JPS58167812A - Self starting method of combined cycle plant - Google Patents

Self starting method of combined cycle plant

Info

Publication number
JPS58167812A
JPS58167812A JP4897682A JP4897682A JPS58167812A JP S58167812 A JPS58167812 A JP S58167812A JP 4897682 A JP4897682 A JP 4897682A JP 4897682 A JP4897682 A JP 4897682A JP S58167812 A JPS58167812 A JP S58167812A
Authority
JP
Japan
Prior art keywords
steam
turbine
gas turbine
combined cycle
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4897682A
Other languages
Japanese (ja)
Other versions
JPH0337003B2 (en
Inventor
Hiroshi Uchida
博 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP4897682A priority Critical patent/JPS58167812A/en
Publication of JPS58167812A publication Critical patent/JPS58167812A/en
Publication of JPH0337003B2 publication Critical patent/JPH0337003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To easily perform a black start of the plant, by warming a waste heat collective boiler with an exhaust flow from a gas turbine, using the generated steam to apply a steam seal of a steam turbine, rotating the steam turbine and increasing a load. CONSTITUTION:A gas turbine is started by a starting motor 9 and held to a safe speed determined from the strength of a long blade of a steam turbine 6. Then a gas turbine combustor 2 is ignited, and this exhaust flow warms a waste heat collective boiler 5 to generate steam and apply a steam seal to the turbene 6 by this steam. Then a vacuum is increased in a condenser 7, and speed of the turbine 6 is incrased to a rated speed to apply a load to a generator 8. In consequence, the necessity for supply of seal steam from the other system is eliminated to enable the self starting easily of a combined cycle plant.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービン、発m機および蒸気タービンが
一幀に連なるコンバインドサイクルプラントの自立起動
方法鑞二関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a self-sustaining method for starting a combined cycle plant in which a gas turbine, a generator, and a steam turbine are connected in one line.

〔発明の技術的背景〕[Technical background of the invention]

111m(二従来のコンバインドサイクルプラントの系
統図を示す、ガスタービン(4)、蒸気タービン(6)
、@*機(87は一軸≦二連なっている。従来採用され
ている起動手順は以下の通りである。他プラント又は補
助ボイラ等の他系杭からの7−ル用蒸気供給ライン舖か
らの′繍気をilk気タービン(6)のスチームシール
用ζ二用いて、仮水−(7)を真空上昇させる。これは
、回転上昇鑑二1+なう蒸気タービン(6)の排気股付
近の*真の過熱を防止−fるためでめる。
111m (showing the system diagram of two conventional combined cycle plants, gas turbine (4), steam turbine (6)
, @* Machine (87 has one shaft ≦ double series. The startup procedure conventionally adopted is as follows. Steam supply line for 7-hole from other plants or other system piles such as auxiliary boiler) 'The temporary water (7) is vacuum raised using the steam seal ζ2 of the ILK air turbine (6). *To prevent true overheating.

その後、起動モータ(9)を用いて、コンプレッサ(株
ガスタービン本体<3>、m気タービン(61および発
電* tJlilを回転上昇させる。燃焼蓄(28二燃
料を供給し点火すると、ガスタービン本体(3)は出力
を発生し、コンプレッサ(1)、蒸気タービン(6)、
発4機(8)を1動する。また方スタービン排気u4は
排熱回収ボイラtO+≦二導かれ、これを**させる。
Thereafter, the starting motor (9) is used to increase the rotation of the compressor (gas turbine main body <3>), the m-air turbine (61) and the power generation*tJlil. When the combustion storage (28) fuel is supplied and ignited, (3) generates output, compressor (1), steam turbine (6),
Move 4 aircraft (8) once. On the other hand, the turbine exhaust gas u4 is led to the exhaust heat recovery boiler tO+≦2, causing this to be **.

