JPS58168519A - Cooler for inflation molding - Google Patents

Cooler for inflation molding

Info

Publication number
JPS58168519A
JPS58168519A JP57052822A JP5282282A JPS58168519A JP S58168519 A JPS58168519 A JP S58168519A JP 57052822 A JP57052822 A JP 57052822A JP 5282282 A JP5282282 A JP 5282282A JP S58168519 A JPS58168519 A JP S58168519A
Authority
JP
Japan
Prior art keywords
resin
tubular body
cooling
heat pipe
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57052822A
Other languages
Japanese (ja)
Other versions
JPH0249215B2 (en
Inventor
Shinji Kawamura
川村 真司
Akiyuki Iwai
岩井 昭之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP57052822A priority Critical patent/JPS58168519A/en
Publication of JPS58168519A publication Critical patent/JPS58168519A/en
Publication of JPH0249215B2 publication Critical patent/JPH0249215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/9125Cooling of hollow articles of tubular films internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To increase the cooling effect of fused resin tubular body and to increase the inflation molding speed, by arranging a heat pipe equipped with an evaporation part on the inner peripheral surface of the fused resin tubular body just after being extruded from extrusion die. CONSTITUTION:In the inflation molding apparatus wherein the resin tubular body 6A of fused state extruded from the annular slit 4 of the extrusion die 1 is made the resin bubble 6C by the expansion and thinning wall of it and it is winded after completely solidification by cooling, the cooling heat pipe 10 is provided in the gas-filled tube 9 installed by penetrating the central part of the extrusion die 1. The evaporation part 10A of heat pipe 10 is formed to be of the column having about the same height as that of the expansion part 6B of resin tubular body 6 and the same diameter as that of the tubular body 6A just after extrusion. The condensation part 10B of heat pipe 10 is arranged at a fixed height in the resin bubble 6C and a heat dissipation fin is provided on the outer peripheral part near the upper end of it.

Description

【発明の詳細な説明】 本発明は、押圧ダイより管状に押出された管状樹脂を内
部側より冷却するインフレーション用冷却装置に係り、
特にその冷却能力の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inflation cooling device that cools a tubular resin extruded into a tubular shape from a pressing die from the inside.
In particular, it relates to improvements in its cooling capacity.

熱可塑性樹脂のインフレーション成形においては、生産
性向上のため高速成形の要求が高くなっているか、高速
成形を達成するためには、押出機や押出ダイの高速押出
が可能であっても、押出さ1−− れる管状樹脂を十分に冷却することができなけれは力ら
ないものである。また、成形フィルムの物性を向上させ
るためにも、溶融樹脂を内外むらなく十分に冷却させる
ことが必要である。
In inflation molding of thermoplastic resins, there is an increasing demand for high-speed molding to improve productivity, or even if extruders and extrusion dies are capable of high-speed extrusion, in order to achieve high-speed molding, extrusion 1-- It is difficult to cool down the tubular resin to be used unless it can be sufficiently cooled. Furthermore, in order to improve the physical properties of the formed film, it is necessary to sufficiently cool the molten resin evenly inside and outside.

ところで、単数あるいは複数のニアリングを用いて、押
出された管状樹脂の外周面に冷却空気を吹きつける方法
が広く用いられているが、冷却効果を高めようとして冷
却空気の風量を増大させての溶融張力の小さい樹脂にあ
っては成形安定性が著しく1泪害されてしまうため、管
状樹脂の外部側より冷却する場合のみの冷却効果の向上
には自ずと限界があった。
By the way, a method of blowing cooling air onto the outer peripheral surface of an extruded tubular resin using one or more near rings is widely used, but in order to improve the cooling effect, melting by increasing the flow rate of cooling air Since the molding stability of resins with low tension is significantly impaired, there is a natural limit to the improvement of the cooling effect only when cooling from the outside of the tubular resin.

