JPS5816703B2 - Moving magnet type instrument - Google Patents

Moving magnet type instrument

Info

Publication number
JPS5816703B2
JPS5816703B2 JP53082075A JP8207578A JPS5816703B2 JP S5816703 B2 JPS5816703 B2 JP S5816703B2 JP 53082075 A JP53082075 A JP 53082075A JP 8207578 A JP8207578 A JP 8207578A JP S5816703 B2 JPS5816703 B2 JP S5816703B2
Authority
JP
Japan
Prior art keywords
movable magnet
excitation
type instrument
magnet type
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53082075A
Other languages
Japanese (ja)
Other versions
JPS559141A (en
Inventor
西谷勝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Sogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Sogyo KK filed Critical Yazaki Sogyo KK
Priority to JP53082075A priority Critical patent/JPS5816703B2/en
Publication of JPS559141A publication Critical patent/JPS559141A/en
Publication of JPS5816703B2 publication Critical patent/JPS5816703B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R7/00Instruments capable of converting two or more currents or voltages into a single mechanical displacement
    • G01R7/04Instruments capable of converting two or more currents or voltages into a single mechanical displacement for forming a quotient
    • G01R7/06Instruments capable of converting two or more currents or voltages into a single mechanical displacement for forming a quotient moving-iron type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 本発明は指度調整を容易に行なえるようにした可動磁石
型計器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a movable magnet type instrument that allows easy finger adjustment.

各種計器において測定値が正しく表示されるように指針
の指度を調整する必要があるが、特に可動磁石型計器に
おける指度調整は困難を極めていた。
It is necessary to adjust the index of the pointer so that the measured value is displayed correctly in various meters, but adjusting the index of the movable magnet type meter is extremely difficult.

可動磁石型計器の従来の指度調整方法としては、 ■、励磁用永久磁石の脱磁 2、可動磁石の脱磁 3、励磁磁界の磁気結合係数の変更 4、駆動磁界の磁気結合係数の変更 等が行なわれていた。The conventional index adjustment method for movable magnet type instruments is as follows: ■, Demagnetization of permanent magnet for excitation 2. Demagnetizing the movable magnet 3. Change of magnetic coupling coefficient of excitation magnetic field 4. Changing the magnetic coupling coefficient of the driving magnetic field etc. were being carried out.

しかしながら、脱磁によって調整する方法は脱磁のため
の設備が必要となり、製造設備が大型化する欠点がある
とともに、微調整が極めて困難であり、脱磁しすぎた場
合には再度着磁させなければならず、そのための設備が
必要になる等の欠点もあった。
However, the method of adjustment by demagnetization requires equipment for demagnetization, which has the drawback of increasing the size of the manufacturing equipment, and it is extremely difficult to make fine adjustments. However, there were drawbacks such as the need for equipment for this purpose.

更に、使用する永久磁石の材料も、着脱磁が比較的容易
に行なえる鋳造マグネットに限られていた。
Furthermore, the materials used for the permanent magnets have been limited to cast magnets that can be relatively easily magnetized and demagnetized.

一方、磁気結合係数を変えて調整する方法では、計器自
体に調整用機構を設けておかなければならず、計器が大
型化するとともに、調整作業に熱線を要するので、生産
性を阻害する等の欠点があった。
On the other hand, in the method of adjusting by changing the magnetic coupling coefficient, it is necessary to provide an adjustment mechanism in the meter itself, which increases the size of the meter and requires hot wire for adjustment, which hinders productivity. There were drawbacks.

本発明は上述の如き欠点を解消し、特に熟練を要せずま
た着脱磁装置の如き大型の設備を要することなく、極め
て容易に指度調整が可能となる可動磁石型計器を提供す
ることを目的としてなされたものである。
The present invention solves the above-mentioned drawbacks and provides a movable magnet type instrument that allows for extremely easy index adjustment without requiring special skill or large equipment such as a magnet attachment/detachment device. It was done for a purpose.

以下本発明の一実施例を第1図ないし第6図を参照して
詳細に説明する。
An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 6.

