JPS58168034A - Liquid crystal display of twisted nematic type - Google Patents

Liquid crystal display of twisted nematic type

Info

Publication number
JPS58168034A
JPS58168034A JP57050165A JP5016582A JPS58168034A JP S58168034 A JPS58168034 A JP S58168034A JP 57050165 A JP57050165 A JP 57050165A JP 5016582 A JP5016582 A JP 5016582A JP S58168034 A JPS58168034 A JP S58168034A
Authority
JP
Japan
Prior art keywords
liquid crystal
twisted nematic
display device
crystal display
polarizing plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57050165A
Other languages
Japanese (ja)
Inventor
Yutaka Nakagawa
豊 中川
Minoru Akatsuka
赤塚 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57050165A priority Critical patent/JPS58168034A/en
Publication of JPS58168034A publication Critical patent/JPS58168034A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To increase easily an operation margin, by changing the orienting direction of the liquid crystal molecule near the substrates of a liquid crystal cell and the adhering direction of polarizing plates. CONSTITUTION:The orienting direction of the liquid crystal molecule to be determined from the direction of bright view is deviated by 5-60 deg. and two sheets of polarizing plates 6a, 6b are disposed with at least one sheet thereof deviated by 1-30 deg. in a liquid crystal device of a twisted nematic type using the plates 6a, 6b. The plates 6a, 6b are so provided that the axes of polarization thereof are asymmetrical with respect to the linear symmetrical axis 18 in the orienting direction of the liquid crystal molecule.

Description

【発明の詳細な説明】 本発明は、マトリックス駆動に適したツイストネマチッ
ク型(TN) w高表示装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a twisted nematic (TN) w-height display device suitable for matrix driving.

近年、液り表示装置は、ウォッチや電卓等の小型表示器
としてすっかり定着したが、マイコン等の発達に伴い大
型で大容量の表示器としても期待されつつるる。この大
容量の表示を行うためにはマトリックス駆動が必然的と
なり、その場@液晶を高デユーテイで使用した時の動作
マージンを上げることが重要な課題となる。
In recent years, liquid display devices have become well-established as small-sized displays for watches, calculators, etc., but with the development of microcomputers, they are also expected to be used as large-sized, high-capacity displays. In order to perform this large-capacity display, matrix driving is necessary, and it is an important issue to increase the operating margin when using in-situ @liquid crystals at high duty.

この動作マージンを上げるには、液晶自体に改良を加え
る方法と液晶児外のセルパラメーター等で改良を加える
方法が考えられる。本発明は像高自体には何の変更も加
える事なしに、液晶セル基板近傍における沿、晶分子の
配向方向の変更および偏光板の貼付方法を変えることに
より、簡単に動作マージンを上げることができるもので
ある。
Possible ways to increase this operating margin include improving the liquid crystal itself and improving cell parameters outside of the liquid crystal. The present invention makes it possible to easily increase the operating margin by changing the alignment direction of the crystal molecules near the liquid crystal cell substrate and the method of attaching the polarizing plate, without making any changes to the image height itself. It is possible.

ところで一般に、液晶の屈折率異方性△nとギャップd
(μm)との積△n−dは液晶セルの特性に影響を与え
るが、TN液晶セルをマトリックス駆動した場合には△
n−dの大きさにより視認性か大きく異なる。即ち、Δ
n−dが大きい場合には、液晶セル正面でのコントラス
トシjつきやすいが、視野角が狭いという特性となり、
一方、Δn−dが比較的小さい場合には、視野角は広い
が正面でのコントラストがつきにくいという欠点をもつ
。本発明は、Δn−dの大きな液晶セルに関するもので
あり、背景層色の点よりΔn−d≧09のものを対象と
するものであり、2枚の偏光板を用いたツイストネマチ
ック型液晶表示装置において、明視方向から定まる配向
方向を5〜60°ずらすとともに、2枚の偏光板の内掛
なくとも1枚を1〜30°ずらし、配向方向の線対称軸
に対して2枚の偏光板の偏光軸が非対称となるようにし
たことを!%徴とするツイストネマチック型液晶表示装
置である。
By the way, in general, the refractive index anisotropy △n and the gap d of liquid crystal
The product △n-d with (μm) affects the characteristics of the liquid crystal cell, but when driving a TN liquid crystal cell in a matrix, △
Visibility varies greatly depending on the size of nd. That is, Δ
When n-d is large, contrast streaks tend to occur in front of the liquid crystal cell, but the viewing angle is narrow.
On the other hand, when Δn−d is relatively small, the viewing angle is wide, but there is a drawback that it is difficult to obtain contrast when viewed from the front. The present invention relates to a liquid crystal cell with a large Δn-d, and is intended for a liquid crystal cell with Δn-d≧09 from the viewpoint of background layer color, and relates to a twisted nematic liquid crystal display using two polarizing plates. In the device, the alignment direction determined from the clear viewing direction is shifted by 5 to 60 degrees, and at least one of the inner polarizing plates is shifted by 1 to 30 degrees, and the polarization of the two sheets is adjusted with respect to the line symmetry axis of the alignment direction. The polarization axis of the plate was made to be asymmetric! This is a twisted nematic type liquid crystal display device.