起動モータ(97はクラッチ(図示せず)口て切離され
る。排熱回収ボイラ(田で発生した蒸気は、土盛気ライ
ンーを経て蒸気タービン(b目二供細さし、出力を発生
する。
The starting motor (97 is a clutch (not shown)) is disconnected. .

ガスタービン(4)および蒸気タービン(6)の出力は
%電機(8)6二伝見られ、電気出力シー変換される。
The outputs of the gas turbine (4) and the steam turbine (6) are converted into electrical power outputs.

〔背景技術の問題点〕[Problems with background technology]

蒸気タービン(6)の排気段の過熱埃象は王として回転
体と周囲流体との岸鰺シニよるもので、lよば回転数の
35jei二比例する。これを$2図(二示す。横軸は
定格回1に対する割合、擬−は排気段の温度上昇値を示
す。曲−Aは蒸気タービンの内部の圧力が大気圧のとさ
、曲−Bは大気圧以下の状態での温度上昇凪を示す。蒸
気タービンの排気段の一度上昇1jLは、土として艮無
の強酸から足められる0で、従って、大気圧状態での連
続許容回転数も、第2凶から求められること一:なる。
The overheated dust phenomenon in the exhaust stage of the steam turbine (6) is primarily due to the interaction between the rotating body and the surrounding fluid, and is proportional to 35 times the number of revolutions. This is shown in Figure 2. The horizontal axis shows the ratio to the rated cycle 1, and the pseudo- shows the temperature rise value of the exhaust stage. Curve A shows the pressure inside the steam turbine at atmospheric pressure, Curve B indicates the temperature rise lull in a state below atmospheric pressure.The once rising 1JL of the exhaust stage of a steam turbine is 0, which is added from a strong acid that is not a soil, so the continuous allowable rotation speed at atmospheric pressure is also , The first thing required from the second evil: Become.

従って従来形のコンバインドサイクルプラントの起動方
法では、蒸気タービン(6)の排気段の過酷防止のため
、復水器(7)を真空上昇させる必喪があり、このため
他系統からのシール用蒸気供給うインU轡によって、他
系統からの蒸気が必要でめった。
Therefore, in the conventional method of starting up a combined cycle plant, it is necessary to raise the vacuum of the condenser (7) in order to prevent the exhaust stage of the steam turbine (6) from being severely damaged. Due to the supply system, steam was required from other systems, which was rare.

〔発明の目的〕[Purpose of the invention]

本発明は、他系統からシール用蒸気を買わず4二、安価
で簡略(二蔵勧し運輸状悪4二人れることのできるコン
バインドサイクルプラントの自立起帥方法を提供するこ
とを゛目的とする。
The purpose of the present invention is to provide a method for self-sustaining a combined cycle plant that does not require the purchase of sealing steam from other systems, is inexpensive and simple, and can accommodate two people due to poor transportation conditions. do.

〔発明の概要〕[Summary of the invention]

本発明C二おいては、ガスタービン、発4機および蒸気
タービンが一軸に連なるコンバインドサイクルプラント
(=おいて、ガスタービン6;付属する起動モータ(二
てプラントを起動し、内部が大気圧の蒸気タービン1i
i14二て定められる世運度C;保持し、次6ニガスタ
ービン燃焼器に点火し、この排気流で排熱回収ボイ2を
暖機して蒸気を発生させ、次にこの蒸気な用いて蒸気タ
ービンのスチームシールおよび回転上昇、負荷上昇を行
−なうこと1二より、他系統からシール用蒸気な貰わす
(二安価で簡略−二自立起動をさせるものである。
In invention C2, a combined cycle plant in which a gas turbine, four generators, and a steam turbine are connected in one shaft (= gas turbine 6; steam turbine 1i
i14 The degree of fortune C determined by 2; To perform the steam seal of the steam turbine, increase the rotation speed, and increase the load. 1. Receive sealing steam from other systems (2. Cheap and simple. 2. Allow for independent startup.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について、ma図を参照して説
明する。尚s1図シニおいて説明しなかった符号も第3
図と同一符号を付して説明するから、憾米例の理解の#
考にされたい。
An embodiment of the present invention will be described below with reference to ma diagrams. In addition, the symbols not explained in Figure s1 are also shown in the third figure.
The explanation will be given with the same reference numerals as in the figure, so it will be easier to understand the example.
I want to be considered.