そこで、管状樹脂の外部側からだけでなく内部側からも
管状樹脂を冷却するために、管状樹脂の内部側に外部よ
り冷却空包を循環させる方法が織られている。しかし、
このよう4方法にあっては、管状樹脂は押出ダイより押
出された直後の溶融樹脂管状体については特に急冷を要
するが、一方、膨張部を絃てバブル状態と々つた樹脂、
qプ゛ルについては必らずしも急冷を費しないものであ
るにも拘らず、管状樹脂全体を略均−的に冷却するのみ
であり、飽融樹脂管状体についての急冷幼芽は特に認め
られず、したがってこのような方法のみを採用しても高
速成形を達するための十分な冷却効果は得られないもの
であった。
Therefore, in order to cool the tubular resin not only from the outside but also from the inside, a method has been devised in which a cooling air bag is circulated from the outside inside the tubular resin. but,
In these four methods, the tubular resin requires rapid cooling especially for the molten resin tubular body immediately after being extruded from the extrusion die, but on the other hand, the resin that has burst into bubbles through the expansion part,
Although the Q pool does not necessarily require rapid cooling, it only cools the entire tubular resin approximately uniformly, and the quenched seedlings of the saturated resin tubular body are particularly cooled. Therefore, even if such a method was adopted alone, a sufficient cooling effect to achieve high-speed molding could not be obtained.

捷だ、特開昭56−75829によれば、中芯(マンド
レル)の中心部にヒート・ソイゾの蒸発部を埋設した冷
却装置が提案されているが、この既提案の冷却装置にあ
っては、前記蒸発部が中芯を冷却し、冷却された中芯が
更に管状樹脂の溶融樹脂管状体を冷却させるものである
ため、熱伝達効率が必らずしも十分でなく、また、ヒー
トノぐイブの蒸発部と中芯とが別体として構成されてい
るため構造上の複雑化も招いていた。
According to Japanese Patent Application Laid-Open No. 56-75829, a cooling device in which an evaporating section of heat and soybean is buried in the center of a mandrel has been proposed, but this cooling device that has already been proposed has Since the evaporation section cools the core, and the cooled core further cools the molten resin tubular body, the heat transfer efficiency is not necessarily sufficient, and the heat nozzle is not necessarily sufficient. Since the evaporating part and the core of the eve are constructed as separate bodies, the structure is also complicated.

本発明の目的は、冷却効果が大きく、構造も簡易なイン
フレーションフィルム成形用冷却装置を提供するにある
An object of the present invention is to provide a cooling device for forming a blown film that has a large cooling effect and a simple structure.

本発明は、押出ダイよp押出された直後の溶融樹脂管状
体の内周面に接触され若しくは接近された状態で蒸発部
が位置されるビートノ9イブによりインフレーション成
形用冷却装置を構成し、前記蒸発部により前記溶融樹脂
を内部側より冷却するようにして前記目的を達成しよう
とするものである。
The present invention comprises a cooling device for inflation molding using a beat nozzle in which an evaporating section is positioned in contact with or close to the inner circumferential surface of a molten resin tubular body immediately after being extruded from an extrusion die, and The object is to be achieved by cooling the molten resin from the inside using the evaporation section.

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図には、本発明によるインフレーション成形用冷却
装置の第1の実施例が適用されるインフレーション成形
装置の要部が示されている。
FIG. 1 shows the main parts of an inflation molding apparatus to which a first embodiment of the cooling apparatus for inflation molding according to the present invention is applied.

この図において、押出ダイlは、円柱状の中空部を有す
るダイ本体2と、ダイ本体2の前記中空部に嵌合される
ダイマンドレル3とからなり、前記嵌合部分の上端には
環状スリット4が構成され、押出ダイ1内に供給される
溶融樹脂5は環状スリット4より管状に押出されて管状
樹脂6が形成されるようになっている。
In this figure, the extrusion die l consists of a die body 2 having a cylindrical hollow part, and a die mandrel 3 fitted into the hollow part of the die body 2, and an annular slit at the upper end of the fitting part. 4 is constructed, and the molten resin 5 supplied into the extrusion die 1 is extruded into a tubular shape through the annular slit 4 to form a tubular resin 6.

管状樹脂6は、押出ダイlより押出された直後において
は溶融状態の溶融樹脂管状体6Aとなっ 3− テイルが、その後膨張部6BVCおいて所定のブローア
ツプ比で膨張された後、薄肉化された樹脂バブル6Cと
なり、樹脂バブル6Cは完全に冷却固化された後、図示
しないニップロールによリニツゾされて偏平化され、つ
いで連続的に巻取られていくようになっている。
Immediately after the tubular resin 6 is extruded from the extrusion die 1, it becomes a molten resin tubular body 6A in a molten state. After the resin bubble 6C is completely cooled and solidified, the resin bubble 6C is linearized and flattened by nip rolls (not shown), and then continuously wound up.

