JPS58167847A - Air-fuel ratio control equipment in engine - Google Patents

Air-fuel ratio control equipment in engine

Info

Publication number
JPS58167847A
JPS58167847A JP5154282A JP5154282A JPS58167847A JP S58167847 A JPS58167847 A JP S58167847A JP 5154282 A JP5154282 A JP 5154282A JP 5154282 A JP5154282 A JP 5154282A JP S58167847 A JPS58167847 A JP S58167847A
Authority
JP
Japan
Prior art keywords
air
engine
intake
fuel ratio
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5154282A
Other languages
Japanese (ja)
Inventor
Kazutoshi Otsuka
大塚 一敏
Nobuo Takeuchi
暢男 竹内
Katsuhiko Yokooku
横奥 克日子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP5154282A priority Critical patent/JPS58167847A/en
Publication of JPS58167847A publication Critical patent/JPS58167847A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enrich the air-fuel ratio of intake mixed air while oxygen concentration in the exhaust system is held to be the determined value in such a way that a part of intake air is fed from understream of an intake air quantity detecting means to upstream of an exhaust gas sensor, in response to the running condition of an engine. CONSTITUTION:A control unit 7 controls the injecting time of an injection nozzle 6a in arithmetic operations on the basis of detected values of an intake air quantity detecting means 4, a throttle sensor 14, a revolution number sensor 13, a temperature sensor 15, an exhaust gas sensor 9, etc. An air feeding path 11 equipped with an air pump 16 and a control means 12 is provided between upstream of the intake air quantity detecting means 4 in an intake air path 2 and upstream of an echaust gas sensor 9 in an exhaust air path 8, and a control means 12 is opened in the operational range where preferably thicker mixed air is fed in the engine thus the intake mixed air can be enriched. While the oxygen concentration in the exhaust gas to flow into ternary catalyst 10 is being maintained to its determined value.

Description

【発明の詳細な説明】 この発明はエンジンの空燃比制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an engine.

排気浄化の目的で、例えば排気中のHe、 0θ、およ
びNOxを同時に低減させるための三元触媒を設けたも
のにおいては、三元触媒の機能を最も効果的に発揮させ
るためには、エンジン吸入混合気の空燃比あるいは二次
空気を供給する場合は総合空燃比(、二次空気量とエン
ジン吸入空気量の和に対する燃料量の重量比)を理論空
燃比もしくはその近傍のきわめて挾い領域(三元雰囲気
)に設定しなければならない そのために、従来、エンジンの排気系にエンジン吸気系
の混合気の空燃比と密接な関係にある排気成分の濃度を
検出する排気ガスセンナを設置するとともに、エンジン
の吸気系に上記排気ガスセンサの出力に応じて燃料供給
量を制御する燃料供給手段を設け、これによってエンジ
ン吸入混合気の空燃比をほぼ一定、例えば三元触媒を装
置した場合は理論空燃比に制御するようにしたフィード
バック空燃比制御方式が提案されている。
For the purpose of exhaust purification, for example, when a three-way catalyst is installed to simultaneously reduce He, 0θ, and NOx in the exhaust, in order to make the most effective use of the function of the three-way catalyst, it is necessary to When supplying the air-fuel mixture or secondary air, set the total air-fuel ratio (the weight ratio of the fuel amount to the sum of the secondary air amount and the engine intake air amount) to the stoichiometric air-fuel ratio or a very close range ( To achieve this, conventionally, an exhaust gas sensor is installed in the engine exhaust system to detect the concentration of exhaust components that are closely related to the air-fuel ratio of the air-fuel mixture in the engine intake system. A fuel supply means for controlling the amount of fuel supplied according to the output of the exhaust gas sensor is installed in the intake system of the engine, thereby keeping the air-fuel ratio of the engine intake mixture almost constant. For example, when a three-way catalyst is installed, the air-fuel ratio is maintained at the stoichiometric air-fuel ratio. A feedback air-fuel ratio control method has been proposed.

