JPS58166922A - Desulfurizing and denitrating method - Google Patents

Desulfurizing and denitrating method

Info

Publication number
JPS58166922A
JPS58166922A JP57050124A JP5012482A JPS58166922A JP S58166922 A JPS58166922 A JP S58166922A JP 57050124 A JP57050124 A JP 57050124A JP 5012482 A JP5012482 A JP 5012482A JP S58166922 A JPS58166922 A JP S58166922A
Authority
JP
Japan
Prior art keywords
reaction
ammonia
desulfurization
rate
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57050124A
Other languages
Japanese (ja)
Inventor
Hiromi Tanaka
田中 裕実
Seiji Iwamura
征治 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57050124A priority Critical patent/JPS58166922A/en
Publication of JPS58166922A publication Critical patent/JPS58166922A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To desulfurize and denitrate waste gases contg. sulfur oxide (SOx) and nitrogen oxide (NOx) by mixing ammonia with said waste gases, and using carbonaceous adsorbents at temps. in a 110-180 deg.C. CONSTITUTION:The 1st reaction column 1 and the 2nd reaction column 2 consisting of a moving bed system packed with cabonaceous particles such as active carbon are communicated. A by-pass piping is provided to the 2nd column and a piping for injection of ammonia is provided in the inlets of the 1st and the 2nd columns. Waste gases are increased in pressure with a pressure increasing fan 3, whereafter ammonia is injected threrein to SOx/NH3=0/3-0.6, more preferably 0.4-0.5 with respect to the inlet SOx, whereby mainly desulfurization is accomplished in contacting with the active carbon in the 1st reaction column. 800-1,000hr<-1> may be selected for the 1st reaction column because the treatment therein is mainly the desulfurization for which the rate of desulfurization required is relatively low and 600-800hr<-1> may be selected for the 2nd reaction column because the treatment is mainly desulfurization for which a relatively high rate of desulfurization is required.

Description

【発明の詳細な説明】 不発94は、イオウ酸化物(1i0x)と窒系鈑化物(
NOx)を含む排力スκアンモニアを混入し、lit)
〜184)@CD範曲0温良で炭集質収看剤を用いて併
ガスを脱愼●脱硝する方法の改良に関する。
[Detailed description of the invention] Unexploded 94 is made of sulfur oxide (1i0x) and nitrogen-based sheet metal (
Mixed with exhaust gas containing ammonia (NOx), lit)
~184) @CD Hankyoku 0 Temperature improvement method for decondensation and denitrification of gas using a charcoal collecting agent.

排ガス中の80xとNow O ##看を除去する方法
としては、以下に示すような方法が提粂されている。
The following methods have been proposed as methods for removing 80x and Now O ##in from exhaust gas.

l)*属教化物をベースとする触媒を用いて300℃以
上の尚温度で接触還元する方法と擺式脱硫とを組合わせ
た脱憾・脱硝方法。
l) *A denitrification and denitrification method that combines a method of catalytic reduction at a temperature of 300° C. or higher using a catalyst based on a chemical compound, and a desulfurization method.

2)炭素質吸膚創を用いて150℃以下の中低温度で同
時KJISi慎・脱硝せしめる方法(特−昭50−28
674、特IIAid54−127691 )。
2) A method of simultaneously denitrifying and denitrifying KJIS at medium to low temperatures below 150°C using a carbonaceous skin suction wound (Special-1989-28)
674, Special IIAid 54-127691).

3)180〜250℃の中高温で同時に脱愼・脱硝せし
める方法(特許第91895:1号ン。
3) A method of simultaneously decondensing and denitrating at medium to high temperatures of 180 to 250°C (Patent No. 91895:1).

4)、 150℃機皮の温度で2段階処鳩し、FjlJ
緘で王として脱憾を行い、 vkmで王として脱硝を行
わしめる方法(%−陥154−13736.籍願昭55
−14235)。
4) Two stages of curing at a skin temperature of 150°C, FjlJ
A method of renunciation as a king in the treason and renunciation as the king in Vkm (%-154-13736. Registered in 1977)
-14235).

しかしながら、上記いずれの方法も性寵圓や経済面等で
問題がある。
However, all of the above methods have problems in terms of popularity, economy, etc.

例えば、罰配りの方法は尚栖な触媒を必費とする欠点お
よび剛反応による80.の80.への融化とリークアン
モニアがエアヒーメ等恢maw内で反応し、アンモニウ
ム塩を生成しエレメント等を閉そくさせる欠点、湿式脱
m#twが後置される場合排水中へ″j1木分か混入し
、そのtま放流されると刈用、簡沼および海水の′M簑
化となることから排水の祝電処理が公費となる等コスト
アップとなる欠点があつ次。
For example, the method of punishment has the drawback of requiring a large catalyst and the 80% reduction due to rigid reaction. 80. The disadvantage is that the leakage ammonia reacts in the air heater, etc., producing ammonium salts and blocking the elements, etc., and when wet demolition m#tw is installed later, ``j1 wood minutes are mixed into the wastewater. If the wastewater is discharged for a long time, it will be used for mowing, swamps, and sea water will be turned into a mound, and the process of treating the wastewater will be a public expense, resulting in an increase in costs.