以下図に従い説明する。第1図は本発明のツイストネマ
チック型液晶セルの断面図である。
This will be explained below according to the diagram. FIG. 1 is a sectional view of a twisted nematic liquid crystal cell of the present invention.

セルの基本的榊成は従米の反射型TN液晶セルと全く同
一である。即ち、透°明電極(2a)。
The basic structure of the cell is exactly the same as Jubei's reflective TN liquid crystal cell. That is, a transparent electrode (2a).

(2b)を設けた基板(la)、(11))を相対向し
てシール材(8)でシールし、液晶(4)を注入して液
晶セル(5)を構成し、その画側にイメ光板(6a)。
The substrates (la) and (11)) provided with (2b) are facing each other and sealed with a sealing material (8), and liquid crystal (4) is injected to form a liquid crystal cell (5). Image light plate (6a).

(6b)を設け、さらにその一方の側に反射板(7)を
設置したものである。
(6b), and a reflecting plate (7) is further installed on one side thereof.

私版(la)、(lb)近傍における液晶分子の配列方
向はほぼ90°異なるように配向処理力;なされている
ので、液晶分子は基板(旨1でほぼ90゜のらせん構造
をとる。しかし、このらせん構造のねじれ方向には第2
図のように2種類が考えられ、液晶セルの明視方向(8
)を手前に設定した場合、(a)のように液晶分子が反
時計方向へねじれている場合を左旋性、(b)のように
時計方向にねじれている場合を右旋性と定義する。
The alignment direction of the liquid crystal molecules in the vicinity of (la) and (lb) is made to differ by approximately 90 degrees, so the liquid crystal molecules form a helical structure of approximately 90 degrees in the vicinity of the substrate (1).However, , in the twisting direction of this helical structure, there is a second
As shown in the figure, two types can be considered.
) is set toward the front, the case where the liquid crystal molecules are twisted counterclockwise as in (a) is defined as levorotatory, and the case where the liquid crystal molecules are twisted clockwise as in (b) is defined as dextrorotatory.

この明視方向は、その方向に目を置いて見たψ5合、即
ち、その方向を観察方向とした場合に最も見易くなる方
向であり、左旋性のHaを用いた場合、その配向方向は
第2図(A)に示すように表側の配向方向θAは時計廻
りで45°、裏側の配向方向θBは時絹廻りで一45°
となり、又、右旋性の液晶を用いた場合、その配向方向
は第2図(B)に示すように表側の配向方向θAけ時計
廻りで一45°、裏側の配向方向θBは時計廻りで45
°となる。
This direction of clear vision is the ψ5 position when the eye is placed in that direction, that is, the direction that is easiest to see when that direction is used as the observation direction.When using levorotatory Ha, the orientation direction is As shown in Figure 2 (A), the orientation direction θA on the front side is 45° clockwise, and the orientation direction θB on the back side is 145° clockwise.
In addition, when a dextrorotatory liquid crystal is used, the orientation direction is 45 degrees clockwise for the orientation direction θA on the front side and 45° clockwise for the orientation direction θB on the back side, as shown in Figure 2 (B). 45
°.

又、液晶セルに設置される偏光板(6a)、 (6b)
の偏光軸は、隣接する基縁における液晶分子の配列方向
とほぼ平行(平行貼り)又はほぼ垂直(垂直貼り)に設
置するのが音道であるが、リターデーションによる着色
の度合が少ない垂直貼りの方が有利であるので、以下垂
直貼りのものについてのみ説明するが、平行貼りの場合
も同様に可能なものである。
In addition, polarizing plates (6a) and (6b) installed in the liquid crystal cell
The sound path is to set the polarization axis almost parallel (parallel lamination) or almost perpendicular (vertical lamination) to the alignment direction of liquid crystal molecules at the adjacent base edge, but vertical lamination has a lower degree of coloring due to retardation. Since this is more advantageous, only the case of vertical attachment will be described below, but parallel attachment is also possible.