上記の方式を採用することで、空燃比を常時所定値(例
えば理論空燃比)CfiilJillして排ガスの浄化
機能を向上させることができるけれど、アイドル運転時
や低速運転時および冷間時などにおいては、吸入混合気
の空燃比を小さく、つまり吸入混合気を濃くしなければ
エンジンの回転が不安定となるにもかかわらず、常に空
燃比がはシー・定の空燃比に保たれるため、エンジン安
定性に欠ける問題がある。
By adopting the above method, it is possible to improve the exhaust gas purification function by constantly setting the air-fuel ratio to a predetermined value (for example, the stoichiometric air-fuel ratio). Although the engine rotation will become unstable if the air-fuel ratio of the intake air-fuel mixture is not made small, that is, the intake air-fuel mixture is not enriched, the air-fuel ratio is always kept at a constant air-fuel ratio, so the engine There is a problem with lack of stability.

そこで、エンジンの安定性を確保するために、アイドル
運転時や低速運転時および冷間時などにおいてフィード
バック制御を解除して吸入混合気を理論空燃−比より濃
くすることが考えられるが、このようにすればエンジン
の安定性を確保することができても、触媒での排気浄化
効率を低下させることになる。
Therefore, in order to ensure the stability of the engine, it is possible to release the feedback control and make the intake air-fuel mixture richer than the stoichiometric air-fuel ratio during idle operation, low-speed operation, and when the engine is cold. Even if the stability of the engine can be ensured by doing so, the exhaust purification efficiency of the catalyst will be reduced.

したがって、三元触媒を備えたものにおいて、エンジン
のアイドル運転時や低速運転時および冷間時に徘貿中に
2次空気を供給して総合空燃比をはf理論空燃比に保ち
、三元触媒での排気浄化効率を低下させることなく、シ
かもエンジン吸入混合気の空燃比を小さくしてエンジン
の安定性な確保するようにしたものがすでに特開昭51
−66984号において提案されている。
Therefore, in an engine equipped with a three-way catalyst, the total air-fuel ratio is maintained at the stoichiometric air-fuel ratio by supplying secondary air during engine idling, low-speed operation, and cold running, and the three-way catalyst Japanese Patent Laid-Open No. 51 (1973) has already proposed a method to reduce the air-fuel ratio of the engine intake air-fuel mixture to ensure engine stability without reducing the exhaust purification efficiency.
-66984.

しかしながら、この橋の装置にあっては、アイドル運転
時や低速機転時および冷間時などにおいて、排気ガスセ
ンサの上流に大気もしくはエア7−七ンすの上流から2
次空気を導入して、エンジンに供給される吸入混合気の
空燃比よりも大tい空燃比として検出するようにし、こ
の検出信号にもとづいて補正信号を出力して吸入混合気
の空燃比を小さくするようにしている。
However, with this bridge device, during idling, low-speed rotation, and cold conditions, the exhaust gas sensor is
The air-fuel ratio is detected as being larger than the air-fuel ratio of the intake air-fuel mixture supplied to the engine, and a correction signal is output based on this detection signal to adjust the air-fuel ratio of the intake air-fuel mixture. I'm trying to keep it small.

