JPS58168002A - Metal coated optical fiber and its production - Google Patents

Metal coated optical fiber and its production

Info

Publication number
JPS58168002A
JPS58168002A JP57051785A JP5178582A JPS58168002A JP S58168002 A JPS58168002 A JP S58168002A JP 57051785 A JP57051785 A JP 57051785A JP 5178582 A JP5178582 A JP 5178582A JP S58168002 A JPS58168002 A JP S58168002A
Authority
JP
Japan
Prior art keywords
metal
optical fiber
layer
fiber
reel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57051785A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Koichi Inada
稲田 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP57051785A priority Critical patent/JPS58168002A/en
Publication of JPS58168002A publication Critical patent/JPS58168002A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4402Optical cables with one single optical waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a titled optical fiber which has a high m.p. and a low coefft. of thermal expansion by forming a silicon metallic layer and the other metallic layer on an optical fiber of a quartz material, heating the same and forming a stable alloy layer. CONSTITUTION:A quartz base material 21 is melted in a spinning furnace 22, and is drawn. The resulted optical fiber 23 is conducted into a chemical vapor deposition device 24, where an Si metallic layer is formed on the fiber 23 by the reduction reaction of the SiH4 and gaseous H2 supplied to the device 24. The fiber is then taken up on a reel 26. An optical fiber 25 having the Si metallic layer is drawn out from the reel 26 and is introduced into a vacuum deposition device 31 having a fore chamber 32 and a post chamber 33, where a metallic layer selected among Co, Cr, Ni, Mo, W, Pd, Pt is formed and the fiber is taken up on a take-up reel 28. The reel 28 is put in a heating furnace and is heated, whereby the stable alloy layer of the Si and the metal is formed.

Description

【発明の詳細な説明】 この発明は、石英系材料の光フアイバ上に金属層をコー
ティングし丸金属コート光ファイバ及びその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a round metal-coated optical fiber in which a metal layer is coated on an optical fiber made of a quartz-based material, and a method for manufacturing the same.

光ファイバの防水性や機械的強度を向上させるために金
属層をコーティングすることが行なわれているが、従来
の金属コート光ファイバでは金属としてアルミニウムや
インジウム等の低融点金属を用いている。とζろがこれ
らの金属は低融点のため高温に耐えられず、また石英系
材料の光ファイバとは熱膨張係数が大きく異なるため、
低温においてもヒートサイクルを繰シ返すと剥離、切断
勢を起こす。勿論、コーティング金属として高融点、低
熱膨張係数のものが好ましい訳であるが、例えばW 4
PMo等の高融点金属はこれらが高融点であるために直
接ファイノf上に形成することは極めて困難である。
In order to improve the waterproofness and mechanical strength of optical fibers, coating them with metal layers has been carried out, and conventional metal-coated optical fibers use low-melting point metals such as aluminum and indium. However, these metals cannot withstand high temperatures due to their low melting points, and their coefficient of thermal expansion is significantly different from that of optical fibers made of quartz-based materials.
Even at low temperatures, repeated heat cycles cause peeling and cutting forces. Of course, it is preferable that the coating metal has a high melting point and a low coefficient of thermal expansion, but for example, W4
Since high melting point metals such as PMo have high melting points, it is extremely difficult to form them directly on Phino f.

本発明社上記に鑑み、高融点−低熱膨張係数の金属コー
トを持つ金属コート光ファイバを提供するとともに、こ
の金属コート光ファイ・奇の製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a metal-coated optical fiber having a metal coat with a high melting point and a low coefficient of thermal expansion, and to provide a method for manufacturing the metal-coated optical fiber.

すなわち本発明はSiが光ファイバの材料の5i02と
界面の接着性が良好であり、Cr、CG。
That is, in the present invention, Si has good adhesion at the interface with 5i02, which is the material of the optical fiber, and Cr and CG.

Ni 、Mo、W、Pd、Pt等は8iと安定な合金、
いわゆるシリサイドを形成することに着目してなされた
ものである。
Ni, Mo, W, Pd, Pt, etc. are 8i and stable alloys,
This method was developed with a focus on forming so-called silicide.