前記押出ダイ1の中心部には、外部コック8を有する刺
入管9が管状樹脂6の内部に向って樹脂バブル6Cの所
定の高さ位置まで達するよう貫通サレ、この封入管9に
はインフレーション成形用冷却装置としてのヒートツク
イブ10が、封入管9が中心部を貫入された状態で、押
出ダイ1の中心部において樹脂押出方向に沿って保持さ
れている。
In the center of the extrusion die 1, a penetration pipe 9 having an external cock 8 is formed so as to penetrate into the tubular resin 6 and reach a predetermined height position of the resin bubble 6C. A heat tube 10 serving as a cooling device for molding is held at the center of the extrusion die 1 along the resin extrusion direction, with the enclosing tube 9 inserted through the center.

ヒートノミイブ10の蒸発部](IAは、前記膨張部6
Bと略同−の高さ位置を有する所定の径の円柱体状に形
成され、長手方向に沿って下方の略半分の部分の外周面
は前記溶融樹脂管状体6Aの内周面に接触若しくは接近
されるとともに、蒸発部1()Aの下端部と押出ダイ1
の上端面との間には所定の間隔が設けられており、この
間隔内に位置 4− する前記封入管9には流通口11が穿設されている。
Evaporation section of the heat worm 10] (IA is the expansion section 6
It is formed in a cylindrical shape with a predetermined diameter and has approximately the same height position as B, and the outer circumferential surface of the lower half portion along the longitudinal direction is in contact with the inner circumferential surface of the molten resin tubular body 6A. While being approached, the lower end of the evaporation section 1()A and the extrusion die 1
A predetermined interval is provided between the upper end surface of the encapsulating tube 9 and a communication port 11 located within this interval.

また、ヒートノにイブ10の凝縮部10Bは、前記樹脂
バブル6C内の所定の高さ位置に配置されており、凝縮
部10Bの上端付近の外周部には放熱フィン12が設け
られるとともに、上端部において前記封入管9が開口さ
れている。
Further, the condensing section 10B of the heat ejector 10 is arranged at a predetermined height position within the resin bubble 6C, and a heat radiation fin 12 is provided on the outer circumference near the upper end of the condensing section 10B. At this point, the enclosure tube 9 is opened.

々お、ヒートツクイブ1()の蒸発部】OAの内周面の
略全域にはウィック13が設けられ、このウィック13
内を通して作動流体の凝縮液14が移動され、一方、ヒ
ートノソイプ10内の中壁部分を作動流体の蒸気流】5
が上昇される。また、前記押出ダイ1上には、ニアリン
グ16が配置されている。
[Evaporation section of Heat Tsuquib 1 ()] A wick 13 is provided on almost the entire inner circumferential surface of the OA, and this wick 13
The condensate 14 of the working fluid is moved through the inside, while the vapor flow of the working fluid flows through the inner wall portion of the heat nosoid 10.
is raised. Furthermore, a near ring 16 is arranged on the extrusion die 1 .

次に、本実施例の作用につき説明する。Next, the operation of this embodiment will be explained.

押出ダイ1内の溶融樹脂5は環状スリット4より連続的
に押出されて管状樹脂6が形成されるが、この管状樹脂
6内には封入管9より、運転開始時において、一定圧力
の空気が封入されて内圧により管状樹脂6の溶融樹脂管
状体6Aは膨張部6BにてFlf定のブローアツプ比で
膨張されて樹脂バブル6Cが形成される。
The molten resin 5 in the extrusion die 1 is continuously extruded through the annular slit 4 to form a tubular resin 6. Air at a constant pressure is introduced into the tubular resin 6 from the sealed tube 9 at the start of operation. The sealed molten resin tubular body 6A of the tubular resin 6 is expanded by the internal pressure at a blow-up ratio of Flf in the expansion section 6B, thereby forming a resin bubble 6C.

