JPS58168029A - Multibeam recording device - Google Patents

Multibeam recording device

Info

Publication number
JPS58168029A
JPS58168029A JP57050450A JP5045082A JPS58168029A JP S58168029 A JPS58168029 A JP S58168029A JP 57050450 A JP57050450 A JP 57050450A JP 5045082 A JP5045082 A JP 5045082A JP S58168029 A JPS58168029 A JP S58168029A
Authority
JP
Japan
Prior art keywords
beams
semiconductor laser
prism
mirror
prisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57050450A
Other languages
Japanese (ja)
Inventor
Kenichi Morimoto
賢一 森元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP57050450A priority Critical patent/JPS58168029A/en
Publication of JPS58168029A publication Critical patent/JPS58168029A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized, high-performance multibeam recording device, by shaping beams circularly through prisms and also putting them together simultaneously. CONSTITUTION:Semiconductor laser light sources 1a and 1b, collimator lenses 2a and 2b, and the prisms 3a and 3b each having a 45-56 deg. vertical angle and a 10-25 deg. angle of beam projection are provided; the prism 3b is fitted with a dichroic mirror as an interference filter. Further, a reflecting mirror 5, galvano- mirror 6, ftheta lens 7, and photosensitive medium 8 are also provided. Two light beams from semiconductor laser light sources 1a and 1b having, for example, 840mum wavelength and 780mum wavelength are collimated separately by the collimator lenses 2a and 2b into parallel beams, which are shaped into round beams by the prisms 3a and 3b. Those beams are put together by the dichroic mirror 4 and scanned by one galvano-mirror 6 to form an image on the photosensitive medium 8 through the ftheta lens 7, thus performing recording.

Description

【発明の詳細な説明】 本発明はマルチビーム記録装置に関する。[Detailed description of the invention] The present invention relates to a multi-beam recording device.

半導体レーザを使用した光デイスク装置および光プリン
タ装置等が開発されているがこれらの装置は、高速で高
分解能が要求される。
Optical disk devices, optical printer devices, and the like that use semiconductor lasers have been developed, but these devices require high speed and high resolution.

そのために、複数個の光ビームで記録するマルチビーム
記録装置はさらにはレーザアレイ素子を用いた記録装置
が提案されている。
To this end, multi-beam recording devices that record with a plurality of light beams and recording devices that use laser array elements have been proposed.

しかし、この半導体レーザからの光ビームをレンズ等に
よって集光した光スポットの形状は楕円形状であるため
、光デイスク装置および光プリンタ装置においては円形
の光スポットの場合と比べて記録密度を上げることがで
きない欠点がある。
However, since the light spot formed by condensing the light beam from this semiconductor laser with a lens or the like has an elliptical shape, it is difficult to increase the recording density in optical disk devices and optical printer devices compared to the case of a circular light spot. There is a drawback that it cannot be done.

従って、従来は光学装置内に円形スリット等をもうけて
光ビームを円形状に変侠していたが、光ビームがスリッ
トでケラしてしまうためにパワー効率が著しく悪くなっ
てしまうことになる。
Therefore, in the past, a circular slit or the like was provided in the optical device to change the light beam into a circular shape, but the light beam was vignetted by the slit, resulting in a significant decrease in power efficiency.

本発明は、上記した欠点を解決することを目的とし、プ
リズムによってビーム形状を変形して円形の光ビームを
作ると同時に複数個の光ビームを合成してマルチビーム
記録を可能としたことを特徴とする。
The present invention aims to solve the above-mentioned drawbacks, and is characterized in that it transforms the beam shape using a prism to create a circular light beam, and at the same time combines multiple light beams to enable multi-beam recording. shall be.

以下に本発明の一実施例を説明する。An embodiment of the present invention will be described below.

まず、半導体レーザについて説明する。第1図に示すよ
うに半導体レーザ光源1から出射した元ビームは、その
出射パターンがX軸とY軸方向で異なった大きさを示す
楕円形状となる。それは甲−導体レーザは構造上円形の
ビーム形状ではなく、光ビーム放射角は半値全角で表わ
して、接合に平行な方向と垂直な方向の比(以下楕円率
と云うU)が1対5にもなる。
First, the semiconductor laser will be explained. As shown in FIG. 1, the original beam emitted from the semiconductor laser light source 1 has an elliptical emission pattern with different sizes in the X-axis and Y-axis directions. A: Due to its structure, a conductor laser does not have a circular beam shape, and the light beam radiation angle is expressed in full width at half maximum, and the ratio of the direction parallel to the junction to the direction perpendicular to it (hereinafter referred to as ellipticity U) is 1 to 5. It will also happen.