又、偏光板の偏光軸の交角り。1は左旋性セルを例にと
ると、第3図に示すように入射した偏光面が伝搬してい
く方向の挟角とする。表側の偏光板旧)と裏側の偏光板
021の回転方向の符号は、表裏偏光板の偏光軸とも図
示したようにダア。、を大きくする方向を正とし、ダア
。、を小さくする方向を負とし、以下偏光板の回転の状
態は、(OA。
Also, the intersection angle of the polarization axes of the polarizing plate. Taking a levorotatory cell as an example, 1 is the included angle in the direction in which the incident polarized light plane propagates as shown in FIG. The signs of the rotation directions of the front polarizing plate 021 and the back polarizing plate 021 are DA, as shown in the figure for the polarizing axes of the front and back polarizing plates. The direction of increasing , is positive, and Daa. The direction in which , is made smaller is negative, and the rotation state of the polarizing plate is (OA).

sB)のように示す。ここでmAは、表側の偏光板の通
常の偏光軸からのずれを示し、第3図では、液晶分子の
配向方向に直角な方向である方向(lυからのずれを時
計廻りで正に、反時計廻りで負に示す。JZIBは、裏
側の偏光板の偏光軸のずれを示し、第3図では同様に時
計廻シで負に、反時計廻りで正に示す。
sB). Here, mA indicates the deviation from the normal polarization axis of the polarizing plate on the front side. Clockwise rotation is negative. JZIB indicates the deviation of the polarization axis of the polarizing plate on the back side, and in FIG. 3, clockwise rotation is negative, and counterclockwise rotation is positive.

グA=−5°、χB=−5°、ダア。、=80°とする
ことにより、ダム−09,ρB=069戸ア。、=90
’の液晶表示装置1に比してマージンが向上することは
知られているが、この場合は(−5°、−5°)のよう
に表わす。この2つの場合、配向方向の森対称軸03)
に対して2枚の偏光板の偏光軸はいずれも対称となる。
GuA=-5°, χB=-5°, daa. , = 80°, dam -09, ρB = 069 door a. ,=90
It is known that the margin is improved compared to the liquid crystal display device 1 of ', but in this case it is expressed as (-5°, -5°). In these two cases, Mori symmetry axis in the orientation direction 03)
In contrast, the polarization axes of the two polarizing plates are symmetrical.

TN液晶表示装置の明視方向は、良く知られているよう
に表、裏基板の近傍における液晶分子の配向方向の中間
方向であり、第2図及び第3図では全て下方となり矢印
(81で示してるる。
As is well known, the clear viewing direction of a TN liquid crystal display device is an intermediate direction between the alignment directions of liquid crystal molecules in the vicinity of the front and back substrates, and in FIGS. It shows.

本発明では、以下との配向方向により定まる明視方向と
実際に見る方向である観察方向との差を、第4図に示す
如く明視方向(14a)が観察方向(15)に対して時
計廻り方向にある場合を正に、明視方向(14b)が観
察方向a9に対して反時計廻り方向にある場合を負にし
て説明する。
In the present invention, as shown in FIG. In the following description, the case where the direction is in the rotational direction is taken as positive, and the case where the clear viewing direction (14b) is in the counterclockwise direction with respect to the observation direction a9 is taken as negative.

本発明では、液晶の屈折率異方性Δnと液晶層の間隙d
(μm)の積Δn−dが、△n−d≧09μmの液晶セ
ルを用いることが好ましく、これは、Δn−aが太きい
ものは、特定の方向から見た場合の視認性、シャープネ
スが良いものであり、宙光板を少し回転させた場合の背
景着色が赤味をおびないためには、Δn−d≧0.9μ
mとされる。
In the present invention, the refractive index anisotropy Δn of the liquid crystal and the gap d of the liquid crystal layer are
It is preferable to use a liquid crystal cell in which the product Δn-d of (μm) is Δn-d≧09 μm.This means that a liquid crystal cell with a large Δn-a has poor visibility and sharpness when viewed from a specific direction. In order for the background coloring to be good and not to have a reddish tinge when the aerial light plate is slightly rotated, Δn-d≧0.9μ
It is assumed that m.

このような液晶セルを用い、配向方向を明視方向により
定まる本来の配向方向から5〜60゜すらすものであり
、又、2枚の偏光板の内掛なくとも1枚を1〜30°ず
らすものであり、配向方向の線対称軸に対して、2枚の
偏光板の偏光軸が非対称となるように、即ち、pA〜g
Bとなるようにされる。
Using such a liquid crystal cell, the alignment direction is shifted by 5 to 60 degrees from the original alignment direction determined by the clear viewing direction, and at least one of the inner polarizing plates is shifted by 1 to 30 degrees. The polarization axes of the two polarizing plates are asymmetrical with respect to the line symmetry axis of the alignment direction, that is, pA to g.
B.

これは、第2図のような通常の配向方向を有する液晶セ
ルにaA=OB、例えば(−5°、−5°)のように対
称的に偏光軸を動かすことにより、マージンは向上する
効果はあるが、本発明のように明視方向によシ定まる本
来の配向方向から配向方向がずれている場合には、必ず
しも見易くなく、マージンの向上はほとんど見られなく
、角度によっては逆にマージンが低下してしまう場合も
ある。
This is because the margin is improved by moving the polarization axis symmetrically, for example, (-5°, -5°), where aA=OB in a liquid crystal cell with a normal alignment direction as shown in Figure 2. However, when the alignment direction is deviated from the original alignment direction determined by the clear viewing direction as in the present invention, it is not necessarily easy to see, and there is hardly any improvement in the margin. may even decrease.

