JPS58167440A - Production of parent material for optical fiber - Google Patents

Production of parent material for optical fiber

Info

Publication number
JPS58167440A
JPS58167440A JP4729982A JP4729982A JPS58167440A JP S58167440 A JPS58167440 A JP S58167440A JP 4729982 A JP4729982 A JP 4729982A JP 4729982 A JP4729982 A JP 4729982A JP S58167440 A JPS58167440 A JP S58167440A
Authority
JP
Japan
Prior art keywords
glass
synthesis
raw material
fed
parent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4729982A
Other languages
Japanese (ja)
Other versions
JPH0339978B2 (en
Inventor
Shoichi Sudo
昭一 須藤
Hiroyuki Suda
裕之 須田
Fumiaki Hanawa
文明 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4729982A priority Critical patent/JPS58167440A/en
Publication of JPS58167440A publication Critical patent/JPS58167440A/en
Publication of JPH0339978B2 publication Critical patent/JPH0339978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:A raw material gas prepared by mixing a silane or the like with the compound glass raw material is blown from the synthesis torch to form a porous parent material, thus dissipating the unreacting layer formed in the synthesis flame of glass fine particles to increase the glass formation speed. CONSTITUTION:In the production of an optical fiber parent material by the VAD method, H2, O2, Ar and others are fed from the feeder 21 to the synthesis torch 24. The halide glass raw material consisting of SiCl4, GeCl4 and others is fed from the feeder 22 and another glass raw material consisting of SiH4 and SiHCl3 is fed from the feeder 23, then they are mixed and fed to the synthesis nozzle 24 to form glass fine particles 29 and form the porous parent material 210. This process forms no unreacting layer in the glass fine particles 29 and gives the porous parent material 210 at a high synthetic speed. The reduction in glass deposition efficiency is prevented.

Description

【発明の詳細な説明】 本発明は、VムIIKよる光フアイバ母材の製造方法に
@する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method of manufacturing an optical fiber preform using VmuIIK.

従来、VAD法では、ガラス形成用原料としては。Conventionally, in the VAD method, as a raw material for forming glass.

四塩化けい素(810/、) 、四塩化ゲルマニウム(
Goo/、)、三臭化はう素(BBr−等の金網ハロゲ
ン化物のうちの1種または多槽の混合ガスが使用されて
いた。し謝しながらこれらの金鴫ハロゲン化−から反応
式(1)、 (1)K示す火炎加水分解によって。
Silicon tetrachloride (810/), germanium tetrachloride (
Goo/,), one of the wire mesh halides such as boron tribromide (BBr-), or a multi-tank mixed gas was used. (1), (1)K by flame hydrolysis.

酸化−ガラス微粒子を生成するには 5lot  +  mHo/  →SiO+ 4HO1
(1)曇                1G@Ct
 + 1HOj −* G@O+ 4HO1(愈)4 
               11060−ILOO
C以−トの反応温ツが必要であり。
Oxidation - To generate glass particles, 5lot + mHo/ →SiO+ 4HO1
(1) Cloudy 1G@Ct
+ 1HOj -* G@O+ 4HO1 (戈)4
11060-ILOO
A reaction temperature of C or higher is required.

重た前配大炎加水分解凍応〔反応客(1)、偵)〕の反
応遭賓も速いものとは言えない(文献「71ber。
The reaction of the heavy front flame hydrolysis freeze reaction [reaction customer (1), reconnaissance)] cannot be said to be fast (Reference ``71ber.