2)の方法Fi注入したアンモニアが共存するBoxと
浚先的に反応してm款塩となり、実用土30〜4(Jq
bi![の低い脱硝率しか得られない欠点がある。
Method 2) The ammonia injected with Fi reacts with the coexisting Box to form salt of 30 to 4 (Jq.
Bi! [There is a drawback that only a low denitrification rate can be obtained.

又、a)oyj法は、8〇−以上の^い脱硝率を優るこ
とが可能であるが、一般的11’m18U〜250℃の
一度は排カスの感温の凹で適切な温良範囲とは目えず、
例えばこotith匿領域で縦累買吸嵩創を用φること
は酸化による損失が大きく好ましくないばかりか、脱i
1m特性の低i!依存性からこのYMh反懺域で^い脱
硫率を得ようとすれば脱憾性りしの藷に優れ危高価な活
性炭を用いる公費がある等の欠点が6つ危。
In addition, a) oyj method can achieve a high denitrification rate of 80- or more, but the general temperature range of 11'm18U to 250℃ is within the appropriate temperature range with the temperature-sensitive concave of the waste slag. I can't see it,
For example, it is not only undesirable to use vertical suction in the kotith-containing area because of the large loss due to oxidation, but also
Low i with 1m characteristics! If you try to obtain a high desulfurization rate in this YMh reaction range due to dependence, there are six disadvantages, such as requiring public funds to use activated carbon, which has excellent desulfurization properties and is dangerous.

そこで、本尭鴫者らは、脱−単については満足し借るも
のの低脱硝率しか得られない原因を2)の方法について
樵々検討した精米、低温における脱硝率は入口SOx績
良およびNOx−反の1簀を大きく受けることが判明し
、その−保は第1図および弗2図VC示すとおりである
Therefore, Motoya et al. investigated the reason why only a low denitrification rate was obtained even though they were satisfied with the denitrification rate. It was found that the resistance was greatly affected by the resistance, and its resistance was as shown in Figs. 1 and 2 VC.

本試験は合成υトカスにより活性炭ljt元てんした固
定床式反応塔を用いて行なわれ、カスm&150℃、全
闇速K (8V) 8 Q Ohr  にて第1図はN
NO200ppでの頼釆を反応時間48 hrにおける
平均昧去−として図積分によりまとめたものであり、第
2図は8016!II曳25 u ppmでの結果を同
様にまとめたものである。
This test was carried out using a fixed-bed reaction tower containing activated carbon ljt based on synthesized υtocas.
The reaction time at 200pp of NO was summarized by graphical integration as the average depletion over a reaction time of 48 hours, and Figure 2 shows 8016! The results obtained using Hiki II at 25 u ppm are similarly summarized.

この給米で非常に注目すべきことは、入口SOx譲度が
301J ppm以下では着しく尚い脱硝率が得られ、
iた通常の触媒反応とは逆に人口NOx磯夏が低いはと
高い脱硝率が得られる穏娠が見い出されたことである。
What is very noteworthy about this rice feeding is that when the inlet SOx yield is 301 J ppm or less, a good denitrification rate can be obtained.
Contrary to the conventional catalytic reaction, a moderation method was discovered that resulted in a very high denitrification rate with a low population NOx.

これは人口SOx (59度が低い場合に^い脱硝効果
が長時間持続することによるもので、活性炭の活性点が
SOx rc起因するg&7#響または生戟智によりお
おわれゐ度合が少ないためによるものと推定される。 
 ゛ さらVc活性の低下した活性炭は公知の方法による21
11熱丹生により100%性I11.が回復することを
一一している。
This is due to the fact that the denitrification effect lasts for a long time when the population SOx (59 degrees) is low, and the active points of activated carbon are less covered by the SOx rc caused by g & 7 # hibiki or live fire. It is estimated to be.
゛The activated carbon with reduced Vc activity can be prepared by a known method.
11. 100% sexual I11. I am hopeful that he will recover.

