下部補強鋼板、3,31,32・・・・・・
空隙部、4・・・・・・シース、7・・・・・・金型、
72・・・・・・上型、81,82.83・・・・・・
中子。 特許出願人 日本国有鉄道 オイレス工業株式会社 代理人 弁理士池田仁士 32  4/ 64 第12図 B 第15図 2 第14図
FIG. 1 is a longitudinal cross-sectional view of a conventional rubber bearing, FIG. 2 is a plan view thereof, and FIGS. 3 to 16 are illustrations of embodiments of the present invention. 4 is a plan view thereof, FIGS. 5 and 6 are vertical sectional views and plan views of other embodiments of the elastic bearing of the present invention, and FIGS. 7 and 8 are views of the elastic bearing of the present invention. 9 to 11 are longitudinal sectional views showing other aspects of the cavity, and FIG. 12 is a perspective view showing an aspect of the sliding rubber support.
Figure 13 is a partial longitudinal cross-sectional view showing the method for manufacturing an elastic bearing of the present invention, Figure 14 is a partial cross-sectional plan view thereof, and Figure 14 is a partial cross-sectional plan view thereof.
FIG. 5 is a partial longitudinal cross-sectional view showing a method of manufacturing an elastic bearing according to another embodiment, and FIG. 16 is a partial cross-sectional plan view thereof. 11.12.13...Rubber elastic body, 2...
...Reinforcement steel plate, 2A...Top reinforcement steel plate, 2B.
...Lower reinforcing steel plate, 3, 31, 32...
void, 4... sheath, 7... mold,
72... Upper mold, 81, 82.83...
Middle child. Patent applicant Japanese National Railway Oiles Industry Co., Ltd. Representative Patent Attorney Hitoshi Ikeda 32 4/64 Figure 12B Figure 152 Figure 14

Claims (1)

【特許請求の範囲】 1、所要の間隔を有する空@部(31,(3υ、(32
)を保持して相隣れろ2以上のコム弾性体(11)。 (12) 、 (13)と、 前記ゴム弾性体の全体夕上下に挟着固定する補強鋼板(
匂とからなり、 前記ゴム弾性体(11) 、(12) 、 (13)は
個々に等しいばね定数ケもつ平面形状に形成されてなる
ことを特徴とする弾性支承。 2、補強鋼板(2)の一枚を金型(7)に入れ該補強鋼
板(2)の上に2以上のゴム弾性体成形材料をそれぞれ
適宜の間隔をもって載せ、この間隔を埋める凸条を設け
た上型(72)’&もって押圧し、しかる後、全体ケ所
定時間加熱して補強鋼板(り上に等しいばね定数をもつ
平面形状を有するゴム弾性体Q 1) 、(t 2) 
、(13)が所定の間隔をもって結合された成形物を得
たのち、このゴム弾性体上に他方の補強鋼板(2)を結
合せしめろことを特徴とした弾性支承の製造方法。 3、補強鋼板(淘の一枚を金型(7)に入れ、該鋼板(
2)上に断面形状の等しい棒状の中子(8υ、(82)
。 (83)を適宜間隔に配し、中子と金型壁あるいは中子
と金型壁および中子同志で画定された部分の補強鋼板上
にゴム弾性体成形材料を載せ、ついで該成形材料上に他
方の補強鋼板(2)を載せ、該補強鋼板上から上型(7
■をもって押圧し、全体を所定時間加熱してゴム弾性体
(11) 、 (12)。 (13)の上下面に補強鋼板(2)が一体に結合されて
なる成形物を得たのち、このようにして得た成形物から
棒状中子を引抜いてゴム弾性体が個々に等しいばね定数
をもつ平面形状に多分割され、かつ相隣れるゴム弾性体
同志が所定の間隔をもって配されてなることを特徴とし
た弾性支承の製造方法。 4、補強鋼板(2)の一枚を金型(ηに入れ、該鋼板(
2)上に断面形状の等しい軟質のプラスチックからなる
シース(4)を被嵌した中子(s t) 、(s 2)
、(s 3)を適宜間隔に配し、該中子と金型壁あるい
は中子と金型壁および中子同志で画定された部分の補強
鋼板上にゴム弾性体成形材料を載せ、ついで該成形材料
上に他方の補強鋼板を載せ、該補強鋼板上から上型(7
2)’fもって押圧し、全体を所定時間加熱して上下面
に補強鋼板が一体に結合されてなる成形物を得たのち、
このようにして得た成形物から該成形物中にシース(4
)ヲ残して中子(81) 、(82) 、 (8B)を
引抜いて、コム弾性体が個々に等しいばね定数をもつ平
面形状に多分割され、かつ相隣れるコム弾性体同志がシ
ースを介して適宜の空間をもって配されてなることを特
徴とした弾性支承の製造方法。
[Claims] 1. Empty part (31, (3υ, (32
) with two or more adjacent comb elastic bodies (11). (12), (13) and reinforcing steel plates (
an elastic bearing, characterized in that the rubber elastic bodies (11), (12), and (13) are individually formed into a planar shape with equal spring constants. 2. Place one reinforcing steel plate (2) into a mold (7), place two or more rubber elastic molding materials on top of the reinforcing steel plate (2) at appropriate intervals, and form convex strips to fill the gaps. The upper mold (72)' provided above is pressed and then the entire body is heated for a predetermined period of time to form a rubber elastic body Q1), (t2) having a planar shape with an equal spring constant on the reinforcing steel plate.
, (13) are bonded at a predetermined interval, and then the other reinforcing steel plate (2) is bonded onto the rubber elastic body. 3. Place one piece of reinforcing steel plate (Tao) into the mold (7) and press the steel plate (
2) Place a rod-shaped core with the same cross-sectional shape on top (8υ, (82)
. (83) are placed at appropriate intervals, a rubber elastic molding material is placed on the reinforcing steel plate in the area defined by the core and the mold wall, or the core and the mold wall, and the cores, and then the rubber elastic molding material is placed on the molding material. Place the other reinforcing steel plate (2) on the reinforcing steel plate, and place the upper die (7) on top of the reinforcing steel plate.
(2) and heat the entire body for a predetermined time to form rubber elastic bodies (11) and (12). After obtaining a molded product in which the reinforcing steel plate (2) is integrally joined to the upper and lower surfaces of (13), the rod-shaped core is pulled out from the molded product thus obtained, so that the rubber elastic bodies each have an equal spring constant. 1. A method of manufacturing an elastic bearing, characterized in that the elastic bearing is multi-divided into a planar shape, and adjacent rubber elastic bodies are arranged at predetermined intervals. 4. Place one piece of reinforcing steel plate (2) into the mold (η) and press the steel plate (
2) A core (s t), (s 2) on which a sheath (4) made of soft plastic with the same cross-sectional shape is fitted.
, (s3) are arranged at appropriate intervals, and a rubber elastic molding material is placed on the reinforcing steel plate in the area defined by the core and the mold wall, or the core and the mold wall, and the cores. Place the other reinforcing steel plate on the molding material, and insert the upper die (7) from above the reinforcing steel plate.
2) After pressing with 'f and heating the whole for a predetermined time to obtain a molded product with reinforcing steel plates integrally bonded to the upper and lower surfaces,
From the molded product thus obtained, a sheath (4
), the cores (81), (82), and (8B) are pulled out, and the comb elastic body is divided into multiple planar shapes each having the same spring constant, and adjacent comb elastic bodies are separated from each other by the sheath. A method for manufacturing an elastic bearing, characterized in that the elastic bearing is arranged with an appropriate space between the elastic bearings.
JP4903282A 1982-03-29 1982-03-29 Elastic support with reduced constant of springiness and production thereof Granted JPS58168703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4903282A JPS58168703A (en) 1982-03-29 1982-03-29 Elastic support with reduced constant of springiness and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4903282A JPS58168703A (en) 1982-03-29 1982-03-29 Elastic support with reduced constant of springiness and production thereof