0ptios J、i Bun!low @s  pl
@nuy press出版、参照)0第1図(a)は従
来のVDム去におけるガラス微粒子合成火炎−の状態を
示す図で、笥1図(b)は第1WJ(1)のムーム′に
おける断面崗である。第149において、lは合成トー
チ、!は火炎用ガス吹き出し口、lはガラ、ス原料ガス
吹き出し口、4は火炎流、暴はガラス微粒子流、6は未
反応層T:あるやしたがってガラス形成速賓を高めるた
めに%前記ハロゲン化物ガラス原料の供給連星を増加し
た場合、ガラス黴粒子合成火炎流番の内にはm1図(亀
)K示すようなガラス微粒子が生成されず、ハロゲン化
物の11の状態で流出する領櫨、すなわち未反応層6が
生じる口 しかもこの未反応層6が火炎流内で占める割合は、ガラ
ス原料ガス供給量の増加とともに大きくなるので、ガラ
ス堆積効率が減少し、tたは多孔質母材の形成が困−と
なり、VムD去におけるガラス形成速度の向上が一層困
JliKなるという欠点があった。
0ptios J, i Bun! low @s pl
Published by @nuy press, see) 0 Figure 1 (a) is a diagram showing the state of the glass fine particle synthesis flame in conventional VD removal, and Figure 1 (b) is a cross section at Moom' of the 1st WJ (1). It's a gang. In No. 149, l is a synthesis torch, ! 1 is a flame gas outlet, 1 is a glass raw material gas outlet, 4 is a flame flow, 1 is a glass particle flow, 6 is an unreacted layer T: Therefore, in order to increase the glass formation rate, % of the halide is added. When the number of glass raw material supply binaries is increased, glass particles as shown in the m1 diagram (tortoise) K are not generated in the glass mold particle synthesis flame stream, and the glass particles flow out in the state of 11 halides. In other words, the proportion of the unreacted layer 6 in the flame flow increases as the amount of frit gas supplied increases, so the glass deposition efficiency decreases and the amount of t or porous matrix increases. This has the disadvantage that it becomes difficult to form a glass, making it even more difficult to improve the glass formation rate during V-D removal.

本発明はこれらの欠点を除去するため、シラン(81H
6)、 )リクロルシラン(SillO/、)の一方ま
たは両方を含むガラス形成原料ガスを合成トーチから吹
き出して、多孔質母材を形成することを特徴としたもの
で、その目的はガラス徽粒子合成火炎内に生じる前記未
反応層を消去し、VLD法におけるガラス形成速度の向
上を春鳥にすることKlるO 第S図は本発明の一実施例の構成図であって。
In order to eliminate these drawbacks, the present invention uses silane (81H
6), ) A glass-forming raw material gas containing one or both of silylsilane (SillO/, ) is blown out from a synthesis torch to form a porous base material, and its purpose is to form a glass-forming particle synthesis flame. To eliminate the unreacted layer that occurs in the VLD method and improve the glass formation rate in the VLD method. Figure S is a block diagram of an embodiment of the present invention.

illは火炎用ガス供給装置、富Sはハロゲン化ガラス
原料(810j、 G@O/、)ガス供給装置、18は
シランガス供給装置、34は合成トーチ、16は火炎用
ガス吹き出し口、s6はガラス原料ガス吹□き出し0.
1?は火炎流、s8は未反応部、s9はガラス微粒子流
、m1(Iは多孔質母材である@嬉S―では、ハロゲン
化ガラス原料供給装[■かも供給される8101  G
・O14とシランガス供給装軌 置S魯から供給される81H6との混合ガスが、合成ト
ーチs4内に輸送畜れ、火炎RsII内でガラス微粒子
が合成される。この場合、ガラス原料供給量を増加して
もs8で示すような未反応部が見られるが、ガラス微粒
子mII内には、従来のVムD法で見られたような未反
応層(111図に示す6)は生じず、火炎[1?内に吹
き出されたガラス原料ガスは、すべて火炎加水分解反応
により酸化物ガラス微粒子となった。
ill is a flame gas supply device, Tomi S is a halogenated glass raw material (810j, G@O/,) gas supply device, 18 is a silane gas supply device, 34 is a synthesis torch, 16 is a flame gas outlet, and s6 is a glass Raw material gas blowout 0.
1? is the flame flow, s8 is the unreacted part, s9 is the glass particle flow, m1 (I is the porous base material).
- A mixed gas of O14 and 81H6 supplied from the silane gas supply system S is transported into the synthesis torch s4, and glass particles are synthesized within the flame RsII. In this case, even if the glass raw material supply amount is increased, an unreacted area as shown in s8 is observed, but within the glass fine particles mII, an unreacted area (see Fig. 111) as seen in the conventional VmuD method is observed. 6) shown in Fig. 6) does not occur, and flame [1?] does not occur. All of the frit gas blown out into the chamber was turned into oxide glass fine particles by a flame hydrolysis reaction.