’1iS3図1:おいて、(1)はコンプレッサ、(2
)は燃焼器、(3)はガスタービン本体、(4)はガス
タービン、(5)は排熱回収ボイラ、(6)は蒸気ター
ビン、(7)は復水器、(8)は発−徐、(9)は起動
モータ、 (1(1は給水ポンプ、住υは大気吸気ライ
ン、稔は燃料供給ライン、(11はガスタービン排気ラ
イン、Iは排熱回収ダイ2排気ライン、−は主蒸気ライ
ン、α峙は蒸気タービン排気ライン、同は給水ラインで
ある。この例ではガスタービン(4)、発電機(8)、
 mスタービン(6)の鵬シニー111N二連なったも
のであるが、本発明ではこの順序は問わない。
'1iS3 Figure 1: In, (1) is the compressor, (2
) is the combustor, (3) is the gas turbine main body, (4) is the gas turbine, (5) is the exhaust heat recovery boiler, (6) is the steam turbine, (7) is the condenser, and (8) is the generator. Xu, (9) is the starting motor, (1 (1 is the water supply pump, υ is the atmospheric intake line, Minoru is the fuel supply line, (11 is the gas turbine exhaust line, I is the exhaust heat recovery die 2 exhaust line, - is The main steam line, facing α, is the steam turbine exhaust line, and the same is the water supply line.In this example, the gas turbine (4), the generator (8),
Although the Peng Shinny 111N of M turbine (6) is connected in two series, this order does not matter in the present invention.

kAIIll順序は、まず、起動モータ(9)ζ二て回
転上昇させ、蒸気タービン(61$111で制限される
速度(;保持する。この速度の回転数一定の状態で燃焼
器(2)−二点火し、ガスタービン本体(3)を駆動す
る。ガスタービン排気(Ll二より排熱回収ボイラ(5
)が暖機するまで、この回転数l保持する。排Miff
l収ボイラ(5)が蒸気を発生する徐4二なったら、そ
の蒸気を用いて蒸気タービン(6)のスチームシールを
行ない、復水器(7)を真空上昇し、回転数を上昇させ
ていく。
The sequence is to first increase the rotation of the starter motor (9) and maintain the speed limited by the steam turbine (61$111).With this speed constant, the combustor (2) 2 ignites and drives the gas turbine main body (3).The exhaust heat recovery boiler (5
) is maintained at this rotation speed l until it warms up. Exhaust Miff
Once the steam boiler (5) is generating steam, the steam is used to seal the steam turbine (6), the condenser (7) is vacuumed up, and the rotational speed is increased. go.

そして定格回転数迄上昇させ、負荷上昇を行なう。Then, increase the rotation speed to the rated speed and increase the load.

送直二作用について説明する。The two-direct action will be explained.