溶融樹脂管状体6Aは、ニアリング16によって外部側
より冷却されるとともに、ヒートパイプ10の#弁部1
0Aによって内部側からも冷却される。すなわち、前記
蒸発部10Aは浴融樹脂管状体6Aの安定性を向上させ
る中芯としての働きをするとともに、蒸発部10Aを内
部側より吸熱、す力わち冷却しており、蒸発部10A内
においては凝縮液14が蒸発することとなる。
The molten resin tubular body 6A is cooled from the outside by the near ring 16, and the #valve part 1 of the heat pipe 10
It is also cooled from the inside by 0A. That is, the evaporation section 10A functions as a core that improves the stability of the bath melt resin tubular body 6A, and also absorbs heat from the inside of the evaporation section 10A, in other words, cools the evaporation section 10A. In this case, the condensate 14 evaporates.

蒸発した凝縮液14は蒸気流15と々つてヒートパイプ
10内を上昇し、凝縮部10Bにて凝縮されて凝縮液1
4となり、蒸発部10Aへと移動される。
The evaporated condensate 14 rises in the heat pipe 10 along with the vapor flow 15, and is condensed in the condensing section 10B to form the condensate 1.
4 and is moved to the evaporation section 10A.

このようカヒート・ξイブ10内の作動流体の循珈によ
り蒸発部10Aにおいては絶えず溶融樹脂管状体6Aの
急冷がなされ、壕だ、膨張部6Bも蒸発部10Aに近い
位置となっているため、膨張部6Bに接する内部空気も
冷却されており、膨張部6Bも冷却される。
As described above, the molten resin tubular body 6A is constantly rapidly cooled in the evaporation section 10A due to the circulation of the working fluid in the heat exchanger 10, and the expansion section 6B is also located close to the evaporation section 10A. The internal air in contact with the expansion section 6B is also cooled, and the expansion section 6B is also cooled.

一方、凝縮部10Bにおいては樹脂バブル6C内に熱が
放出されるか、凝縮部10Bは樹脂バブル6Cが完全に
冷却固化された位置に配對されているため、凝縮部10
Bにおける放熱により位]脂バブル6Cに悪影響が与え
られるということは力い。
On the other hand, in the condensing section 10B, heat is released into the resin bubbles 6C, or the condensing section 10B is arranged at a position where the resin bubbles 6C are completely cooled and solidified.
It is clear that the heat dissipation at B has an adverse effect on the fat bubble 6C.

力お、浴融樹脂5が篩晶度ポリエチレンのような溶融張
力の低い樹脂である場合には、溶融樹脂管状体6Aの安
定性が鞄メて低いものであるから、蒸発部10Aの外周
面を溶融樹脂管状体6Aの内周面に接触させるようにし
て安定性を高め且急冷効果をより高めるようにすること
が望ましいが、溶融張力がそれ程低く々い直鎖状エチレ
ン−α−オレフィン共重合体、ポリプロピレン等の場合
には、蒸発部10Aの外周面を溶融樹脂管状体6Aの内
周面に特に接触させる必要は々く、単に接近させておけ
ば足りる。捷だ、樹脂バブル6C内の空包は刺入管9の
上端開口部より封入管9内に導入された後流通孔11よ
り蒸発部10Aの下端側に流出され、この流出された空
気は蒸発部10Aの外周面と溶融樹脂管状体6人の内周
面との間隙’e M −c at脂バブル6C側へと流
れるため、溶融樹脂管状体6Aが蒸発部10Aに溶着す
ることはなく、安定成形が確保されることとなる。
Note that when the bath molten resin 5 is a resin with low melt tension such as polyethylene sieve, the stability of the molten resin tubular body 6A is relatively low. It is desirable to bring the molten resin into contact with the inner circumferential surface of the molten resin tubular body 6A to increase stability and further enhance the quenching effect. In the case of polymers, polypropylene, etc., it is not particularly necessary to bring the outer circumferential surface of the evaporator 10A into contact with the inner circumferential surface of the molten resin tubular body 6A, and it is sufficient to simply bring them close to each other. After the empty resin bubble 6C is introduced into the encapsulation tube 9 from the upper opening of the insertion tube 9, it flows out from the flow hole 11 to the lower end of the evaporation section 10A, and this flowed air is evaporated. Since the gap between the outer peripheral surface of the section 10A and the inner peripheral surface of the six molten resin tubular bodies flows toward the fat bubble 6C, the molten resin tubular body 6A is not welded to the evaporation section 10A. Stable molding will be ensured.