これは、ハロゲン化ガラス原料ガスに混合した・シラン
(811m ) カら酸化物を生成する反応が式(1)
%式% (1) 水素ガスの分離を伴った発熱反応であるので。
This is a reaction that generates an oxide from silane (811m) mixed with a halogenated glass raw material gas, as shown in equation (1).
% Formula % (1) Because it is an exothermic reaction accompanied by separation of hydrogen gas.

ハロゲン化物($10/a、 Gem/−から酸化物を
生成する反応(1)、(fi)式が促進されたためと考
えられる・しかもこの効果はシランガスの混合割合を増
加すれば、さらに強力となるので、ガラス形成速度を向
上するためにガラス原料供給量を増加した場合にも、シ
ランガスの混合比を調整すれば、従来のWAD法で生じ
たような未反応層の増大によるガラス堆積効率の減少や
多孔質母材形成の困−さは。
This is thought to be due to the promotion of the reaction (1), equation (fi), which generates oxides from halides ($10/a, Gem/-).Moreover, this effect becomes even stronger when the mixing ratio of silane gas is increased. Therefore, even when the amount of glass raw materials supplied is increased to improve the glass formation rate, adjusting the mixing ratio of silane gas will prevent the glass deposition efficiency from increasing due to the increase in unreacted layer that occurs in the conventional WAD method. The difficulty of reduction and formation of porous matrix.

容易に回避される・ たとえば、第2図におりて、供給装置filから水素ガ
スを毎分20/、拳素ガスを毎分110 /、アルゴン
ガスな毎分6j〜合成トーチs4へ供給し、また供給量
@ssからO5ioz、s oモル噛、 GsO/a1
0モル嘔のハライド化合物ガラス原料と供給量@msか
らのBIM、とを6=1の割合で混合したガラス原料ガ
スを、毎分81合成トーチS4へ供給してガラス微粒子
を合成した場合、ガラス微粒子流39中には未反応層は
全く見られず、毎分器、6tの合成速度で多孔質母材が
作製できた・またこの場合のガテス*S効率は約yes
であった。ちなみにガラス原料供給速度を同一にして、
従来の・マムD法(すなわち811!、を混合しない)
で多孔質母材を形成した場合1合成速度は毎分s −s
、iでありへ(効率:36〜■])、かつ多孔質母材の
成長面形状が不安定で均一な母材を得るのが礫しかった
For example, in FIG. 2, hydrogen gas is supplied from the supply device fil to the synthesis torch s4 at 20/min, hydrogen gas at 110/min, and argon gas at 6j/min to the synthesis torch s4. Also, from the supply amount @ss, O5ioz, so mole, GsO/a1
When glass fine particles are synthesized by supplying glass raw material gas, which is a mixture of 0 mole of halide compound glass raw material and BIM from the supply amount @ms at a ratio of 6=1, to synthesis torch S4 at 81/min, glass No unreacted layer was observed in the particle flow 39, and a porous base material could be produced at a synthesis rate of 6 tons per minute. Also, the Gates*S efficiency in this case was approximately yes.
Met. By the way, if the glass raw material supply speed is kept the same,
Conventional Mumm D method (i.e. 811!, not mixed)
When a porous matrix is formed with 1 synthesis rate is s - s per minute
, i (efficiency: 36 to ■)), and the shape of the growth surface of the porous base material was unstable, making it difficult to obtain a uniform base material.