このため本発明では、液晶として左旋性の液晶を用いた
場合には、第5図に示すように、配向方向、偏光板か決
定される。同図において、明視方向Q6)が観察方向Q
7)がらψ−+30’ずれた例を示しておシ、明視方向
から定まる配向方向は、表側の配向方向は時計廻りにθ
A=7561裏側の配向方向は時計廻りにθB=−15
°とされる。
Therefore, in the present invention, when a levorotatory liquid crystal is used as the liquid crystal, the alignment direction and polarizing plate are determined as shown in FIG. In the figure, the clear viewing direction Q6) is the observation direction Q6).
7) An example is shown in which the orientation direction is determined from the clear viewing direction, and the orientation direction on the front side is θ clockwise.
A=7561 The orientation direction of the back side is θB=-15 clockwise.
°.

この例では、ψ=300としたが、本発明では5〜60
’とされるものであシ、ψく5°ではマージン向上の効
果がほとんどなく、ψ> 60’では、駆動電圧が著し
く高くなるとともに、観察方向のわずかなずれ、即ち、
ψが大きくなるようなずれに対して極端に視認性が低下
する現象が見られるため好ましくない。
In this example, ψ=300, but in the present invention, it is 5 to 60.
When ψ is less than 5 degrees, there is almost no margin improvement effect, and when ψ is greater than 60', the driving voltage becomes extremely high and there is a slight deviation in the observation direction, i.e.
This is not preferable because a phenomenon in which visibility is extremely reduced due to a shift in which ψ becomes large is observed.

このように左旋性の液晶を用いた坊゛合には、観察方向
からみて、赤側の配向方向は時計廻りにθA=105〜
50’となるようにされ、飯側の配向方向は時計廻りに
θB=15°〜−40oとなるようにされれば良い。
In this case, when a levorotatory liquid crystal is used, the orientation direction on the red side is clockwise from θA=105 to
50', and the orientation direction on the food side may be set so that θB=15° to -40° clockwise.

又、この例では、表側の偏光板の偏光軸のみがずらされ
ており、垂直貼りをしているだめ配向方向からのずれは
lp、=−1o°とされており、yJB=o°である。
In addition, in this example, only the polarization axis of the front polarizing plate is shifted, and since it is attached vertically, the deviation from the orientation direction is lp, = -1o°, and yJB = o°. .

この場合、配向方向の紳対称軸特から表側の偏光板は3
5°ずれておシ、裏側の偏光板は45°ずれており、2
枚の偏光板は非対称とされている。さらに、この2枚の
偏光嶽は表側の偏光板の偏光軸を、2枚の偏光板の交角
の内、偏光面が伝搬していく方向の交角g5POLが液
晶分子の回転角よりも小さくなる方向に10°ずらされ
ていることになる。
In this case, the polarizing plate on the front side is 3
The polarizing plate on the back side is shifted by 45 degrees, and the polarizer on the back side is shifted by 45 degrees.
The two polarizing plates are said to be asymmetrical. Furthermore, these two polarizing plates are arranged so that the polarizing axis of the front polarizing plate is set in a direction in which, among the intersection angles of the two polarizing plates, the intersection angle g5POL in the direction in which the polarization plane propagates is smaller than the rotation angle of the liquid crystal molecules. This means that it is shifted by 10 degrees.

本発明では、この配向方向の線対称軸Uから2枚の偏光
板を非対称となるようにずらすことを、配向方向をずら
すことと組み合せることにより、配向方向により定める
明視方向と異なるある特定の観察方向に藁いマージンを
発生させることができ、従来と同一の液晶を用いてよシ
尚いマルチプレックス駆動も・性を得ることができる。
In the present invention, by asymmetrically shifting the two polarizing plates from the line symmetry axis U of the alignment direction in combination with shifting the alignment direction, a specific direction different from the clear viewing direction defined by the alignment direction A thin margin can be generated in the viewing direction, and even better multiplex drive performance can be obtained using the same liquid crystal as the conventional one.

本発明では、この偏光板をずらす角度は1〜30°とさ
れる。
In the present invention, the angle at which the polarizing plate is shifted is 1 to 30 degrees.

又、この例では表側の偏光板をFBA≦−1°の方向に
動かしたが、121A≧1°の方向にずらすことはあま
り効果がなく、偏光面が伝搬していく方向のダ角り。1
が液晶分子の回転角より小さくなる方向、即ち、60°
≦す。1≦89°とされることがマージン向上の点から
みて好ましい。
Further, in this example, the front polarizing plate was moved in the direction of FBA≦−1°, but shifting in the direction of 121A≧1° is not very effective, and the polarizing plate is shifted in the direction in which the polarization plane propagates. 1
is smaller than the rotation angle of liquid crystal molecules, that is, 60°
≦ It is preferable that 1≦89° from the viewpoint of improving the margin.