まず第1図AK示すような石英系材料の光ファイノ々1
1上に化学気相反応、!ラズマ気相反応あるいは蒸着に
よシ、第1図Bに示すように8i金金属12を形成する
。次にこのSi金属層12上に化学気相反応、fラズマ
気相反応あるいは蒸着によJ) Cr、Co、Ni 、
Mo、W、Pd、Pi等の金属層13を第2図Cに示す
ように形成する。その後300℃〜900℃の温度で熱
処理を加えるとSi金属層12のSi、と金属層13の
上記のいずれかの金属(Mと表わす)とが反応してM2
8i 、MSi 、BJ8i2 (DVhfし1p(D
安定’fk 合4M、いわゆるシリサイドを形成し、第
1図りに示すように中心部の光ファイバ11がシリサイ
ド層14で覆われえことになる。このシリサイド層14
#iいずれも非常に緻四であ抄、水分をよく防ぐととも
に機械的特性も良好である。勿論、高融点であ〉、熱膨
張係数も8302でなる光ファイノ?11に近い。
First, optical fins 1 made of quartz-based material as shown in Figure 1AK.
Chemical vapor phase reaction on 1! By plasma vapor phase reaction or vapor deposition, 8i gold metal 12 is formed as shown in FIG. 1B. Next, on this Si metal layer 12, Cr, Co, Ni,
A metal layer 13 of Mo, W, Pd, Pi, etc. is formed as shown in FIG. 2C. After that, when heat treatment is applied at a temperature of 300°C to 900°C, Si of the Si metal layer 12 and any of the above metals (represented as M) of the metal layer 13 react with each other, resulting in M2
8i, MSi, BJ8i2 (DVhf and 1p (D
With a stable 'fk of 4M, so-called silicide is formed, and the central optical fiber 11 can be covered with the silicide layer 14 as shown in the first diagram. This silicide layer 14
#i All of them are very dense and have good mechanical properties as well as good resistance to moisture. Of course, it has a high melting point and a coefficient of thermal expansion of 8302. Close to 11.

次に本発明の第1の実施例について説明する。Next, a first embodiment of the present invention will be described.

まず第2図に示すように石英系光ファイバの母材21を
紡糸炉22中で溶融して線引きして60調/−の速度で
直径125μmの光ファイ/4−を紡糸し丸、そして紡
糸中の光ファイノ423を化学気相反応装置24に導き
、この光フアイバ23上に連続的に8工金属層を形成し
た。原料ガスとして8iH4を300 cc、/h 、
 l(、を2800cc/m(Q流量条件で化学気相反
応装置24内に送夛込み、その内部を外部抵抗加熱や赤
外線加熱岬により700℃に保って8iH4のHzKよ
る還元で光フアイバ23上に膜厚2μ畷の81金属層を
形成し友、こうして8i金金属が形成され走光ファイバ
2Sをリール26に*tk取る0次に第3図に示すよう
)(,8i金楓層を有する光ファイバ25をリール26
から引き出して、”前−32と後室33とを有する真空
蒸着器31中に通す。
First, as shown in FIG. 2, a quartz-based optical fiber base material 21 is melted and drawn in a spinning furnace 22, and an optical fiber with a diameter of 125 μm is spun at a speed of 60/- to form a circle. The optical fiber 423 inside was introduced into the chemical vapor phase reactor 24, and an 8-metal layer was continuously formed on the optical fiber 23. 300 cc/h of 8iH4 as raw material gas,
1 (,) was fed into the chemical vapor phase reactor 24 at a flow rate of 2800 cc/m (Q), the inside of which was maintained at 700°C by external resistance heating or an infrared heating cape, and reduced by 8iH4 HzK onto the optical fiber 23. An 81 metal layer with a film thickness of 2 μm is formed on the surface of the optical fiber 2S, and an 8i gold metal layer is formed. Reel 26 of fiber 25
It is pulled out from the chamber and passed through a vacuum evaporator 31 having a front chamber 32 and a rear chamber 33.