このような本実施例によれば、ヒートノミイブ10の蒸
発部10Aによシ溶融樹脂管状体6Aが直接冷却される
ため、急冷効果が大きく、したがって高押出肯や高速の
インフレーション成形全安定して行うことができるよう
になる。また、急冷効果の増大は、管状樹脂6を外部側
からだけでなく内部側からも冷却させることとも相俟っ
て、延伸効果の向上等、成形フィルムの物性を向上させ
ることができる。
According to this embodiment, since the molten resin tubular body 6A is directly cooled by the evaporation section 10A of the Heat Nomi Eve 10, the quenching effect is large, and therefore high extrusion and high speed inflation molding can be performed completely stably. You will be able to do this. In addition, the increase in the quenching effect, together with the fact that the tubular resin 6 is cooled not only from the outside but also from the inside, can improve the physical properties of the formed film, such as improving the stretching effect.

壕だ、ヒートパイプ10の蒸発部10Aが、ノ々プル安
定体、すなわち中芯をも兼ねているため構造が簡単で組
み立ても容易なものとすることができる。
Since the evaporation section 10A of the heat pipe 10 also serves as a nopuru stabilizer, that is, a core, the structure is simple and assembly is easy.

さらに、管状樹脂6内と外部との間で冷却空気を循環さ
せたシ、中芯を冷却水により冷却させる等の内部冷却手
段を採っていないため、この点からも構造が簡易であり
、小口径の押出ダイにも適用でき、また運転も容易々も
のとすることができる。
Furthermore, since there is no internal cooling means such as circulating cooling air between the inside and outside of the tubular resin 6 or cooling the core with cooling water, the structure is simple and small. It can also be applied to extrusion dies of any diameter, and can be operated easily.

次に、前記以外の実施例について説明するが、前記第1
の実施例と同−若しくは近似する部分については同一の
符号を用い、説明を簡略若しくは省略する。
Next, examples other than the above will be described.
The same reference numerals are used for parts that are the same as or similar to those in the embodiment, and the description thereof will be simplified or omitted.

第2図には、第2の実施例が示され、この図において刺
入管9はヒートパイプ10の下端面にて終了し且つ閉塞
されている。壕だ、ヒートノにイブ10の蒸発部10A
には、この蒸発部10Aの上下端を連通ずる連通路21
を有する連通管22が2本配置されており(第3図参照
)、前記連通路21を通って樹脂ノ々プル6C側の内部
空気が蒸発部10Aの下端側に導入され、導入された空
気は蒸発部10Aと溶融樹脂管状体6Aとの間隙を経て
再び樹脂バブル6C側へと流入されるように彦っでいる
A second embodiment is shown in FIG. 2, in which the insertion tube 9 terminates at the lower end surface of the heat pipe 10 and is closed. It's a trench, Eve 10's evaporation section 10A is in the heat.
, there is a communication passage 21 that communicates the upper and lower ends of this evaporation section 10A.
Two communicating pipes 22 are arranged (see Fig. 3), and internal air on the resin nozzle 6C side is introduced into the lower end side of the evaporating section 10A through the communicating passage 21, and the introduced air The resin flows back through the gap between the evaporator 10A and the molten resin tubular body 6A and flows back into the resin bubble 6C side.

このようが本実施例によっても、前記第1の実施例と同
様の作用、効果を得ることができる。
In this way, the same operations and effects as in the first embodiment can be obtained also in this embodiment.

第4図には、第3の実施例が示され、この図において、
封入管9は前記第2の実21oi例と同様にヒートパイ
プ10の下端面にて終了し且閉塞されているが、前記刺
入管9には外部コック29を有する排出管30が挿入さ
れており、この排出管30はヒートパイプ10の中心部
を貫通してヒートノミイブ10の上端にて開口している
。壕だ、ヒート・ぞイブ10の蒸発部10A内における
排出管30には所定の肉厚の内部管31が被嵌され、こ
の内部管31には長手方向に沿って複数の連通路32が
前記排出管30を中心とする仮想円周上に沿って配置さ
れている(第5図参jf@、 )。これら連通路32の
上端部は排出管30に向って折曲され且排出管30の所
定位置に穿設された開口部33において開口されている
とともに、連通路32の下端部はヒートノミイブ10の
下端面にて開口されている。
A third embodiment is shown in FIG. 4, in which:
The enclosure tube 9 ends at the lower end surface of the heat pipe 10 and is closed, as in the second example 21oi, but a discharge tube 30 having an external cock 29 is inserted into the insertion tube 9. The discharge pipe 30 passes through the center of the heat pipe 10 and opens at the upper end of the heat pipe 10. An internal pipe 31 with a predetermined wall thickness is fitted into the exhaust pipe 30 in the evaporation section 10A of the heat zobe 10, and a plurality of communicating passages 32 are provided along the longitudinal direction of the internal pipe 31. They are arranged along a virtual circumference centered on the discharge pipe 30 (see FIG. 5, jf@, ). The upper ends of these communication passages 32 are bent toward the discharge pipe 30 and open at openings 33 bored at predetermined positions in the discharge pipe 30, and the lower ends of the communication passages 32 are located below the heat nozzle 10. It is open at the end.