又、逆に右旋性の液晶を用いた場合にH“、第6図に示
すように、明視方向Q9iが観察力向(イ)かとされて
いる。右旋性の液晶を用いた馴1合に11観察方向から
みて、表側の配置同方向は時計廻りにθA=−50・5
へ5・となるようにされ、裏側の配向方向は時計剃りに
θB=40°〜−15°とされれば良い。
Conversely, when a dextrorotatory liquid crystal is used, H'', as shown in Figure 6, the clear vision direction Q9i is said to be the viewing power direction (A). 11 Viewed from the observation direction, the front side is placed in the same direction as θA = -50・5 clockwise.
The orientation direction of the back side may be set to θB=40° to −15° clockwise.

又、この例でも表側の隼米板の偏光軸のみがずらされて
おり、ρA−−100とされており、ρB=0゜のため
、配向方向の線対称軸に対して2枚の偏光板は非対称と
されている。この偏光軸のずらされている方向は、戸ア
。、が液晶分子の回転角よりも小さくなる方向に表側の
偏光板會1へ・30’すらせば良い。
Also, in this example, only the polarization axis of the Hayabusa plate on the front side is shifted, and it is set to ρA--100, and ρB = 0°, so the two polarizing plates are is considered to be asymmetric. The direction in which this polarization axis is shifted is door a. , is smaller than the rotation angle of the liquid crystal molecules by at least 30' toward the polarizing plate 1 on the front side.

この偏光板のすらされる角度は、1°未満では効果が不
光分であシ、又、30°を越えると*鼾着色が表示とし
て不適当となったり、フントラストがつきにくくなるた
め1〜30°とされる。
If the angle at which this polarizing plate is slid is less than 1 degree, the effect will be poor, and if it exceeds 30 degrees, the snoring coloring will become inappropriate for display and the stain will be difficult to attach. It is assumed to be 30°.

次いで試験例を説明する。Next, test examples will be explained.

数品として屈折率異方性Δn=0.132の液晶をセル
fW+ha−7μmのセルに注入してΔn−d=0.9
2の争件とし、明視方向を観察方向からψ−30’ずら
した。即ち、第5図に示す配向方向とした左旋性セルを
作成した。
A few liquid crystals with refractive index anisotropy Δn=0.132 were injected into a cell fW+ha-7 μm to obtain Δn-d=0.9.
2, the direction of clear vision was shifted by ψ-30' from the direction of observation. That is, a levorotatory cell with the orientation shown in FIG. 5 was prepared.

この浴゛晶セルを用いて、偏光板を(o’、o’)即ち
全くずらさない状態で貼着して、マルチプレックス駆動
の目安となるパラメーターである急歳性M8、視角依住
性Mqを測定した。この結、11.。
Using this bath crystal cell, attach the polarizing plates (o', o'), that is, without shifting them at all, and adjust the rapid aging M8 and viewing angle dependence Mq, which are parameters that serve as a guideline for multiplex drive. was measured. This conclusion, 11. .

果を躯7図に示す。The result is shown in Figure 7.

ナオ、Me、Mqは以下の式で示され、■、。、■、。Nao, Me, and Mq are represented by the following formula, ■. ,■,.

は夫々相対輝度が90%、50%となる電圧であり、θ
は液晶セルの法厩・方向から観察方向へ側った角度であ
る。
are the voltages at which the relative brightness is 90% and 50%, respectively, and θ
is the angle from the normal direction of the liquid crystal cell toward the viewing direction.

MS=v90 (θ=10°)/V50(θ−10°)
Mq、=V、O(θ=40°)/V*o(θ=10°)
第7図からも明らかなように、動作マージンど櫃接関係
のあるMe・Mqは、観察方向では明視方向よシも低く
なり、何らマージン向上に役に立っていない。又、この
場合のMe・MqU明視方向で約0.76%度で、図に
示していないが、明視方向を中心としてほぼ対称と々っ
でいる。
MS=v90 (θ=10°)/V50(θ-10°)
Mq,=V,O(θ=40°)/V*o(θ=10°)
As is clear from FIG. 7, the operating margins of Me and Mq, which have a horizontal relationship, are lower in the viewing direction than in the clear viewing direction, and are not useful for improving the margin at all. Further, in this case, Me/MqU is about 0.76% degree in the clear vision direction, and although not shown in the figure, it is almost symmetrical about the clear vision direction.

このように従来の方式では、明視方向が観覧方向となる
ように配向処理することが最も適していることとなる。
As described above, in the conventional system, it is most suitable to perform orientation processing so that the clear viewing direction becomes the viewing direction.