先づ、起動モータ1二て起動した時は、内部が大気圧の
蒸気タービンttili41にて定められた低速に1坤
ら長翼の強度から定められる凝全な速度(二珠持了るの
で、蒸気タービン(6)の女全は保持されている。次シ
ーガスタービン燃焼器(2)(二点火し、この排気流を
ガスタービン排気ラインU、U′Jk通して排熱回収ボ
イラ(5)を暖慣して、盛気を先生式せるので、この蒸
気で盛気タービン161のスチームシールヲ−rること
が出来る。憾って偵水6tl)を真空上昇させることが
できるから、志気タービン(6)の回転数を上昇させ定
格回転数ζ二上昇させ、−軸(二連なった%ita機1
8) (−*荷をとらせることができる。即ち、他系統
からシール用蒸気を貰わなくて街み、安価で藺略ζニコ
ンバインドサイクルプラントの自立起動ができる。
First, when the starting motor 12 is started, the steam turbine 41, whose interior is at atmospheric pressure, moves from the low speed determined by the steam turbine 41 to the condensed speed determined from the strength of the long blades (since the two beads are maintained, The steam turbine (6) is maintained. Next, the sea gas turbine combustor (2) (2) is ignited, and the exhaust flow is passed through the gas turbine exhaust lines U, U'Jk to the exhaust heat recovery boiler (5). This steam can be used to open the steam seal of the steam turbine 161.As a result, the 6 tl of receding water can be raised under vacuum. (6) Increase the rotation speed and increase the rated rotation speed ζ2, -axis (double %ita machine 1
8) (-*It is possible to take the load. In other words, it does not require sealing steam from other systems, and it is possible to independently start up the Nikon bound cycle plant at low cost.

尚、本発明は上記し、かつ図面ζ:示した実施例のみ亀
二限定されるものではなく、その要旨を変更しない範囲
で、棟々変形して実施できることは勿論である。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, and can of course be practiced with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したようし、本発明しよれば、起動途中の低速
時Cニガスタービン燃焼器6二点火し、このmzvLで
排熱回収ボイラを謹慎して蒸気を発生させ、久(二この
蒸気を用いて蒸気タービンのスチームシールおよび回転
上昇、負荷上昇を行うので。
As explained above, according to the present invention, two C gas turbine combustors 6 are ignited at low speed during startup, the exhaust heat recovery boiler is cautiously activated at this mzvL, and steam is generated. It is used to seal steam turbines, increase rotation, and increase load.

他系枕からシール用蒸気を貰わすシニ、flltllで
簡略なコンバインドサイクルプラントの自立起動方法が
提供で亀る。
In order to obtain sealing steam from other systems, flltll provides a simple and independent method for starting a combined cycle plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の起動方法を行なうコンバインドサイクル
プラントを示す系統図、IJ2図は蒸気タービンの回転
数と排気家の1lif上昇の関係を示す  区tm−図
、知3図は本発明の自立起動方法の一笑施  8例を行
なうコンバインドサイタルプラントを示す軒 系統図である。 1・・・コンプレッサ   2・・−燃焼器3・・・ガ
スタービン本体 4・−・ガスタービン5・・・排熱回
収ボイラ  6・・・蒸気タービン8・−・発電機  
     9・−起動モータ第  2  図 −トロに数 C2ζン
Figure 1 is a system diagram showing a combined cycle plant using the conventional startup method. Figure IJ2 shows the relationship between the rotational speed of the steam turbine and the 1lif increase in the exhaust house. It is an eave system diagram showing a combined citral plant in which eight examples of the method are carried out. 1... Compressor 2...-Combustor 3... Gas turbine main body 4... Gas turbine 5... Exhaust heat recovery boiler 6... Steam turbine 8... Generator
9.-Start motor 2nd figure-C2ζn

Claims (1)

【特許請求の範囲】[Claims] ガスタービン、%4慎および蒸気タービンが一111L
11に連なるコンバインドサイクルプラントζ二おいて
、ガスタービン(二付槁−fる匙鯛モータ櫨二てプラン
トを起動し、内部が大気圧の盛気タービン−にてにめら
れる**震を二保持し、次4ニガスタービン燃濁醤区二
点火し、この排気流で排熱回収ボイラなW機して蒸気を
発生させ、次(二この蒸気を用いて蒸気タービンのスチ
ームシールおよび回転上昇、負荷上昇を行なうことを特
徴とするコンバインドサイクルプラントの自立起動方法
Gas turbine, %4 Shin and steam turbine 1111L
In the combined cycle plant ζ2 connected to 11, the gas turbine (two motors) is used to start the plant, and the inside is at atmospheric pressure. Then, the exhaust flow is used to generate steam in the exhaust heat recovery boiler, and the steam is then used to seal the steam turbine and increase the rotation of the steam turbine. , a method for independently starting a combined cycle plant characterized by increasing the load.
JP4897682A 1982-03-29 1982-03-29 Self starting method of combined cycle plant Granted JPS58167812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4897682A JPS58167812A (en) 1982-03-29 1982-03-29 Self starting method of combined cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4897682A JPS58167812A (en) 1982-03-29 1982-03-29 Self starting method of combined cycle plant