また、前記封入管9および排出管30は、図示しない線
動空気給排機構に連結されており、管状校・1脂6内に
は冷却9槃が常に一定の圧力となるよう循環されている
。なお、第4図中符号40は封入管9を囲繞する断熱材
である。
Further, the enclosure tube 9 and the discharge tube 30 are connected to a linear air supply/discharge mechanism (not shown), and a cooling tube 9 is circulated within the tubular tube 6 so as to maintain a constant pressure. . Note that reference numeral 40 in FIG. 4 is a heat insulating material surrounding the encapsulating tube 9.

このような第3の実施例によれば、装置全体の構造は複
雑化するが、管状樹脂6に内部側より常に冷却空気が接
することとなるため、管状樹脂6の冷却効果が一層促進
され、また、ヒートツクイブIOの凝縮部10Bの周囲
が常に低gA度に維持されるため、凝縮部10Hにおけ
る放熱が常に円滑になされ、その結果蒸発部10Aにお
ける急冷効果も増大することと々る。
According to the third embodiment, although the structure of the entire device is complicated, since the cooling air is always in contact with the tubular resin 6 from the inside, the cooling effect of the tubular resin 6 is further promoted. Furthermore, since the area around the condensing section 10B of the Heat Tsuquib IO is always maintained at a low gA degree, heat dissipation in the condensing section 10H is always performed smoothly, and as a result, the quenching effect in the evaporating section 10A is also increased.

第6図には、第4の実施例が示され、この図において、
ヒートパイプ10は、比較的ピッチの小さい螺旋管状の
蒸発部10Aと直線管状の凝縮部10Bとにより構成さ
れており、前記螺旋管状の蒸発部10Aの包絡外周面に
溶融樹脂管状体6Aの内周面が接触若しくは接近するよ
うになっている。また、ヒートツクイブ10にはウィッ
クが特に設けられていなくともよいものとなっている。
A fourth embodiment is shown in FIG. 6, in which:
The heat pipe 10 is composed of a spiral tubular evaporation section 10A with a relatively small pitch and a straight tubular condensation section 10B. The surfaces are brought into contact or close together. Further, the heat twig 10 does not need to be provided with a wick.

このようが第4の実施例によれば、前記第1、第2の実
施例と同様の作用効果を奏することがで11− き、さらに、蒸発部10Aの上下両端側を連通ずる内部
空気循環用の連通路等を特に設けなくともよく、また、
溶融樹脂管状体6Aとの接触司能個所が極めて制限され
ているため、溶融樹脂管状体6Aが蒸発部10Aに極め
て溶着しにくく、安定形成が一層行なわれやすいという
効果がある。
According to the fourth embodiment, the same effects as those of the first and second embodiments can be achieved, and furthermore, the internal air circulation that communicates both the upper and lower ends of the evaporator 10A is achieved. There is no need to provide a communication path etc. for
Since the contact points with the molten resin tubular body 6A are extremely limited, it is extremely difficult for the molten resin tubular body 6A to weld to the evaporation section 10A, resulting in the effect that stable formation is more likely to occur.