第8図は、同じ液晶セルを用い、偏光板を(−5°、−
5°)、即ち、5paL= s o’で、配向方向の線
対称軸に対して2枚の偏光板の偏光軸が対称になるよう
にして測定した” ’ + Mq+ Me・Mqを示す
。この場合、偏光板、をずらしているため明視方向にお
けるMe−Mq及び観察方向におけるMe・Mqともに
向上しているが、やはり明視方向のMe・Mqの方が高
く、明視方向を観察方向とする方が好ましい。明視方向
でのMe・Mqは0.78弱であった。
Figure 8 shows the same liquid crystal cell with polarizing plates (-5°, -
5 degrees), that is, 5 paL = s o', and the polarization axes of the two polarizing plates are symmetrical with respect to the line symmetry axis of the orientation direction. In this case, since the polarizing plate is shifted, both Me-Mq in the clear viewing direction and Me・Mq in the observation direction are improved, but Me・Mq in the clear viewing direction is still higher, and when the clear viewing direction is changed from the viewing direction. It is more preferable that Me.Mq in the clear vision direction is a little less than 0.78.

これに対して、第9図は本発明の実施例で、表側の偏光
板を10°すらして”POL−80’とした第5図例示
の構成で測定したものであり、観察方向付近でのMe−
Mqが向上しているものでるり、明視方向である30°
の位置から反対方向(/−= −30°の位tiiまで
Ms−Mqがほぼ0.78以上となっており、高いマー
ジンが得うれる。
On the other hand, Fig. 9 shows an example of the present invention, which was measured with the configuration shown in Fig. 5 with the polarizing plate on the front side bent by 10 degrees and set as "POL-80", and near the observation direction. Me-
The one with improved Mq is 30 degrees, which is the clear vision direction.
Ms-Mq is approximately 0.78 or more from the position to the opposite direction (/-=-30° tii), and a high margin can be obtained.

このように偏光板を配向方向の線対称軸に対して非対称
に配することにより、Me・Mqも明視方向に対して非
対称となり、特定の方向でMe・Mqが増大することと
なり、対称とした場合よりも高くなった。
By arranging the polarizing plate asymmetrically with respect to the line symmetry axis in the orientation direction, Me/Mq also becomes asymmetrical with respect to the clear viewing direction, and Me/Mq increases in a specific direction, making it symmetrical. It was higher than if it were.

この図からも明らかなように観察方向が25゜から右9
i1jで角度依存性Mq及びMe−Mqが優れており、
ψ≧5°で優れていることがわかる。又、観察方向から
一30’を越えるとMs−Mqの向上よりもVSOの増
加の割合が著しく、表示が見づらくなるため、ψ≦60
°が好ましいこともわかる。即ち、yso(θ=10°
)が上昇すると、観察方向の少しのすれにより、一方の
側では電圧不足で表示がほけ、反対の側では血圧過剰で
クロストーク気味という表示として非常に見にくいもの
となる。このことから明視方視方向と観察方向の差は、
ψ=5〜60°が適当であることがわかる。なお、逆方
向では、即ち、ψ≦θ°で1:M日・Mqは低下してし
まうものであった。
As is clear from this figure, the observation direction is 9 degrees to the right from 25 degrees.
i1j has excellent angle dependence Mq and Me-Mq,
It can be seen that ψ≧5° is excellent. Furthermore, if the distance from the viewing direction exceeds 130', the increase in VSO is more significant than the improvement in Ms-Mq, and the display becomes difficult to see, so ψ≦60
It can also be seen that ° is preferable. That is, yso(θ=10°
) increases, a slight deviation in the viewing direction will cause the display on one side to be blurred due to insufficient voltage, and on the other side to be extremely difficult to see as the display may indicate excessive blood pressure and crosstalk. From this, the difference between the clear vision direction and the observation direction is
It can be seen that ψ=5 to 60° is appropriate. Note that in the opposite direction, that is, when ψ≦θ°, 1:M days·Mq decreases.

以上のように本発明においては、配向方向と@光軸を適
当に設定することによシ、マルチプレックス特性の良い
TN液晶表示装置が←られるものである。
As described above, in the present invention, by appropriately setting the alignment direction and the optical axis, a TN liquid crystal display device with good multiplex characteristics can be produced.

又、上述の実施例では、左旋性のセルを用いたため、ψ
−5〜60°とされたが、右旋性セルのW1合には全く
対称にψ=−5@〜−60’とされれば同等の性能が得
られる。
In addition, in the above embodiment, since a levorotatory cell was used, ψ
Although it was set to -5 to 60 degrees, equivalent performance can be obtained if ψ is set to -5@ to -60' completely symmetrically in the W1 case of a dextrorotatory cell.