第1図は本発明に係る可動磁石型計器の一実施例を示す
横断面図であり、第2図はその縦断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a movable magnet type instrument according to the present invention, and FIG. 2 is a longitudinal cross-sectional view thereof.

これらの図において、11は可動磁石であって中心に設
けられた軸12によって回転自在に支持されており、ラ
ジアル方向にN、S、2極が平行に着磁されている。
In these figures, reference numeral 11 denotes a movable magnet, which is rotatably supported by a shaft 12 provided at the center, and has N, S, and two poles magnetized in parallel in the radial direction.

そして軸12は可動磁石11のまわシを取り囲んだボビ
ン14に保持されており、とのボビン14の上部から突
出した軸12の上端に指針13が固着されている。
The shaft 12 is held by a bobbin 14 surrounding the rotation of the movable magnet 11, and a pointer 13 is fixed to the upper end of the shaft 12 protruding from the top of the bobbin 14.

ボビン14には、可動磁石11の磁極に対向するように
励磁用永久磁石15.15’が取り付けられており、こ
の励磁用永久磁石15.15’の上をX軸上に位置する
如く駆動コイル16が巻回されている。
An excitation permanent magnet 15.15' is attached to the bobbin 14 so as to face the magnetic pole of the movable magnet 11, and a drive coil is placed above the excitation permanent magnet 15.15' on the X axis. 16 are wound.

なお、励磁用永久磁石15.15’は本実施例では2個
設けであるが、これは1個であってもよく、また2個以
上設けても良い。
In this embodiment, two excitation permanent magnets 15 and 15' are provided, but the number may be one, or two or more may be provided.

更に本実施例では、励磁用永久磁石15.15’の上に
駆動コイル16を巻回したが、この逆に、駆動コイル1
6を巻いた上に励磁用永久磁石15.15’を設けるよ
うにしても良い。
Furthermore, in this embodiment, the drive coil 16 is wound around the excitation permanent magnet 15, 15';
Excitation permanent magnets 15 and 15' may be provided on the coiled magnet 6.

ボビン14は可動磁石11の軸承部であり1.駆動コイ
ル16の巻枠でもあり、その他の部品の組立用ベースと
なる部材でもあるが、これらは外部磁界の影響を受けな
いようにシールドケース17内に収納されている。
The bobbin 14 is a bearing part for the movable magnet 11, and 1. It also serves as a winding frame for the drive coil 16 and a base for assembling other parts, but these are housed in a shield case 17 so as not to be affected by external magnetic fields.

そして、このシールドケース17における可動磁石11
の両極から等距離の対向する両側位置には、進退方向が
可動磁石11の磁気的中性点に向う一対め指度調整用磁
性体製ネジ18、18’が螺着されている。
The movable magnet 11 in this shield case 17
A pair of finger index adjustment screws 18, 18' made of magnetic material and whose advancing and retreating directions face the magnetic neutral point of the movable magnet 11 are screwed onto opposing positions equidistant from both poles.

なお、可動磁石11の磁気的中性点とは可動磁石11の
中心すなわちラジアル方向に平行着磁されているS極か
らN極に変る無着磁のところをいい、第7図で説明すれ
ば、0°〜180°までがS極、180°〜360°(
0°)までがN極であり、その波形は第8図に示す如く
であるから、磁気的中性点はrAJのところである。
The magnetic neutral point of the movable magnet 11 refers to the center of the movable magnet 11, that is, the non-magnetized point where the S pole, which is magnetized in parallel in the radial direction, changes to the N pole. , 0° to 180° is the S pole, 180° to 360° (
0°) is the north pole, and its waveform is as shown in FIG. 8, so the magnetic neutral point is at rAJ.

しかして、本考案によれば、前述したこの調整用ネジ1
8.18’をシールドケース17内へ進ませ或いは外側
へ退かせることによって、指針130指度を調整するも
のであシ、次にこれらの動作について説明する。
According to the present invention, the above-mentioned adjusting screw 1
By advancing 8.18' into the shield case 17 or retracting it to the outside, the index of the pointer 130 is adjusted.Next, these operations will be explained.