トリクロルシラン(Silo/−をシランと置き換えた
場合にも、前記とほぼvi榔度の置で#11141度の
効果が得られた・ 前記の方法によって作製した多孔質母材を焼結して得た
透明母材を、コア材として作製した光ファイバの損失は
、波長0.81 #渦においてs aB7*■。
Even when trichlorosilane (Silo/- was replaced with silane, an effect of #11141 was obtained at a vi degree of about 100% as described above.) The loss of an optical fiber manufactured using a transparent base material as a core material is saB7*■ at a wavelength of 0.81# vortex.

波長1.@#嘱においてl dB/km程膚であり、夷
−の光通信方式に十分使用できるものであった。
Wavelength 1. It was as low as 1 dB/km in Japan, and could be used for optical communication systems in Japan.

以上説明したように1本発明の光フアイバ母材の製造方
4は、シラン、トリクロルシランの一方または両方を含
むガラス原料ガスを合成トーチから吹き出して、多孔質
母材を形成するので、ガラス原料供給量を増加した場合
にも、未反応層の発生を防止でき、ガラス形成速度を客
JIK向上でき′るという利点がある@さらに1本発明
では、ガラス堆積効率の低下も防止できるので、*速母
材製造による光ファイバの低価格化を図り易いという利
点がある。
As explained above, in method 4 of producing an optical fiber preform according to the present invention, a frit gas containing one or both of silane and trichlorosilane is blown out from a synthesis torch to form a porous preform. Even when the supply amount is increased, there is an advantage that the generation of an unreacted layer can be prevented and the glass formation rate can be improved. This method has the advantage that it is easy to reduce the cost of optical fibers due to rapid base material production.

【図面の簡単な説明】[Brief explanation of drawings]

笥1図(、)は従来のWAD法におけるガラス微粒子合
成火炎流の状態を示す図、第1図(b)は第1図(#L
)の^−A’Ks?ける断面図、第S図は\本発明の−
V!膣例の構成図である。 l・・・合成トーチ、3・・・火炎用ガス吹き出し口。 8・・・ガラス原料ガス吹き出し口、4・・・火炎流。 S・・・ガラス微粒子流、6・・・未反応層、ll・・
・火炎用ガス供給装置1、Bjl・・・ハロゲン化ガラ
ス原料ガス供給装置、2!・・・シランガス供給装置l
j、i4・・合成トーチ、15・・・火炎用ガス吹き出
し口。 S6・・・ガラス東料ガス吹き出しロ、Sテ・・・火炎
R。 SS・・・未反応111.i19・・・ガラス微粒子流
。 11G・・・多孔質母材。 第1図 (a>
Figure 1 (, ) is a diagram showing the state of the glass fine particle synthetic flame flow in the conventional WAD method, and Figure 1 (b) is a diagram showing the state of the glass particle synthetic flame flow in the conventional WAD method.
)'s ^-A'Ks? The cross-sectional view shown in Figure S is \of the present invention.
V! It is a block diagram of an example of a vagina. l...Synthetic torch, 3...Flame gas outlet. 8... Frit gas outlet, 4... Flame flow. S...Glass particle flow, 6...Unreacted layer, ll...
-Flame gas supply device 1, Bjl...halogenated glass raw material gas supply device, 2! ... Silane gas supply device l
j, i4...synthetic torch, 15...flame gas outlet. S6...Glass Toryo gas blowout B, Ste...Flame R. SS...unreacted 111. i19...Glass particle flow. 11G... Porous base material. Figure 1 (a>

Claims (1)