この他、上述の実施例でけk 111の偏光板をずらし
たが、%(@すの偏光板のみを動かす、又は両方の偏光
板を動かしても良く、少なくとも1枚の偏光板を動かし
て、かつ配向方向0脚対称軸に対して2枚の偏光板の=
*軸が非対象と々るようにされれば良く、その角度は実
験によシ本元明の範囲内で適宜定められれば良い。
In addition, in the above embodiment, the polarizing plate of 111 was moved, but it is also possible to move only the polarizing plate of % (@), or both of the polarizing plates, or move at least one polarizing plate. , and the orientation direction of the two polarizing plates with respect to the 0-leg symmetry axis =
*The axes may be set asymmetrically, and the angle may be determined as appropriate within the range specified by Motoaki by experiment.

本発明は、これに限られず、例えば偏光板を゛れG板内
面にアンダーコートとして形成する、偏光板上に電極を
形成した側光板基板を用いる等しても良く、各種樹脂、
無機物質のオーバーコートを設ける、斜め蒸着、ラビン
グ等の配向処蜘ヲする、液晶に多色性色素を混入する、
偏光膜、カラーフィルターを使用する、多層セルにする
等神々の応用が可能である。
The present invention is not limited to this, and for example, a polarizing plate may be formed as an undercoat on the inner surface of the G plate, or a side light plate substrate with electrodes formed on the polarizing plate may be used, and various resins,
Providing an overcoat of inorganic material, performing alignment treatments such as oblique vapor deposition and rubbing, mixing pleochroic dyes into liquid crystal,
It is possible to use it in a variety of ways, such as using polarizing films, color filters, and creating multilayer cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、TN液晶表示装置の断面図。 第2図乃至第6図は、本発明のTN液晶表示装置の曲、
明図。 第7図乃至第9図は、実施例及び比較例の測定結果を示
すグラフ。 la、lb・・・基板  2a、2b・・・電槽6a、
6b・・・偏光板 萼 2  ffi。 茅 5 図 茅乙川 f、京j町かうり−れ 場り肩1才1ク心゛うりJ−れ 場」鱈ρI司る3やす一叡 手続五UzLE占:(方式) 昭和58年411ノl [」 特許庁長官 若杉和夫殿 1、事1′1の表ボ 昭和57 ’l特許願第50165号 !9発明の名称 )ぞストネマチック型液晶表小装置 、3.補正をする殻 ・耗件との関係  特許出願人 住所  東京都千代田区丸の内−二]ll&2号氏名 
(004)旭硝r株式会社 ・10代理人 〒105 J2.補止分合の11 (−1 昭[LL+8年3JI29日 (発送日)(・、補正に
より増加jる発明の数   なし7以上 茅 2 (A)
FIG. 1 is a sectional view of a TN liquid crystal display device. 2 to 6 show the songs of the TN liquid crystal display device of the present invention,
Ming diagram. FIG. 7 to FIG. 9 are graphs showing measurement results of Examples and Comparative Examples. la, lb... board 2a, 2b... battery case 6a,
6b...Polarizing plate calyx 2 ffi. Kaya 5 Illustrated Kayotokawa f, Kyoto Town Kauri-reba shoulder 1-year-old 1-ku heart J-reba" Cod ρI preside over 3 Yasu Kazuei procedure 5 UzLE fortune telling: (Method) 1988 411 Nol ['' Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1987'1 Patent Application No. 50165! 9) Name of the invention) Stonematic type liquid crystal display device, 3. Relationship with shells and attrition matters to be amended Patent applicant address: Marunouchi-2, Chiyoda-ku, Tokyo] ll & 2 name
(004) Asahi Glass Co., Ltd. 10 agents 105 J2. 11 (-1 Akira [LL + 8 years 3JI 29 days (shipment date)) (・, Number of inventions increased by amendment None 7 or more 2 (A)

Claims (1)