Publications (2)

Publication Number Publication Date
JPS58168703A true JPS58168703A (en) 1983-10-05
JPS6226362B2 JPS6226362B2 (en) 1987-06-09

Family

ID=12819744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4903282A Granted JPS58168703A (en) 1982-03-29 1982-03-29 Elastic support with reduced constant of springiness and production thereof

Country Status (1)

Country Link
JP (1) JPS58168703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077502A (en) * 2010-09-30 2012-04-19 Ihi Infrastructure Systems Co Ltd Bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077502A (en) * 2010-09-30 2012-04-19 Ihi Infrastructure Systems Co Ltd Bearing device

Also Published As

Publication number Publication date
JPS6226362B2 (en) 1987-06-09

Similar Documents

Publication Publication Date Title
US6591708B2 (en) Gear made of fiber reinforced resin and method for manufacturing same
US2454719A (en) Method of making cored laminated plastic sheets
US3164110A (en) Composite structural element and method of making the same
JP2021507836A (en) Structure with improved adhesion
JPS58168703A (en) Elastic support with reduced constant of springiness and production thereof
JPS6330029B2 (en)
JPS6011136Y2 (en) Rubber bearing for high reaction force
JPS6024727Y2 (en) Rubber bearing for high reaction force
JPS6111289Y2 (en)
JP2528163Y2 (en) Valve seat
JPH0588164B2 (en)
JPS646148Y2 (en)
JPS6011134Y2 (en) Rubber bearing for high reaction force
DE4335638C2 (en) Supporting element for a body part and method for its production
JP4257011B2 (en) Method for manufacturing panel mold
JPS5844476B2 (en) crane rail
JPH0246580Y2 (en)
JPH0467490B2 (en)
JPH0513533Y2 (en)
JPH0412249Y2 (en)
JP2001315134A (en) Method for manufacturing mold made of silicone rubber
US2621921A (en) Leaf spring
JPS60154115U (en) Cushion material for molding presses
JPS6331228B2 (en)
JPS6024726Y2 (en) Rubber bearing for high reaction force