しかし、近時、技術が進歩して半導体レーザのストライ
プ幅およびストライプとストライプ両端との屈折率差を
工夫して円形に近い放射角が得られるようになって米た
がこれも円形ではなく第11円率が1対2から1対3程
度であってそれ以上の円形ビームは光出力の減少にな′
るばかりでなく、リングラフィの面で加工が難しいので
半導体レーザの楕円率は1対2から1対3程度が最も容
易に手に入ることのできる半導体レーザである。
However, with recent advances in technology, it has become possible to obtain radiation angles that are close to circular by adjusting the stripe width and the refractive index difference between the stripes and both ends of the semiconductor laser. If the circular ratio is around 1:2 to 1:3 and the circular beam is larger than that, the optical output will decrease.
In addition to being difficult to process in terms of phosphorography, the most easily available semiconductor laser has an ellipticity of about 1:2 to 1:3.

第2図は本発明の原理図であシ、1は半導体レーザ光源
、2はコリメータレンズ、3はプリズムでラシ、半導体
レーザ光源1より出射された光ビームはコリメータレン
ズ2によって平行光ビームとなるように半導体レーザ光
源1は配置してちる。
FIG. 2 is a diagram showing the principle of the present invention. 1 is a semiconductor laser light source, 2 is a collimator lens, and 3 is a prism. The light beam emitted from the semiconductor laser light source 1 is turned into a parallel light beam by the collimator lens 2. The semiconductor laser light source 1 is arranged as shown in FIG.

この平行光ビームはプリズム3を通過すると、屈折の法
則に従って角度をもって出射されるために屈折された方
向の光ビーム形状は変化する。
When this parallel light beam passes through the prism 3, it is emitted at an angle according to the law of refraction, so that the shape of the light beam in the refracted direction changes.

よって、プリズム3に入射する光ビームの入射角を変え
れば屈折の法則に従って出射角が変るので任意に光ビー
ムのビーム形状を変えることができる。
Therefore, if the incident angle of the light beam entering the prism 3 is changed, the exit angle will change according to the law of refraction, so the beam shape of the light beam can be changed arbitrarily.

これは屈折率nの光学ガラスで構成された頂角αのプリ
ズムに、入射角θ(可逆的であるので出射角でもよい)
で光ビームが入射するとき、出射光ビームの屈折された
方向の光ビームの形状は以下の倍率mで決まる。
This is a prism with an apex angle α made of optical glass with a refractive index n, and an incident angle θ (as it is reversible, the exit angle may also be used)
When a light beam is incident at , the shape of the light beam in the refracted direction of the output light beam is determined by the following magnification m.

m−cos[: arcstn(n5in(α−a r
 c sin (sinθ/。))):]/四〇 第3図は、屈折率1.5の光学ガラスBK7の材料で作
られたプリズムに入射する光ビームの変形社を倍率mで
示したグラフであシ、斜線部は本発φ」の範囲を示した
ものである。
m-cos[: arcstn(n5in(α-a r
c sin (sin θ/.))):]/40 Figure 3 is a graph showing the deformation of a light beam incident on a prism made of optical glass BK7 material with a refractive index of 1.5, expressed as a magnification m. The shaded area indicates the range of the original φ.

第4図は本発明の一実施例を示す説明図であり、1a、
1bは半導体レーザ光源、2a 、2bはコリメータレ
ンズ、3a、3bはプリズムでアリ、3bには干渉フィ
ルタとしてダイクロイックミラー4が伺いている。5は
反射ミラー、6はガルバノミラ−17はfθレンズ、8
は感光媒体である。。
FIG. 4 is an explanatory diagram showing one embodiment of the present invention, 1a,
1b is a semiconductor laser light source, 2a and 2b are collimator lenses, 3a and 3b are prisms, and 3b is a dichroic mirror 4 as an interference filter. 5 is a reflection mirror, 6 is a galvanometer mirror, 17 is an fθ lens, 8
is a photosensitive medium. .

そこで、例えば波長840 nmの半導体レーザ光源1
aと波長780 nmの半導体レーザ光源1bの2つの
光ビームは、それぞれ別々にコリメータレンズ2a 、
2bによって平行光ビームとなシ、5第3図に示す要領
によってプリズム3a、3bで光ビーム形状が円形に変
形される。
Therefore, for example, a semiconductor laser light source 1 with a wavelength of 840 nm is used.
The two light beams from the semiconductor laser light source 1b having a wavelength of 780 nm and a collimator lens 2a,
The light beam is transformed into a parallel light beam by the light beam 2b, and the shape of the light beam is transformed into a circular shape by the prisms 3a and 3b in the manner shown in FIG.