【特許請求の範囲】 (1)2枚の偏光板を用いたツイストネマチック型液晶
表示装置において、明視方向から尾まる配向方向を5〜
60°ずらすとともに、2枚の偏光板の内掛なくとも1
枚ケ1〜30°丁らし、配向方向の線対称軸に対して2
枚の偏光板の偏光軸が非対称になるよ゛うにしたことを
特徴とするツイストネマチック浄液?9表示装置。 (2)  液晶の屈折率異方性Δn、!:′p品〜の間
隙d(μm)の稼△n−dが、0.9μm以上であるこ
とを特徴とする特許請求の範囲第1項記載のツイストネ
マチック型液晶表示装置。 (8)  表側の偏光板の偏光軸を、相対向する偏光板
の交角の内、偏光面が伝搬していく方向の交角が液晶分
子の回転角より小さくなる方向に1〜30°ずらしたこ
とを特徴とする特許請求の範囲第1項又は=’s 2項
記載のツイストネマチック型液晶表示装置。 (4)  液晶として左旋性の液晶を用い、観察方向か
らみて表側の配向方向が時計廻りに105゜〜506と
し、裏側の配向方向が時計廻シに15°〜−40’とし
たことを特徴とする特許請求の範囲第3項記載のツイス
トネマチック型液晶表示装置。 (5)  液晶として右旋性の液晶を用い、観察方向か
らみて表側の配向方向が時計廻りに−50゜〜−105
°とし、裏側の配向方向が時計廻りに40°〜−15°
としたこと看特徴とする特許請求の範囲算3項記載のツ
イストネマチック型液晶表示装置。
[Claims] (1) In a twisted nematic liquid crystal display device using two polarizing plates, the alignment direction from the clear viewing direction is
In addition to shifting the polarizer by 60 degrees, the inner angle of the two polarizing plates should be at least 1
Align the sheets by 1 to 30 degrees, 2 to the axis of symmetry in the orientation direction.
Twisted nematic purification liquid characterized by the fact that the polarization axes of the polarizing plates are asymmetrical? 9 display device. (2) Refractive index anisotropy Δn of liquid crystal,! 2. The twisted nematic liquid crystal display device according to claim 1, wherein the gain Δn-d of the gap d (μm) between the :'p product and the product is 0.9 μm or more. (8) The polarization axis of the polarizing plate on the front side is shifted by 1 to 30 degrees in a direction such that among the intersection angles of the opposing polarizing plates, the intersection angle in the direction in which the polarization plane propagates is smaller than the rotation angle of the liquid crystal molecules. A twisted nematic liquid crystal display device according to claim 1 or claim 2, characterized in that: (4) A levorotatory liquid crystal is used as the liquid crystal, and the orientation direction on the front side is 105° to 506° clockwise when viewed from the viewing direction, and the orientation direction on the back side is 15° to -40' clockwise. A twisted nematic liquid crystal display device according to claim 3. (5) A dextrorotatory liquid crystal is used as the liquid crystal, and the orientation direction of the front side is -50° to -105° clockwise when viewed from the viewing direction.
°, and the orientation direction of the back side is 40° to -15° clockwise.
A twisted nematic liquid crystal display device according to claim 3, characterized in that:
JP57050165A 1982-03-30 1982-03-30 Liquid crystal display of twisted nematic type Pending JPS58168034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050165A JPS58168034A (en) 1982-03-30 1982-03-30 Liquid crystal display of twisted nematic type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050165A JPS58168034A (en) 1982-03-30 1982-03-30 Liquid crystal display of twisted nematic type

Publications (1)

Publication Number Publication Date
JPS58168034A true JPS58168034A (en) 1983-10-04

Family

ID=12851586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050165A Pending JPS58168034A (en) 1982-03-30 1982-03-30 Liquid crystal display of twisted nematic type

Country Status (1)

Country Link
JP (1) JPS58168034A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249854A (en) * 1975-10-17 1977-04-21 Seiko Epson Corp Liquid crystal display device
JPS5630118A (en) * 1979-08-21 1981-03-26 Sharp Corp Liquid crystal display element
JPS5817414A (en) * 1981-07-24 1983-02-01 Seiko Epson Corp Liquid crystal optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249854A (en) * 1975-10-17 1977-04-21 Seiko Epson Corp Liquid crystal display device
JPS5630118A (en) * 1979-08-21 1981-03-26 Sharp Corp Liquid crystal display element
JPS5817414A (en) * 1981-07-24 1983-02-01 Seiko Epson Corp Liquid crystal optical device

Similar Documents

Publication Publication Date Title
JP2002040428A (en) Liquid crystal display device
JP2007108654A (en) Transflective type liquid crystal display device having high transmittance and wide viewing angle characteristics
JPH0365926A (en) Liquid crystal display
JPH06337421A (en) Reflection type liquid crystal display element
JPS6353528B2 (en)
JP2000121831A (en) Different phase film
JP5497286B2 (en) Liquid crystal display
JP2008537175A (en) Bistable twisted nematic (BTN) liquid crystal display
TW468080B (en) Liquid crystal display device
JPS58168034A (en) Liquid crystal display of twisted nematic type
WO2001018593A1 (en) Liquid crystal shutter
US20050140901A1 (en) Fringe field switching liquid crystal display
JPS5814118A (en) Twisted nematic type liquid crystal display device
JPS63279229A (en) Liquid crystal display device
JPH035721A (en) Liquid crystal display element
JPH06235914A (en) Liquid crystal display device
JP2580623B2 (en) Liquid crystal display
JP3074805B2 (en) Display element
JPS62153821A (en) Liquid crystal display element
JPH03276123A (en) Liquid crystal display element
JPH1039306A (en) Liquid crystal display device
JPH01147430A (en) Liquid crystal display element
JPH01124822A (en) Liquid crystal display element
JPH0273327A (en) Liquid crystal display element
JPS61219933A (en) Liquid crystal display device