なお、上述の各実施例においては上吹きインフレーショ
ン成形に本発明による冷却装置が適用される場合につい
て述べたが、下吹きインフレーション成形に適用するこ
ともでき、また、凝縮部10Bは管状樹脂6内に配置さ
れているものとしたが、凝縮部10Bは管状樹脂6の外
部に位置され月押出ダイ1を貫通する伝達部を介して蒸
発部10Aと連結されているものであってもよい。さら
に、前記第1〜第3の実施例ではウィック13は蒸発部
10Aの内周面の略全域に亘って設けられているものと
したが、ヒートツクイブ10の内周面の全域に亘って設
けられたものでもよい。
In each of the above-mentioned embodiments, the cooling device according to the present invention is applied to top-blown inflation molding, but it can also be applied to bottom-blown inflation molding. However, the condensing section 10B may be located outside the tubular resin 6 and connected to the evaporating section 10A via a transmission section that passes through the extrusion die 1. Furthermore, in the first to third embodiments, the wick 13 is provided over almost the entire inner circumferential surface of the evaporator 10A, but the wick 13 is provided over the entire inner circumferential surface of the heat tube 10. It may be something you have.

上述のように本発明によれば、冷却効果が犬きく構造も
簡易がインフレーション成形用冷却装置−13−7 12− を提供することができる。
As described above, according to the present invention, it is possible to provide a cooling device for inflation molding which has a simple structure and a high cooling effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるインフレーション成形用冷却製麹
の第1の実施例を示す断面図、第2図は同じく第2の実
施例を示す断面図、第3図は第2図のト」線に従う矢視
拡大断面図、第4図は本発明の第3の実施例を示す断面
図、第5図は第4図のv−v線に従う矢視拡大断面図、
第6図は本発明の第4の実施例を示す断面図である。 1・・・押出ダイ、6・・・管状樹脂、6A・・・溶融
樹脂管状体、6B・・・膨張部、6C・・・樹脂バブル
、10・・・インフレーション成形用冷却装置としての
ヒートパイプ、IOA・・・蒸発部、IOB・・・凝縮
部、14・・・凝縮液、15・・・蒸気流。 代理人 弁理士 木 下 實 三 。          −14− 手続補正書(自発) 昭和57年4月23日 特許庁長官島田春樹 殿 昭和57年 特許 願第52822 ”3 補正をする
者 事件との関係特許出願人 氏 名銘称)  出光石油化学株式会社代表者大和丈夫 4、代理人 6、補正により増加する発明の数  ナシ補正の内容 (1) 明細書第1頁第14行の「抑圧ダイ」を「押出
ダイ」に改める。 (2) 明細書第1頁第15行の「インフレーション用
」ヲ「インフレーション成形用」に改める。 (3) 明細書第8頁第7〜8行の1高密度ポリエチレ
ン・・・・・・・・・・・・・・・である場合には−1
を1高密度ポリエチレンなどの場合には」に改める。 (4) 明細書第8頁第13行の「溶融張力がそれ程低
くない」を削除する。 (5) 明細書第13頁第6行の「形成」を1成形」に
改める。 以   上  2−
FIG. 1 is a sectional view showing a first embodiment of the cooling malt for inflation molding according to the present invention, FIG. 2 is a sectional view showing the second embodiment, and FIG. 4 is a sectional view showing a third embodiment of the present invention; FIG. 5 is an enlarged sectional view taken along line v-v in FIG. 4;
FIG. 6 is a sectional view showing a fourth embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Extrusion die, 6... Tubular resin, 6A... Molten resin tubular body, 6B... Expansion part, 6C... Resin bubble, 10... Heat pipe as a cooling device for inflation molding , IOA... Evaporation section, IOB... Condensation section, 14... Condensate, 15... Vapor flow. Agent: Minoru Kinoshita, patent attorney. -14- Procedural amendment (voluntary) April 23, 1980 Haruki Shimada, Director General of the Japan Patent Office Patent Application No. 52822 ``3 Person making the amendment Name of patent applicant related to the case Name) Idemitsu Petrochemical Co., Ltd. Representative Yamato Kou 4, Agent 6 Number of inventions increased by amendment Contents of amendment (1) "Suppression die" in line 14 of page 1 of the specification is changed to "extrusion die". (2) "For inflation" on page 1, line 15 of the specification has been changed to "for inflation molding." (3) 1 on page 8, lines 7-8 of the specification -1 if it is high-density polyethylene
1. In the case of high-density polyethylene, etc., change it to ``1''. (4) Delete "The melt tension is not that low" on page 8, line 13 of the specification. (5) "Formation" on page 13, line 6 of the specification is changed to "1 formation." Above 2-

Claims (1)