すなわち、排気ガスセンナま゛わりの排気ガス成分が三
元奪回*(吸入混合気の空燃比が理論空燃比であるとこ
ろの14.7のときの排気ガスの状a)よりすると、そ
れを補うべく補正信号が出力され(第4C図)、これに
基づき吸入混合気の空燃比が理論空燃比(14,7)C
収未するように制御され(第4a図)、この混合気の変
化により排気系の三元触媒上流の排気ガス成分が大旨三
元雰囲気になり、三元触V&により良好な排気ガスの浄
化が行なわれている状1m#cおい・て、アイドル運転
時や低速運転時、冷−(どに際してエンジンの安定性確
保のために大気もしくはエアフロセンサの上流から2次
空気を導入0することで触媒上流の空燃比は大きくなり
、この濃度の薄い空燃比を検出した補正信号にもとづい
て吸入混合気の空燃費を小さくするけれど、吸入混合気
が理論空燃比よりも小さい空燃比(たとえば18近傍)
になり、かつ触媒上流の空燃比が一旦大きくなったのち
に理論空燃比になるまで、つまり上記0点から(Pl)
点に至るまでに相当の遅れ(1)を生じる関門がある。
In other words, the exhaust gas components related to the exhaust gas senna are ternary recaptured* (exhaust gas state a when the air-fuel ratio of the intake air-fuel mixture is 14.7, which is the stoichiometric air-fuel ratio). A correction signal is output (Fig. 4C), and based on this, the air-fuel ratio of the intake air-fuel mixture becomes the stoichiometric air-fuel ratio (14,7)C.
Due to this change in the air-fuel mixture, the exhaust gas components upstream of the three-way catalyst in the exhaust system become essentially a three-way atmosphere, and the three-way contact V & improves exhaust gas purification. When engine cooling is being carried out, during idling or low-speed operation, secondary air is introduced from the atmosphere or upstream of the air flow sensor to ensure engine stability. The air-fuel ratio upstream of the catalyst increases, and the air-fuel consumption of the intake air-fuel mixture is reduced based on the correction signal that detects this low concentration air-fuel ratio. )
, and once the air-fuel ratio upstream of the catalyst increases until it reaches the stoichiometric air-fuel ratio, that is, from the above 0 point (Pl)
There is a barrier that causes a considerable delay (1) before reaching the point.

この発明は上記従来の問題に鍾みなされたもので、エア
フロセンサなどの吸入空気量を測定する吸入空気量検出
手段で計測した吸気系のエアをエンジンの安定性確保の
ために触媒上流に導入することで上記従来の遅れを生じ
ないようにしてエンジンの安定性と触媒の浄化効率の向
上を確保できるようにしたエンジンの空燃比制御装置を
提供することを目的とする 以下、この発明の爽施例な図面にしたがって説明する。
This invention was developed to address the above-mentioned conventional problems, and the air in the intake system measured by an intake air amount detection means such as an airflow sensor that measures the amount of intake air is introduced upstream of the catalyst to ensure engine stability. An object of the present invention is to provide an air-fuel ratio control device for an engine that can secure engine stability and improve catalyst purification efficiency without causing the above-mentioned conventional delay. This will be explained with reference to the drawings.

第1図および第2図において、(1)はエンジン、(2
)は吸気通路でこの吸気通路(2)には上流からエアタ
リーナ(3)と吸入空気量を測定するための吸入空気量
検出手段(4)およびスロットル弁(5)と燃料供給手
段(6)の噴射ノズル(6&)が配設されている。
In Figures 1 and 2, (1) is the engine, (2
) is an intake passage, and in this intake passage (2), an air arena (3), an intake air amount detection means (4) for measuring the amount of intake air, a throttle valve (5), and a fuel supply means (6) are installed from upstream. A spray nozzle (6&) is provided.

上記吸入空気量検出手段(4)K−よって吸入空気量が
検出され、この検出信号が制御ユニット(7)の噴射時
開演算回路(7b)に入力される。そして制御ユニット
(7)の出力が燃料供給手段(6)に入力され、これに
よって吸入・空気量に応じてエンジン(1)に供給する
燃料量が制御されて燃料供給手段(6)の噴射ノズル(
−)から噴射される。
The intake air amount is detected by the intake air amount detection means (4)K-, and this detection signal is input to the injection opening calculation circuit (7b) of the control unit (7). The output of the control unit (7) is then input to the fuel supply means (6), whereby the amount of fuel supplied to the engine (1) is controlled according to the intake/air amount, and the injection nozzle of the fuel supply means (6) is controlled. (
-) is injected from.

(8)は排気通路で、その上流から排気ガスセンナ(9
)、たとえば排気ガス中の酸素濃度に応じた信号を出力
するO!七ンナと、三元触媒αQを配設している。
(8) is the exhaust passage, and from its upstream side is the exhaust gas sensor (9).
), for example, O!, which outputs a signal depending on the oxygen concentration in the exhaust gas. It is equipped with a seven-ringer and a three-way catalyst αQ.