この真空蒸着器31中には光ファイ・々25の通路の周
囲に例えば120°間隔でCO蒸着源が配置されており
、光ファイバ2−5のSi金属層の十に膜厚0.5μ調
のCo階が形成された。この00層の形成され九光ファ
イ・々27は巻取リール2Bによって巻き取られる。こ
の、よ“うにリール28に巻き取られていふ光ファイバ
27をその後リール2Bに巻かれたまま図示しない加熱
炉中に入れて450℃の温度で30分間処理して8iと
Coとを反応させてCo8 i 2−のシリサイPを形
成した。こうして作られたシリサイド層で覆われ走光フ
ァイバを500℃の温度で24”時間放置したのち強度
試験をしたところ、加熱前と変化がなく、機械的強度が
良好でしかも寓温に対する耐熱性が高いことが実証でき
た。    次に第2の実施例について説明する。この
実施例にシいて第10爽施例と同様に第2図のように直
径125J11■の石英系光ファイノ4を60購/−の
速度で紡糸し、第1の実施例と同様の化学気相反応装置
で紡糸中に連続的に8!金金属を形成する。8iH4の
流量は150 cc/m 、 Hzの流量は1500c
c/m、一度は700℃とした。これKより1μ鯛の膜
厚のSi金属層が光ファイノ<上に形成された。この光
ファイノ々上に別置の化学気相反応装置によりW層を形
成し庭。すなわち化学気相反応装置にWF、を5 Q 
Cc/sin 、 Hzを2000cc/−の流量条件
でそれぞれ送夛込み、温度を900℃として膜厚0.5
μ溝のW層を形成した。このようにして8i金金属の上
にW層が形成された光ファイ・々を第1の実施例と同様
に700℃の温度で熱処理し九ところ、Si、:Wとが
反応してW8iのシリサイド層を形成することができた
In this vacuum evaporator 31, CO evaporation sources are arranged around the path of the optical fibers 25 at intervals of, for example, 120 degrees, and the Si metal layer of the optical fibers 2-5 is adjusted to have a film thickness of 0.5 μm. A Co floor was formed. The nine optical fibers 27 formed with the 00 layer are wound up by the take-up reel 2B. The optical fiber 27 thus wound on the reel 28 is then placed in a heating furnace (not shown) while being wound on the reel 2B and treated at a temperature of 450° C. for 30 minutes to cause 8i and Co to react. A Co8 i 2- silicide P was formed.The optical fiber covered with the silicide layer thus made was left at a temperature of 500°C for 24 hours, and then subjected to a strength test. It was demonstrated that it has good strength and high heat resistance to low temperatures. Next, a second embodiment will be described. In this example, similar to the 10th example, a quartz-based optical fiber 4 having a diameter of 125J11cm was spun at a speed of 60 spins/- as shown in Figure 2, and a chemical vapor similar to that of the first example was used. 8 continuously during spinning in a phase reactor! Forms gold metal. 8iH4 flow rate is 150 cc/m, Hz flow rate is 1500c
c/m, once at 700°C. A Si metal layer with a thickness of 1 μm was formed on the optical fiber. A W layer is formed on these optical fibers using a chemical vapor phase reactor installed separately. That is, WF in the chemical vapor phase reactor, 5Q
Cc/sin and Hz were applied at a flow rate of 2000 cc/-, the temperature was 900°C, and the film thickness was 0.5
A W layer with μ grooves was formed. The optical fibers with the W layer formed on the 8i gold metal in this way were heat-treated at a temperature of 700°C in the same manner as in the first embodiment, and the Si and :W reacted to form the W8i. A silicide layer could be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、B、C,Dは本Q明の概略を示す各工程の断
面図、第2図iび第3図は第1゛の5J!施例の各工程
を説明する九めのブロック図である。 11・・・光ファイバ   12・・・8i金属鳩13
・・・金属層     14・・・シリサイド層21・
・・母材      22・・・紡糸炉23・・・光フ
ァイバ 24・・・化学気相反応装置 31・・・真空蒸着器 出願人 藤倉電線株式会社 簿1扇 算2目 ’lrE糖
Figures 1A, B, C, and D are cross-sectional views of each process showing the outline of the present invention, and Figures 2i and 3 are 5J! It is a ninth block diagram explaining each process of an example. 11...Optical fiber 12...8i metal pigeon 13
...Metal layer 14...Silicide layer 21.
... Base material 22 ... Spinning furnace 23 ... Optical fiber 24 ... Chemical vapor phase reactor 31 ... Vacuum evaporator Applicant Fujikura Electric Wire Co., Ltd. Book 1 Fan 2 'lrE sugar

Claims (4)