円形に変形されたそれぞれの光ビームはダイクロイック
ミラー4で合成され、1つのガルバノミラ−6によって
走査され、f0レンズIで感光媒体8上に結像して記録
する。
The respective circularly deformed light beams are combined by a dichroic mirror 4, scanned by one galvanometer mirror 6, and imaged onto a photosensitive medium 8 by an f0 lens I for recording.

以上の構成で、半導体レーザ光源は可視域に行くほどパ
ワーが低くなる傾向にあるが、感光媒体8は可視域はど
感度が良いので、たとえば840nmと780 nmの
波長をもつ二つの光ビームでマルチビーム記録装置を構
成しても十分にその性能を満足する装置とすることがで
きる。
With the above configuration, the power of a semiconductor laser light source tends to decrease toward the visible region, but since the photosensitive medium 8 has good sensitivity in the visible region, it is possible to use two light beams with wavelengths of 840 nm and 780 nm, for example. Even if a multi-beam recording device is configured, the device can sufficiently satisfy its performance.

なお、干渉フィルタとしてのダイクロイックミラー4は
、入射する光ビームの入射角が限られた範囲でなければ
効率よく波長で分離することができない。それは、ダイ
クロイックミラー4の特性から入射角が大きいほどS偏
光とP偏光の特性が分離し、全体の波長透過率特性がな
だらかな特性を有することになる。このことは、半導体
レーザ光源1a、ibの波長差が小さいほど入射角を小
さくしなければ2つの光ビームの合成ができなくなるこ
とである。
Note that the dichroic mirror 4 as an interference filter cannot efficiently separate the incident light beams by wavelength unless the angle of incidence is within a limited range. This is because, from the characteristics of the dichroic mirror 4, the larger the incident angle is, the more the characteristics of S-polarized light and P-polarized light are separated, and the overall wavelength transmittance characteristics have a gentler characteristic. This means that the smaller the wavelength difference between the semiconductor laser light sources 1a and ib, the more difficult it becomes to combine the two light beams unless the incident angle is made smaller.

一般に、ダイクロイックミラーはこのような用途では入
射角が25°以下で使用しなければ効率よく波長で分離
することができない。これは通常の干渉フィルタを使用
したときも同様である。
Generally, in such applications, dichroic mirrors cannot efficiently separate wavelengths unless they are used at an incident angle of 25° or less. This also applies when a normal interference filter is used.

また、装置構成上あるいは光学部品の配置上ダイクロイ
ツクミラーへの入射角がlθ°以下では部品配置等の制
約が大きくなって困難である。
Furthermore, due to the device configuration or the arrangement of optical components, if the angle of incidence on the dichroic mirror is less than lθ°, restrictions on the arrangement of components etc. become large, making it difficult.

従って入射角はl O’から25°の範囲で設計するの
が最も良好な結果を得る。
Therefore, the best results can be obtained by designing the incident angle within a range of 25° from l O'.

以上のようなマルチビーム記録装置によると、プリズム
を第3図の斜線部で示す如く、光ビームの楕円率に合わ
せて、倍率mを1/2から1/3の範囲に設定し、出射
角を上記グイクロイックミラーの司変人射角範囲に設定
することにより、プリズムに対して特別な角度を鳴しな
いでダイクu1ツクミラーを配置することができて、円
形の光ビームを得ることができる。
According to the multi-beam recording device as described above, the magnification m of the prism is set in the range of 1/2 to 1/3 according to the ellipticity of the light beam, as shown by the shaded area in FIG. By setting the dichroic mirror to the range of the radiation angle of the dichroic mirror, it is possible to arrange the dichroic mirror without making a special angle with respect to the prism, and it is possible to obtain a circular light beam.