Publications (2)

Publication Number Publication Date
JPS58167812A true JPS58167812A (en) 1983-10-04
JPH0337003B2 JPH0337003B2 (en) 1991-06-04

Family

ID=12818285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4897682A Granted JPS58167812A (en) 1982-03-29 1982-03-29 Self starting method of combined cycle plant

Country Status (1)

Country Link
JP (1) JPS58167812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180112561A1 (en) * 2016-10-24 2018-04-26 General Electric Technology Gmbh Systems and Methods to Control Power Plant Operation via Control of Turbine Run-up and Acceleration
CN111120020A (en) * 2019-12-26 2020-05-08 广东电网有限责任公司电力科学研究院 Transformation method, device, equipment and storage medium of ultra-supercritical unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170685A4 (en) 2020-07-09 2024-03-13 Suncall Corporation Bus bar assembly and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180112561A1 (en) * 2016-10-24 2018-04-26 General Electric Technology Gmbh Systems and Methods to Control Power Plant Operation via Control of Turbine Run-up and Acceleration
US10156160B2 (en) * 2016-10-24 2018-12-18 General Electric Technology Gmbh Systems and methods to control power plant operation via control of turbine run-up and acceleration
CN111120020A (en) * 2019-12-26 2020-05-08 广东电网有限责任公司电力科学研究院 Transformation method, device, equipment and storage medium of ultra-supercritical unit
CN111120020B (en) * 2019-12-26 2022-01-25 广东电网有限责任公司电力科学研究院 Transformation method, device, equipment and storage medium of ultra-supercritical unit

Also Published As

Publication number Publication date
JPH0337003B2 (en) 1991-06-04

Similar Documents

Publication Publication Date Title
US3500636A (en) Gas turbine plants
US5737912A (en) Method for starting gas turbine in combined cycle power station
RU2498090C2 (en) Systems to cool component of steam pipe
US20040045300A1 (en) Method and apparatus for starting a combined cycle power plant
US3394265A (en) Spinning reserve with inlet throttling and compressor recirculation
GB2140873A (en) Closed-cycle gas turbine chemical processor
US2663144A (en) Combined gas and steam power plant
JPH0678724B2 (en) Cooling method and cooling device for steam turbine in single-shaft combined plant
US5934064A (en) Partial oxidation power plant with reheating and method thereof
JPS58167812A (en) Self starting method of combined cycle plant
JPH09256815A (en) Steam cooling gas turbine, steam cooling combined cycle plant using the gas turbine, and its operating method
US20220195896A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPH10184317A (en) Uniaxial combined cycle plant
GB577017A (en) Improvements in turbines
RU2003102313A (en) METHOD FOR OPERATING ATOMIC STEAM TURBINE INSTALLATION AND INSTALLATION FOR ITS IMPLEMENTATION
JP2602951B2 (en) How to start a combined cycle plant
JPH06212909A (en) Compound electric power plant
GB2402172A (en) Generator system
JPH01208524A (en) Steam injection type gas turbine engine
RU2403407C1 (en) Steam-gas power plant
US2730863A (en) Gaseous fuel turbine power plant having parallel connected compressors
RU2821667C1 (en) Method of converting thermal energy into electrical energy and turboelectric plant
GB635195A (en) Improvements in and relating to gas turbine power plant
JPH0341644B2 (en)
JPH0688502A (en) Power generating plant