駆動コイル16は図示のようにX軸上に巻かれており、
測定電流が流れることによって生ずる磁束±φCは励磁
用永久磁石15、15’による励磁トルクを可動磁石1
1に作用させることにより生じる磁束φFに対し90°
の位相差をもっている(すなわち、ベクトル図を示すと
第3図の如くである0 いま、駆動コイル16に+1の測定電流が流れたとして
、このときに生じる磁束をφや■とすると、第3図の+
X軸側ベクトルはφ+■となり、かつφFは一定である
から、第4図に示すようにこれらの合成ベクトルはφA
1振れ角はθや■となる。
The drive coil 16 is wound on the X axis as shown,
The magnetic flux ±φC generated by the flow of the measurement current is the excitation torque generated by the excitation permanent magnets 15 and 15', which is applied to the movable magnet 1.
90° to the magnetic flux φF generated by acting on
It has a phase difference of + in the figure
Since the X-axis vector is φ+■ and φF is constant, these combined vectors are φA as shown in Figure 4.
One deflection angle is θ or ■.

この振れ角θや■が、駆動コイル16に流れた測定電流
子■にもとづく可動磁石11の回転角であり、換言すれ
ば指針13の振れ角である。
This deflection angle θ and ■ are the rotation angles of the movable magnet 11 based on the measurement current ■ flowing through the drive coil 16, in other words, the deflection angle of the pointer 13.

ところで、十■の測定電流が流れたときに、指針13が
指示すべき目盛板上の振れ角をθ+1 とすると、前述
のθ+1をθ+■oに補正する必要がある。
By the way, if the deflection angle on the scale plate that the pointer 13 should indicate when a measurement current of 10 mm flows is θ+1, then it is necessary to correct the above-mentioned θ+1 to θ+×o.

この補正は調整ネジis、is’によって行なわする。This correction is carried out by adjusting screws is, is'.

すなわち、第7図及び第8図に示した妬きの可動磁石1
1を組込んだ第1図の等価磁気回路は第9図に示す如く
となり、したがって、調整ネジ18.18’を進退させ
ることにより、第3図中のφFを減少させるーφFを発
生させることができる○ また、駆動コイル16による磁束φ十■は第10図に示
すようにそのコイル中心よりネジ18゜187−シール
ドケース17を通る閉ループを構成しているので、ネジ
18.18’を進ませて駆動コイル16の中心に近づけ
ると、コイル磁束φ十■の磁気抵抗が減少し、見掛上φ
+■は十Δφ+■だけ増加する(逆に、ネジ18、18
’を引込めて駆動コイル16の中心から遠ざけると、φ
+1は一Δφや■減少する)。
That is, the envious movable magnet 1 shown in FIGS. 7 and 8
The equivalent magnetic circuit of FIG. 1 incorporating 1 is as shown in FIG. 9. Therefore, by moving the adjusting screws 18 and 18' back and forth, φF in FIG. 3 can be decreased - φF can be generated. In addition, as shown in Fig. 10, the magnetic flux φ18 caused by the drive coil 16 forms a closed loop passing from the center of the coil through the screw 18°187 and the shield case 17, so the magnetic flux φ18' is caused by the driving coil 16. When the coil is brought closer to the center of the drive coil 16, the magnetic resistance of the coil magnetic flux φ16 decreases, and the apparent φ
+■ increases by 10Δφ+■ (on the contrary, screws 18 and 18
' is retracted and moved away from the center of the drive coil 16, φ
+1 decreases by one Δφ or ■).

このようなネジ18、18’の進退によるφFの減少と
φや□の増加とによって第5図に示されるような所望の
振れ角θ+Iが得られるが、これはφF−φp/とφ+
丁十Δφ+1との合成ベクトルがφBとなり、このとき
の振れ角がθ+■o となるものである。
The desired deflection angle θ+I as shown in FIG. 5 can be obtained by decreasing φF and increasing φ and □ by moving the screws 18 and 18' back and forth, but this is due to the difference between φF-φp/ and φ+
The composite vector with Δφ+1 is φB, and the deflection angle at this time is θ+■o.