さらに、複数の光ビームを合成する場合にプリズム面に
ダイクロイックミラー面を形成したために、全体が小型
で性能もよいマルチビーム記録装置とすることができる
Furthermore, since a dichroic mirror surface is formed on the prism surface when a plurality of light beams are combined, a multi-beam recording device that is compact overall and has good performance can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体レーザの光ビームを示す説萌凶、第2囚
は本発明の原理図、第3図は光ビームの変形量を示した
グラフ、第4図は本発明の一実施例を示す説明図である
。 1・・・半導体レーザ光源 2・・・コリメータレンズ
3・・・プリズム 4・・・グイクロイックミラー 5
・・・反射ミラー 6・・・ガルバノミラ−7・・・レ
ンズ8・・・感光媒体 特許出願人 沖電気工業株式会社 代理人弁理士 金  倉  喬  二 角2囚 竜30 出射角 θ @4′giA
Figure 1 is a diagram showing the light beam of a semiconductor laser, Figure 2 is a diagram of the principle of the present invention, Figure 3 is a graph showing the amount of deformation of the light beam, and Figure 4 is an example of an embodiment of the present invention. FIG. 1... Semiconductor laser light source 2... Collimator lens 3... Prism 4... Guicroic mirror 5
... Reflection mirror 6 ... Galvano mirror 7 ... Lens 8 ... Photosensitive medium Patent applicant Oki Electric Industry Co., Ltd. Representative patent attorney Takashi Kanakura Nikaku 2 Prison Dragon 30 Output angle θ @4'giA

Claims (1)

【特許請求の範囲】 1、波長の異なる光ビームを出射する複数の半導体レー
ザ光源と、この各光ビームを平行光ビームとす石ように
それぞれの半導体レーザ光源に対向配置したコリメータ
レンズと、このコリメータレンズから出射した光ビーム
を入射して円形状の光ビームにする各コリメータレンズ
に対向設置したプリズムと、このプリズムからの出射光
ビームを合成してマルチビームを形成する上記プリズム
の内の1つのプリズムの側面に設けた干渉フィルタとよ
り成ることを特徴とするマルチビーム記録装置。 2、 プリズムの頂角が4rから56°の範囲で、この
プリズムからの出射光ビームの出射角が1□’から25
°の範囲にあるようにしたことを特徴とする特許請求の
範囲第1項記載のマルチビーム記録装置。
[Scope of Claims] 1. A plurality of semiconductor laser light sources that emit light beams with different wavelengths, a collimator lens that converts each of the light beams into a parallel light beam and is disposed opposite to each of the semiconductor laser light sources, and A prism installed opposite each collimator lens to input the light beam emitted from the collimator lens to form a circular light beam, and one of the above prisms to combine the light beams emitted from the prism to form a multi-beam. A multi-beam recording device characterized by comprising an interference filter provided on the side surface of two prisms. 2. The apex angle of the prism is in the range of 4r to 56°, and the output angle of the light beam from this prism is in the range of 1□' to 25°.
2. The multi-beam recording apparatus according to claim 1, wherein the beam is in the range of .degree.
JP57050450A 1982-03-29 1982-03-29 Multibeam recording device Pending JPS58168029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050450A JPS58168029A (en) 1982-03-29 1982-03-29 Multibeam recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050450A JPS58168029A (en) 1982-03-29 1982-03-29 Multibeam recording device

Publications (1)

Publication Number Publication Date
JPS58168029A true JPS58168029A (en) 1983-10-04

Family

ID=12859193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050450A Pending JPS58168029A (en) 1982-03-29 1982-03-29 Multibeam recording device

Country Status (1)

Country Link
JP (1) JPS58168029A (en)

Similar Documents

Publication Publication Date Title
US7413311B2 (en) Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
US4796961A (en) Multi-beam scanning optical system
US20140085393A1 (en) Optical scanning apparatus, system and method
US5052767A (en) Optical beam scanning system
US4963003A (en) Laser optical system
JPH0693044B2 (en) Prism optical system and information device using the same
JPH04230738A (en) Optical-phase conjugate apparatus provided with optical pipe for multi-beam coupling
JPS5822725B2 (en) optical demultiplexer
US4562462A (en) Color laser printer with improved efficiency
US4547044A (en) Beam-folding wedge tunnel
JPH0820621B2 (en) Radiation source for printer
JPS58168029A (en) Multibeam recording device
JPS62265613A (en) Two-dimensional deflecting device for light beam
JPH09127442A (en) Multibeam scanning optical device
US5148190A (en) Scanning optical system with plural focusing units
JP2000292721A (en) Optical scanner and mult-beam optical scanner
JPH0588100A (en) Scanner
JP3527385B2 (en) Multi-beam scanner
JPH063616A (en) Polygon scanner
US5353155A (en) Methods and apparatus for combining arrays of light beams
US11835387B2 (en) Spectral channel splicer for spectral beam combining laser system
JPS58184117A (en) Scanner of plural beams
JPS63208021A (en) Light scanning optical system using laser diode array
JP3254312B2 (en) Optical scanning device
JPH02129614A (en) Optical scanning device