上記排気ガスセン?(9)の出力信号は制御エニン)(
7)に入力され、制御エニン)(7)の空燃比補正手段
(7a) (第2図参闇)によって補正された信号を噴
射時間演算回路(7b)に入力して演算することで燃料
供給手段(6)によって供給される燃料量を理論空燃比
の近傍領域に制御する。
Exhaust gas sensor above? The output signal of (9) is the control enin)(
7) and corrected by the air-fuel ratio correcting means (7a) (see Figure 2) of Control Ennin) (7) is input to the injection time calculation circuit (7b) and calculated, thereby fuel is supplied. The amount of fuel supplied by means (6) is controlled to be in the vicinity of the stoichiometric air-fuel ratio.

aυは空気供給通路を示す、この空気供給通路(ロ)は
、上記吸入空気量検出手段(4)の直下流の吸9IC通
路(2)と、排気ガスセンナ(9)の直上流の排気岐路
(8)とを連通させるように設けられ、その途中にエン
ジン(1)の運転状態に応じて空気供給通路συを開閉
制御する制御手段(6)を設けている。
aυ indicates an air supply passage; this air supply passage (b) is comprised of an intake 9IC passage (2) immediately downstream of the intake air amount detection means (4) and an exhaust branch (2) immediately upstream of the exhaust gas sensor (9). 8), and a control means (6) for controlling opening and closing of the air supply passage συ according to the operating state of the engine (1) is provided in the middle thereof.

一方、エンジン(1)に設けられた水温セン?(至)と
XaットルセンサQ4の検出信号がflilJ mユニ
ット(7)の判別回路(7C)に入力され、判別回路(
7c)によって運転状態を判別し、その出力信号が上記
制御手段(2)の駆動回路(1謳)に入力される。
On the other hand, the water temperature sensor installed in the engine (1)? (To) and the detection signal of the Xa torque sensor Q4 are input to the discrimination circuit (7C) of the flilJ m unit (7), and the discrimination circuit (
7c), the operating state is determined, and its output signal is input to the drive circuit (1) of the control means (2).

また、速度センナ(至)の検出信号は上記噴射時間演算
回路(7b)に入力される。
Further, the detection signal of the speed sensor (to) is input to the injection time calculation circuit (7b).

a呻はエアーポンプから構成される駆動機構で、上記空
気供給通路α廓に組み込まれ、制御手段(2)が開放し
ている場合には吸気通路(2)の空気を一部排気通路(
8)へ供給し、制御手段@が閉塞している場合には矢印
ム方崗にのみ流通可能なチェックバルブ(16&)を介
装した循環路(16b)  を循環させる。
A is a drive mechanism composed of an air pump, which is installed in the air supply passage α, and when the control means (2) is open, part of the air in the intake passage (2) is transferred to the exhaust passage (
8), and when the control means @ is blocked, it is circulated through a circulation path (16b) equipped with a check valve (16&) that allows flow only to the arrow direction.

なお、駆動機構は公知のリードパルプで構成することも
可能である。
Note that the drive mechanism can also be constructed from known lead pulp.

上記構成において、エンジン(1)の定常運転時には、
吸入空気量検出手段(4)の検出信号と、速度センtO
Iの検出信号が噴射時間演算回路(Wb) K−人力ン され、かつ排気ガスセj(9)の検出信号が空燃比補正
手段(7a)に入力されるとともに、鋏入力信号に基づ
いた空燃比補正手段(7a)の出力信号が噴射時間演算
回路(7b)に入力され、噴射時間演算回路(7b)の
出力信号で燃料供給手段(6)が制御される。
In the above configuration, during steady operation of the engine (1),
The detection signal of the intake air amount detection means (4) and the speed cent
The detection signal of I is manually input to the injection time calculation circuit (Wb), and the detection signal of the exhaust gas sensor (9) is input to the air-fuel ratio correction means (7a), and the air-fuel ratio is adjusted based on the scissors input signal. The output signal of the correction means (7a) is input to the injection time calculation circuit (7b), and the fuel supply means (6) is controlled by the output signal of the injection time calculation circuit (7b).