なお、これらねじ18.18’による指度調整において
、十Δφ+Iの寄与率は約10%及び−φF/の寄与率
は約90%であり、したがってねじ18、18’による
指度調整は主として一φFlによっておこなわれるもの
である。
In addition, in the fingertip adjustment by these screws 18 and 18', the contribution rate of 10Δφ+I is about 10% and the contribution rate of -φF/ is about 90%, so the fingertip adjustment by screws 18 and 18' is mainly made by one This is done by φFl.

なお駆動コイル16に一■なる測定電流が流れた場合で
も、調整ネジ18.18’を同様に調整することによっ
て指針13の振れ角を目盛板に合わせて調整することが
できる。
Note that even if a measurement current of 1 is applied to the drive coil 16, the deflection angle of the pointer 13 can be adjusted to match the scale plate by adjusting the adjustment screws 18 and 18' in the same manner.

本発明を一般の自動車用電流計に適用した場合の測定デ
ータを参考までに示すと、内部抵抗148mΩ、フルス
ケールIAの分流式電流計では第6図に示す特性を示し
た。
For reference, measurement data obtained when the present invention is applied to a general automotive ammeter is shown in Fig. 6 for a shunt type ammeter with an internal resistance of 148 mΩ and a full scale IA.

この図で211fi調整前の指度特性、22は適正指度
特性、23は最大感度指度特性を夫々示しており、調整
ネジ18.18’の進退操作によって曲線21と23で
囲まれた範囲内を調整することができ、この調整幅は約
±40%である。
In this figure, 211fi shows the index characteristic before adjustment, 22 shows the appropriate index characteristic, and 23 shows the maximum sensitivity index characteristic. The range of adjustment is approximately ±40%.

上述のように本発明によれば、調整ネジの操作だけで指
度の調整が可能となる可動磁石型計器が提供でき、調整
には特に熟練を要することもなく、また計器自体を大型
化させる必要もなく、更に着脱磁のだめの大型製造設備
も必要としない等その効果は顕著である。
As described above, according to the present invention, it is possible to provide a movable magnet type instrument in which the finger index can be adjusted simply by operating an adjustment screw, and the adjustment does not require special skill, and the instrument itself does not need to be large-sized. It is not necessary, and furthermore, it does not require large manufacturing equipment for magnetization and demagnetization, and its effects are remarkable.

なお本発明は上述の一実施例に限定されることなく、要
旨を逸脱しない範囲内で種々変形して実施できることは
云うまでもない。
It goes without saying that the present invention is not limited to the above-mentioned embodiment, but can be implemented with various modifications without departing from the scope of the invention.

また交叉コイル型式の可動磁石型計器にも本発明は実施
でき、同様の効果を得ることができる。
Further, the present invention can be implemented in a crossed coil type movable magnet type meter, and similar effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る可動磁石型計器の一実施例を示す
横断面図、第2図はその縦断面図、第3図ないし第5図
は本発明の詳細な説明するだめのベクトル図、第6図は
本発明を適用した計器の特性の一例を示した図、第7図
は可動磁石のN極及びS極の着磁関係を示す図、第8図
はその波形を示す図、第9図及び第10図は本発明の詳
細な説明するための磁気回路図である。
FIG. 1 is a cross-sectional view showing one embodiment of a movable magnet type instrument according to the present invention, FIG. 2 is a vertical cross-sectional view thereof, and FIGS. 3 to 5 are vector diagrams for explaining the present invention in detail. , FIG. 6 is a diagram showing an example of the characteristics of a meter to which the present invention is applied, FIG. 7 is a diagram showing the magnetization relationship between the N pole and S pole of the movable magnet, and FIG. 8 is a diagram showing the waveform thereof. 9 and 10 are magnetic circuit diagrams for explaining the present invention in detail.