【特許請求の範囲】[Claims] (1)押出ダイより管状に押出された後内圧により膨張
されて冷却同化後に巻取られる管状樹脂を内部側より冷
却するインフレーション成形用冷却装置において、前記
冷却装置は、前記押出ダイより押出された直後の溶融樹
脂管状体の内筒面に接触され若しくは接近された状態で
蒸発部が位置されるヒートパイプより々ることを特徴と
するインフレーション成形用冷却装置。
(1) A cooling device for inflation molding that cools from the inside a tubular resin that is extruded into a tubular shape from an extrusion die, expanded by internal pressure, cooled and assimilated, and then wound up, from the inside. 1. A cooling device for inflation molding, comprising a heat pipe in which an evaporating section is placed in contact with or close to the inner cylindrical surface of a molten resin tubular body immediately afterward.
JP57052822A 1982-03-31 1982-03-31 Cooler for inflation molding Granted JPS58168519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57052822A JPS58168519A (en) 1982-03-31 1982-03-31 Cooler for inflation molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57052822A JPS58168519A (en) 1982-03-31 1982-03-31 Cooler for inflation molding

Publications (2)

Publication Number Publication Date
JPS58168519A true JPS58168519A (en) 1983-10-04
JPH0249215B2 JPH0249215B2 (en) 1990-10-29

Family

ID=12925538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57052822A Granted JPS58168519A (en) 1982-03-31 1982-03-31 Cooler for inflation molding

Country Status (1)

Country Link
JP (1) JPS58168519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002008A (en) * 2006-06-22 2008-01-10 Gunze Ltd Garment
CN110328832A (en) * 2019-07-12 2019-10-15 广东金明精机股份有限公司 The accurate measuring and controlling equipment of bubble blown condensation mode and accurate investigating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109962A (en) * 1974-02-08 1975-08-29
JPS5675829A (en) * 1979-11-27 1981-06-23 Yazaki Kako Kk Mandrel for inflation forming of plastic film, operation of mandrel and inflation forming apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109962A (en) * 1974-02-08 1975-08-29
JPS5675829A (en) * 1979-11-27 1981-06-23 Yazaki Kako Kk Mandrel for inflation forming of plastic film, operation of mandrel and inflation forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002008A (en) * 2006-06-22 2008-01-10 Gunze Ltd Garment
CN110328832A (en) * 2019-07-12 2019-10-15 广东金明精机股份有限公司 The accurate measuring and controlling equipment of bubble blown condensation mode and accurate investigating method
CN110328832B (en) * 2019-07-12 2021-02-19 广东金明精机股份有限公司 Bubble inflation condensation form accurate measurement and control equipment and accurate measurement and control method

Also Published As

Publication number Publication date
JPH0249215B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
JPS6028656B2 (en) Manufacturing method for double-walled synthetic resin pipes
JPS6026698B2 (en) Plastic film forming method and device
JPH09207200A (en) Manufacture of thick wall pipe of polyethylene
US9867968B2 (en) Balloon tube, balloon, balloon catheter, and balloon tube fabrication method
JPH0288216A (en) Mold device of hollow molded product and molding method of hollow molded product
ITMI20080997A1 (en) PLANT FOR THE EXTRACTION OF A BLOWN FILM
JPS58168519A (en) Cooler for inflation molding
US4997360A (en) Apparatus for manufacturing heat-shrinkable resin tube
JPS58168520A (en) Cooler for inflation molding
JPS58168521A (en) Cooler for inflation molding
JP3255485B2 (en) Blow molding machine
JPS5913322B2 (en) Thermoplastic film manufacturing method and equipment
CN219028178U (en) Cooling air ring of co-extrusion film blowing machine
JPS604751Y2 (en) Cooling dies for manufacturing heat insulating cladding tubes
CN218429949U (en) Inner cooling die head of film blowing machine
JP2000141450A (en) Spiral die
JP2001178284A (en) Vacuum pipe and drip tube for watering
JPH1170565A (en) Blowing-in nozzle of blow molding apparatus
JPS58222819A (en) Extrusion of inflatable film
JPS5989123A (en) Method and apparatus for molding inflation film
JPS612523A (en) Continuous manufacture of heat-shrinkable tube and apparatus therefor
JPS61235128A (en) Bubble stabilizing device upon forming inflation film
JP4788414B2 (en) Manufacturing method of perforated tube
JP3585589B2 (en) Inflation molding method
JP2606262Y2 (en) Thin tube forming equipment