したがって、エンジン(1)には第8a図で示す理論空
燃比(14,7)近傍の吸入混合気が供給される。この
場合には水温センサ(至)とスロットルセンtQ4から
の出力信号は判別回路(7C)において定常運転と判別
し判別回路(7C)から信号を出力しないので駆動回路
(12m)が駆動せず、制御手段(2)は空気供給通路
(ロ)を閉塵している。
Therefore, the engine (1) is supplied with an intake air-fuel mixture having a stoichiometric air-fuel ratio (14,7) as shown in FIG. 8a. In this case, the output signals from the water temperature sensor (to) and throttle center tQ4 are determined by the discrimination circuit (7C) to be steady operation, and no signal is output from the discrimination circuit (7C), so the drive circuit (12m) is not driven. The control means (2) closes the air supply passage (b).

そのために排気通路(8)の空燃比は第8b図で示すよ
うに吸入混合気と同様に補正信号(第8c図)にもとづ
いて理論空燃比(14,7)近傍となり、三元触媒Q1
によって排気ガスを効率的に浄化できる。
Therefore, as shown in Fig. 8b, the air-fuel ratio in the exhaust passage (8) becomes near the stoichiometric air-fuel ratio (14,7) based on the correction signal (Fig. 8c) similarly to the intake air-fuel mixture, and the three-way catalyst Q1
Exhaust gas can be efficiently purified.

他方、アイドル運転時や低速運転時には、スーツトルセ
ンサa◆がこれを検出し、その検出信号を判別回路(7
C)に入力する。また、冷間時にあっては水温センサα
]がこれを検出して、その検出信号を判別回路(70)
に入力する。これらの場合においては判別回路(7C)
によって上記の状態を判別して駆動回路(1謳)に信号
を出力するから制御手段(6)が動作して吻気供給通路
αりを開放する。
On the other hand, during idling or low-speed operation, the suit torque sensor a◆ detects this, and the detection signal is sent to the discrimination circuit (7).
C). In addition, when it is cold, the water temperature sensor α
] detects this and uses the detection signal as a discrimination circuit (70).
Enter. In these cases, the discrimination circuit (7C)
The control means (6) is operated to open the anastrual air supply passage (α) by determining the above state and outputting a signal to the drive circuit (1).

そのために、吸気通路(2)の吸入空気量検出手段(4
)下流の空気の一部は空気供給通路α珍を通って排ガス
センサ(9)上流の排気通路(8)に導入される(P)
For this purpose, the intake air amount detection means (4) of the intake passage (2) is
) A part of the downstream air is introduced into the exhaust gas sensor (9) and the upstream exhaust passage (8) through the air supply passage αchin (P)
.

このとぎ、三元触媒013直上流の排気ガスは三元雰囲
気に、すなわち総合空燃比は、もとの状態の理論空燃比
に近い値に維持され、第4b図に示す従来のような大き
な変動は生じない。それ故に、定常運転時からアイドル
、低速運転時、あるいは冷冷間時等のエンジンに濃い混
合気を供給したい運転域に変化する過渡時においても、
三元触媒に流入する排気ガスは浄化に適したものに保持
され続けるので、一時的に排気ガス浄化性能が低下する
という従来の不具合は解消される。
At this point, the exhaust gas immediately upstream of the three-way catalyst 013 is maintained in a three-way atmosphere, that is, the total air-fuel ratio is maintained at a value close to the original stoichiometric air-fuel ratio, and large fluctuations as shown in FIG. 4b are avoided. does not occur. Therefore, even during transitions from steady operation to idling, low-speed operation, or cold/cold operation where you want to supply a rich mixture to the engine,
Since the exhaust gas flowing into the three-way catalyst continues to be maintained at a level suitable for purification, the conventional problem of a temporary decrease in exhaust gas purification performance is resolved.

なお、実施例は三元触媒を備えたものについて述べたた
め理論空燃比にフィードバック制御するようにしたが、
配設する触媒の種類によりフィードバッタ制御する空燃
比は適宜設定されるもので、本発明は該実施例i特定さ
れるものではない。
In addition, since the example described was equipped with a three-way catalyst, feedback control was performed to the stoichiometric air-fuel ratio.
The air-fuel ratio to be controlled by the feed batter is appropriately set depending on the type of catalyst provided, and the present invention is not limited to the embodiment i.