【特許請求の範囲】[Claims] (1)  中心部の石英系材料の九ファイバと、この中
心部の光ファイバの周囲を榎うシリコン金属の第1の金
属と他の金属の第2の金属との安定な合金層とからなる
金属コート光ファイバ。
(1) Consists of nine fibers made of quartz-based material at the center and a stable alloy layer of a first metal of silicon metal and a second metal of another metal surrounding the optical fiber at the center. Metal coated optical fiber.
(2)  PJtI記第2の金属がCr、Co、Ni 
、Mo、W、Pd。 Ptのいずれかであることを%似とする%1Itd求の
範囲第1項記載の金属コート元ファイバ。
(2) PJtI second metal is Cr, Co, Ni
, Mo, W, Pd. The metal-coated fiber according to item 1, in which the range of %1Itd is determined to be either Pt or Pt.
(3)石英系材料の元ファイバ上にシリコン苔輌の第1
の金属層を形成したのち、この第10金輌階上に他の金
属の第2の金属層を形成し、その後加熱処理を行なって
前記第1の金一層のシリコン金属と前記第2の金JI4
鳩の他の金属との安定な合金を形成することを特徴とす
る金属コート光ファイバの製造方法。
(3) First layer of silicon moss on the original fiber of quartz-based material
After forming a metal layer of another metal, a second metal layer of another metal is formed on this tenth metal layer, and then heat treatment is performed to separate the silicon metal of the first gold layer and the second gold layer JI4.
A method for producing a metal-coated optical fiber, characterized by forming a stable alloy with other metals.
(4)前勢第2の金属層がCr、、Co、Ni、Moe
WtPd、l’tのいずれかであることを%像とする特
許請求の範囲第3項記載の金属コート光ファイバの製造
方法。
(4) The front second metal layer is Cr, Co, Ni, Moe.
4. The method for manufacturing a metal-coated optical fiber according to claim 3, wherein the percentage image is either WtPd or l't.
JP57051785A 1982-03-30 1982-03-30 Metal coated optical fiber and its production Pending JPS58168002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051785A JPS58168002A (en) 1982-03-30 1982-03-30 Metal coated optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051785A JPS58168002A (en) 1982-03-30 1982-03-30 Metal coated optical fiber and its production

Publications (1)

Publication Number Publication Date
JPS58168002A true JPS58168002A (en) 1983-10-04

Family

ID=12896592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051785A Pending JPS58168002A (en) 1982-03-30 1982-03-30 Metal coated optical fiber and its production

Country Status (1)

Country Link
JP (1) JPS58168002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135554A (en) * 1991-05-20 1992-08-04 Hughes Aircraft Company Method and apparatus for continuous sputter coating of fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057100A (en) * 1973-09-21 1975-05-19
JPS51109397A (en) * 1975-03-24 1976-09-28 Sumitomo Electric Industries Garasusenino hifukuhoho
JPS5437100A (en) * 1977-08-30 1979-03-19 Toyo Soda Mfg Co Ltd Method of producing chromium disilicide
JPS5540841A (en) * 1978-09-14 1980-03-22 Nippon Felt Co Ltd Paper making felt cloth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057100A (en) * 1973-09-21 1975-05-19
JPS51109397A (en) * 1975-03-24 1976-09-28 Sumitomo Electric Industries Garasusenino hifukuhoho
JPS5437100A (en) * 1977-08-30 1979-03-19 Toyo Soda Mfg Co Ltd Method of producing chromium disilicide
JPS5540841A (en) * 1978-09-14 1980-03-22 Nippon Felt Co Ltd Paper making felt cloth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135554A (en) * 1991-05-20 1992-08-04 Hughes Aircraft Company Method and apparatus for continuous sputter coating of fibers

Similar Documents

Publication Publication Date Title
US3451840A (en) Wire coated with boron nitride and boron
US4921725A (en) Process for coating carbon fibers with a carbide
US4248909A (en) Chaoite coating process
US4031851A (en) Apparatus for producing improved high strength filaments
JPS58168002A (en) Metal coated optical fiber and its production
US5246746A (en) Method for forming hermetic coatings for optical fibers
JPH10502971A (en) Diamond phase carbon tube and CVD method for its production
US3556836A (en) Composite boron filaments with matrix overcoat
US2975075A (en) Method of evaporating metals
JPS6229550B2 (en)
JP2580692B2 (en) Artificial diamond-coated gold and gold alloy ornaments
JPS60184652A (en) Manufacture of fiber-reinforced metal
US5261151A (en) Multifilamentary superconducting cable and a method of manufacturing it
JPH04327265A (en) Production of surface-coated carbon fiber
BE1003160A5 (en) Incorporation of long ceramic elements in a metal matrix in order to obtaina composite supra-conductor
KR20230072882A (en) Method for producing crystalline silicon carbide fiber from carbon fiber
JPH0578977A (en) Production of surface-coated carbon fiber
JPS58168003A (en) Metal coated optical fiber and its production
JPH0134939B2 (en)
JP2002180239A (en) Method of depositing metallic black nanoparticle film by jet printing method and the metallic black nanoparticle film obtained
JP3073573B2 (en) Connection method of carbon coated optical fiber
JPS5946603A (en) Optical fiber and its production
JP2697916B2 (en) Method for producing hermetic coated optical fiber
JPH06157065A (en) Production of optical fiber
JPS598252A (en) Rotary target for x-ray tube and its production method