【特許請求の範囲】 1 火炎流内においてガラス微粒子を合成し。 これを軸方向に付着、堆積するととKよって多孔質母材
を形成した後、骸多孔質母材を鳥温に加熱、焼緒して透
明な光フアイバ母材を得る製造方法、すなわち気相軸付
は法において。 ’/ ラフ (8iH6)、) +71 o ルシ5 
y (sIHOl、>の一方または両方を含むガラス微
粒子合成用原料ガスな1合成トーチから吹き出して、多
孔質母材を形成することを待機とする光フアイバ母材の
製造方法◇
[Claims] 1. Glass particles are synthesized in a flame stream. After this is adhered and deposited in the axial direction to form a porous base material, the porous base material is heated to room temperature and burned to obtain a transparent optical fiber base material. Shafted is in law. '/ Rough (8iH6), ) +71 o Luci 5
A method for producing an optical fiber preform, which involves blowing out a raw material gas for glass particle synthesis from a synthesis torch to form a porous preform, including one or both of (sIHOl, >)◇
JP4729982A 1982-03-26 1982-03-26 Production of parent material for optical fiber Granted JPS58167440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4729982A JPS58167440A (en) 1982-03-26 1982-03-26 Production of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4729982A JPS58167440A (en) 1982-03-26 1982-03-26 Production of parent material for optical fiber

Publications (2)

Publication Number Publication Date
JPS58167440A true JPS58167440A (en) 1983-10-03
JPH0339978B2 JPH0339978B2 (en) 1991-06-17

Family

ID=12771399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4729982A Granted JPS58167440A (en) 1982-03-26 1982-03-26 Production of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS58167440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200836A (en) * 1984-03-27 1985-10-11 Sumitomo Electric Ind Ltd Production of preform for optical fiber
US5207813A (en) * 1990-09-07 1993-05-04 Sumitomo Electric Industries, Ltd. Method for producing glass article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51102014A (en) * 1974-11-01 1976-09-09 Komatsu Denshi Kinzoku Kk Kojundotomeigarasutaino seizohoho
JPS5219014U (en) * 1975-07-30 1977-02-10
JPS5424410A (en) * 1977-07-25 1979-02-23 Sadafusa Okajima Method of studding and fixing anchor bolt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51102014A (en) * 1974-11-01 1976-09-09 Komatsu Denshi Kinzoku Kk Kojundotomeigarasutaino seizohoho
JPS5219014U (en) * 1975-07-30 1977-02-10
JPS5424410A (en) * 1977-07-25 1979-02-23 Sadafusa Okajima Method of studding and fixing anchor bolt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200836A (en) * 1984-03-27 1985-10-11 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPS6328856B2 (en) * 1984-03-27 1988-06-10 Sumitomo Electric Industries
US5207813A (en) * 1990-09-07 1993-05-04 Sumitomo Electric Industries, Ltd. Method for producing glass article

Also Published As

Publication number Publication date
JPH0339978B2 (en) 1991-06-17

Similar Documents

Publication Publication Date Title
JPS59232934A (en) Production of base material for optical fiber
JPH06247722A (en) Production of porous glass base material
US4765815A (en) Method for producing glass preform for optical fiber
JPS60108338A (en) Manufacture of base material for optical fiber
JPS58167440A (en) Production of parent material for optical fiber
US4781740A (en) Method for producing glass preform for optical fiber
JPH06227825A (en) Production of porous glass preform
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JP2003313043A (en) Method for manufacturing porous preform for optical fiber and burner device for manufacture of optical fiber porous preform
JPH04228443A (en) Burner for producing optical fiber preform
JPS60260433A (en) Manufacture of base material for optical fiber
KR870000609B1 (en) A method for making of optical fiber preform
JPS5924094B2 (en) Method for manufacturing optical fiber base material
JPH01100034A (en) Apparatus for producing optical fiber preform
JPS6116740B2 (en)
JPH05147965A (en) Production of glass base material
JPH0712951B2 (en) Method for manufacturing base material for optical fiber
JPS58167442A (en) Production of optical fiber parent material
JPH0324418B2 (en)
JPS6035298B2 (en) Glass particle synthesis torch
JPS6121177B2 (en)
JP2003212560A (en) Method for manufacturing fine glass deposit
JPS6230144B2 (en)
JPH0383830A (en) Optical fiber base material and preparation its
JPH04228442A (en) Production of optical preform