さらに、本実施例では制御手段(6)は駆動回路(12
m)によりオンオフ的に動作されるものであるが、もち
ろん運転状態の要求により可変的に制御されるものであ
ってもよい。
Further, in this embodiment, the control means (6) is a drive circuit (12).
(m) is operated in an on/off manner, but of course it may be variably controlled depending on the requirements of the operating state.

以上説明したように、この発明によれば、エンジンの運
転状線に応じて吸入空気量検出手段下流の吸気通路内の
吸入空気の一部を上記排ガスセンナ上流の排気通路に空
気供給通路を介して導入するように構成しているから、
エンジンの運転状線が変化する過渡時の応答性が良好に
なり従来のように遅れを生じない利点がある。
As described above, according to the present invention, a portion of the intake air in the intake passage downstream of the intake air amount detection means is transferred to the exhaust passage upstream of the exhaust gas sensor via the air supply passage according to the operating condition of the engine. Because it is configured to be introduced with
This has the advantage that responsiveness during transitions when the engine operating condition changes is improved, and there is no delay as in the prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る空燃比制御装置の説明図、第2
図は同プリッタ図、第8a図ないし第30図は動作特性
図、第41図ないし第4C図は従来例の動作特性図であ
る。 (2)・・・吸気通路、(4)・・・吸入空気量検出手
段、(6)・・・燃料供給手段、(7m)・・補正手段
、(8)・・・排気通路、(9)・・・排気ガスセンナ
、αめ・・・空気供給通路、  (6)・・・制御手段
。 特許出願人  東洋工業株式会社 手続補正書 昭和58年 6月131 特許庁長官殿 1、事件の表示 特願昭5?−0sla41t 2、発明の名称 ニジyyog燃比制御装置 3、補正をする者 事件との関係 特許出願人 住 所広島県安蕪鄭府中町新地11号 名 称 (3118)東洋工業株式会社4、代理人 郵1更番号  550 明細書の「発明の詳細な説明」。 7、補正の自答 A、明細書1 (1)第2頁第1行目番 「HC」とあるを「HC」と補正い丸します。 (2)第4頁第14行目蟇 「よりすると、」とろるを「よりずれると、」と補正い
たします。 (3)第5頁第5行目廖 「空燃費」とあるを「空燃比」と補正い友します。 (4)第8頁第19行目番 「の空燃比」とあるを「中の排気ガヌ成分(空燃比)」
と補正いたします。 (5)第9頁第1行目多 「理論空燃比」とあるを「三元算囲気」と補正い友しま
す。 以  上
FIG. 1 is an explanatory diagram of the air-fuel ratio control device according to the present invention, and FIG.
The figures are diagrams of the same splitter, Figures 8a to 30 are operational characteristic diagrams, and Figures 41 to 4C are operational characteristic diagrams of the conventional example. (2)...Intake passage, (4)...Intake air amount detection means, (6)...Fuel supply means, (7m)...Correction means, (8)...Exhaust passage, (9 )...Exhaust gas sensor, α-me...Air supply passage, (6)...Control means. Patent applicant: Toyo Kogyo Co., Ltd. Procedural amendment June 131, 1982 Dear Commissioner of the Japan Patent Office, 1. Indication of the case 1973? -0sla41t 2. Name of the invention Nijiyyog fuel ratio control device 3. Relationship with the person making the amendment. Patent applicant address: 11 Shinchi, Fuchu-cho, Anbu, Hiroshima Prefecture. Name (3118) Toyo Kogyo Co., Ltd. 4. Agent. Postal code 550 "Detailed description of the invention" in the specification. 7. Answer A for amendment, Specification 1 (1) Correct the word "HC" in the first line of page 2 and circle it as "HC". (2) On page 4, line 14, Tororu will be corrected to ``Tororu,'' as ``Tororu,'' to read ``Tororu,'' to read. (3) Page 5, line 5, ``Air fuel consumption'' has been corrected to ``Air fuel ratio.'' (4) On page 8, line 19, the phrase “air-fuel ratio” is replaced with “Ganu component (air-fuel ratio) of the exhaust gas”
We will correct it. (5) In the first line of page 9, the phrase ``stoichiometric air-fuel ratio'' has been corrected to ``three-dimensional calculation air.''that's all