Claims (1)

【特許請求の範囲】[Claims] 1 励磁用磁束発生手段番こよる励磁トルクと駆動コイ
ルに流れる測定電流によって生ずる駆動トルクとを可動
磁石に作用させる可動磁石型計器において、これら励磁
用磁束発生手段、駆動コイル及び可動磁石を収容するシ
ールドケースにおける前記可動磁石の両極から等距離の
対向する両側位置に、進退方向が前記可動磁石の磁気的
中性点に向う一対の指度調整用磁性体製ネジを螺着し、
この”ネジの進退により前記励磁用磁束発生手段による
励磁トルクに対して減磁トルクを生じさせるようにした
ことを特徴とする可動磁石型計器。
1. In a movable magnet type instrument that applies excitation torque from the excitation magnetic flux generation means and drive torque generated by the measurement current flowing through the drive coil to a movable magnet, the excitation magnetic flux generation means, the drive coil, and the movable magnet are accommodated. Screwing a pair of index adjustment magnetic screws whose forward and backward directions are directed toward the magnetic neutral point of the movable magnet at opposing positions equidistant from both poles of the movable magnet in the shield case;
A movable magnet type instrument characterized in that a demagnetizing torque is generated relative to the excitation torque by the excitation magnetic flux generating means by advancing and retracting the screw.
JP53082075A 1978-07-07 1978-07-07 Moving magnet type instrument Expired JPS5816703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53082075A JPS5816703B2 (en) 1978-07-07 1978-07-07 Moving magnet type instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53082075A JPS5816703B2 (en) 1978-07-07 1978-07-07 Moving magnet type instrument

Publications (2)

Publication Number Publication Date
JPS559141A JPS559141A (en) 1980-01-23
JPS5816703B2 true JPS5816703B2 (en) 1983-04-01

Family

ID=13764347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53082075A Expired JPS5816703B2 (en) 1978-07-07 1978-07-07 Moving magnet type instrument

Country Status (1)

Country Link
JP (1) JPS5816703B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130505U (en) * 1985-02-04 1986-08-15
JPS61132301U (en) * 1985-02-07 1986-08-18
JPH0199804U (en) * 1987-12-21 1989-07-04
JPH01256401A (en) * 1988-04-01 1989-10-12 Matsushita Refrig Co Ltd Garbage storehouse

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4412474Y1 (en) * 1964-12-28 1969-05-23
JPS4732480U (en) * 1971-04-26 1972-12-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4412474Y1 (en) * 1964-12-28 1969-05-23
JPS4732480U (en) * 1971-04-26 1972-12-12

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130505U (en) * 1985-02-04 1986-08-15
JPS61132301U (en) * 1985-02-07 1986-08-18
JPH0199804U (en) * 1987-12-21 1989-07-04
JPH01256401A (en) * 1988-04-01 1989-10-12 Matsushita Refrig Co Ltd Garbage storehouse

Also Published As

Publication number Publication date
JPS559141A (en) 1980-01-23

Similar Documents

Publication Publication Date Title
US2102409A (en) Electrical-measuring instrument
US4506214A (en) Measuring transformer
GB711854A (en) Improvements in magnetic information storage apparatus
JPS62237301A (en) Magnetic displacement sensor
JPS5816703B2 (en) Moving magnet type instrument
US2284893A (en) Electrical measuring instrument
JPH07270507A (en) Terrestrial magnetism azimuth sensor
US2345011A (en) Pull-off device for telemeter indicators
JPS5817431B2 (en) Movable magnet type instrument
US2440535A (en) Double concentric air gap perma
GB671198A (en) Improvements in and relating to hall plate apparatus for measuring or controlling unidirectional currents
JP3304351B2 (en) Voltage indicating device
US2889520A (en) Moving magnet meter movement
JPS5813746Y2 (en) voltmeter
US2865002A (en) triplett
JPS585983Y2 (en) crossed coil instrument
SU917093A1 (en) Measuring mechanism of an electromeasuring instrumennt
JPH05126513A (en) Angle detector
JP2514338B2 (en) Current detector
JPS60233561A (en) Measuring device for speed of revolution
US5917317A (en) Retarding magnet assembly for electricity meter
US3858115A (en) Induction volts-squared hour meter
JPH0234619Y2 (en)
Faus et al. A new moving-magnet instrument for direct current
JPS6256466B2 (en)