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路上流に配設して吸入空気量を測定する吸
入空気量検出手段と、咳吸入空気量検出手段の検出信号
にもとづいてエンジンに供給する燃料量を制御する燃料
供給手段と、排気通路に配設された排気ガスセンサの検
出信号にもとづいて上記燃料供給手段により供給される
燃料量を補正する補正手段とを44えてなるエンジンの
空燃比制御装置において、上記吸入空気量検出手段下流
の吸気通路内の吸入空気の一部を上記排ガスセンサ上流
の排気通路に供給する空気供給通路と、該空気供給通路
を介して供給される空気量をエンジンの運転状態に応じ
て制御する制御手段とを設けたことを特徴とするエンジ
ンの空燃比制御装置。
(1) an intake air amount detection means disposed upstream of the intake passage to measure the intake air amount; and a fuel supply means that controls the amount of fuel supplied to the engine based on the detection signal of the cough intake air amount detection means; An air-fuel ratio control device for an engine, comprising: a correction means for correcting the amount of fuel supplied by the fuel supply means based on a detection signal from an exhaust gas sensor disposed in an exhaust passage; an air supply passage that supplies part of the intake air in the intake passage to the exhaust passage upstream of the exhaust gas sensor, and a control means for controlling the amount of air supplied through the air supply passage according to the operating state of the engine. An air-fuel ratio control device for an engine, comprising:
JP5154282A 1982-03-29 1982-03-29 Air-fuel ratio control equipment in engine Pending JPS58167847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5154282A JPS58167847A (en) 1982-03-29 1982-03-29 Air-fuel ratio control equipment in engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5154282A JPS58167847A (en) 1982-03-29 1982-03-29 Air-fuel ratio control equipment in engine

Publications (1)

Publication Number Publication Date
JPS58167847A true JPS58167847A (en) 1983-10-04

Family

ID=12889907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5154282A Pending JPS58167847A (en) 1982-03-29 1982-03-29 Air-fuel ratio control equipment in engine

Country Status (1)

Country Link
JP (1) JPS58167847A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914809A (en) * 1972-04-07 1974-02-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914809A (en) * 1972-04-07 1974-02-08

Similar Documents

Publication Publication Date Title
US5103794A (en) Control system for internal combustion engine
JP2570265B2 (en) Air-fuel ratio control device for internal combustion engine
JPH02125941A (en) Air-fuel ratio control device of engine
JPS61132745A (en) Air-fuel ratio controller of internal-conbustion engine
JPS58167847A (en) Air-fuel ratio control equipment in engine
JPS6158912A (en) Exhaust cleaning apparatus of engine
JPS59201946A (en) Air-fuel ratio controller for internal-combustion engine
JPH07113343B2 (en) Air-fuel ratio controller for internal combustion engine
JP2910034B2 (en) Air-fuel ratio control device for internal combustion engine
JP3009228B2 (en) Exhaust gas purification method and apparatus for natural gas engine
JPH11107796A (en) Fuel supply mechanism for gas engine and controlling method and device thereof
JPS5879642A (en) Air-fuel ratio controller of engine
JPS6095150A (en) Air-fuel ratio control device for internal-combustion engine
JPH0295766A (en) Oxygen enriching air controller for oxygen enriched engine
JPH0747943B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS60201063A (en) Air-fuel ratio controlling device for gas engine
JPS614836A (en) Engine controller
JP2917547B2 (en) Engine air-fuel ratio control method
JPS6026154A (en) Air-fuel ratio controller for gas engine
JP2816437B2 (en) Internal combustion engine fuel control device
JP2811702B2 (en) Engine intake system
JP2518260B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0375738B2 (en)
JPS60261949A (en) Air-fuel ratio controller for internal-combustion engine
JPS6189940A (en) Controller for throttle valve of engine