一方、4)の方法は比較的高い脱硝率が得られ゛る方法
であるが、特願昭54−13736VC開示された方法
は2段目の反応塔では前段の反応場出口の比軟的Box
およびNOx−茨の高い部分を処理することになり、必
ずしも#記本兜明省らが明らかにした脱硝条件を満足す
ることにはならず、広軛咄のガス条件で為い脱硝率を侍
ようとすればざらに第3.第4の反応塔で再処理するこ
とが公費となり、前記脱硝条件を満足させようとすれば
前段のSvおよび/または活性炭の瀬一時間を着しく低
くする必費があり、不駐済となる欠点があった。
On the other hand, method 4) is a method that allows a relatively high denitrification rate to be obtained, but the method disclosed in Japanese Patent Application No. 13736/1983 uses a specific soft box at the outlet of the previous reaction field in the second stage reaction tower.
This means that areas with high levels of NOx and thorns will be treated, and this will not necessarily satisfy the denitrification conditions clarified by Kabutoaki et al., but it will be necessary to treat the denitrification rate under wide-ranging gas conditions. If you try, you'll end up with the third problem. Reprocessing in the fourth reaction tower is a public expense, and in order to satisfy the above denitrification conditions, it is necessary to significantly lower the initial stage Sv and/or activated carbon drying time, so it is not stationed. There were drawbacks.

ま↑特願昭55−14235に開示され次男法は2hL
−人口Box績度を低くすることを指向しているように
思われるが、そのail117を範囲について明示がな
く、必ずしも800 ppm以下に眠足するものではな
い。また前段におけるアンモニア仕入は故意にさけてい
る。この方式の同一点は前段にアンモニア壮大がないこ
とから、mWでの脱徊幼釆は期待できず、入口NOxが
島い場合は^い脱硝率が優られずまた得られたとしても
後段の負担がム〈な20、結果的に着しく低いBVおよ
び/または浦留時間を辿択しなければならない欠点がめ
った。
Well, it was disclosed in the patent application No. 55-14235, and the second son law is 2hL.
- It seems that the aim is to lower the population box performance, but there is no clear indication of the range of ail117, and it is not necessarily 800 ppm or less. In addition, we intentionally avoid purchasing ammonia in the first stage. The same point of this method is that since there is no ammonia in the first stage, it is not possible to expect the denitrification rate to be reduced at mW. 20. As a result, the disadvantage is that one has to choose a very low BV and/or a low retention time.

さらにアンモニア注入の他の効果は脣纏昭54−102
387及び脣願昭64−143(18等に開示されてい
るように活性炭の腕憾性舵および脱硝性能の改智、つま
り活性炭のアンモニアによる賦活幼果でるり、アンモニ
ア狂人による用役費の増加を十分に吸収して余りあると
百えるが、前記方法は結果的に仁の効果を十分に享受し
ていないとビえる。*に、この方法のもう一つの問題点
は反応場が2つとなる几り崗省會酋わせ7を活性炭の桜
込量が恢米法より大巾に檀え、脱wAk*の負担が増加
する仁とである。
Furthermore, the other effects of ammonia injection were
As disclosed in 387 and Sho 64-143 (18, etc.), the improvement of activated carbon's brawn rudder and denitrification performance, that is, the activation of activated carbon with ammonia, and the increase in utility costs due to ammonia madness. However, it seems that the above method does not fully enjoy the effect of oxidation.* Another problem with this method is that there are two reaction fields. As a result, the amount of activated charcoal is greater than that of the rice cultivation method, which increases the burden of eliminating WAK*.

アンモニア注入による効果、は1述した通りであるが、
一方ではアンモニアリークの開−を解決する必要がある
。通常比戦的尚いSOx共任下では:a鯛アンモニアは
次式で示される反応で活性炭上に吸嵩生成した―酸に吸
収 a、5cfi 十NH,→m4HsoFl(1)NH声
シ+N■1→(洲西802    ■(豪は瘉性腋に吸
着された状態を示す。)されリークははとんどないが、
低SOx下で尚いkm*を侍ようとすれば過剰分の吸収
幼果が十分M待できず、リークを生じやすい欠点が必り
、この囲からの制約がある。リークは二次公豐を防止す
る綾点から10 ppm以下、好ましくは畝ppm以下
とするととがmましい。
The effect of ammonia injection is as mentioned in 1.
On the other hand, it is necessary to solve the problem of ammonia leakage. Under normal conditions, ammonia is absorbed and produced on activated carbon by the reaction shown by the following formula - Absorbed by acid a, 5 cfi 10 NH, → m4 HsoFl (1) NH + N ■ 1 → (Sunishi 802 ■ (Go shows the state where it is adsorbed to the axillary armpit.) and leaks are rare, but
If you try to cover more km* under low SOx conditions, the excess absorption of young fruit will not be able to absorb enough M, and there will inevitably be a drawback that leaks will easily occur, and there will be restrictions from this environment. It is preferable that the leakage be kept at 10 ppm or less, preferably at most ridge ppm, from the ridge point to prevent secondary leakage.

本強明は、以上の問題点を解決するためになされたもの
で、脣に4)(D’:)j法を改良して脱虞−脱銅舵力
に唆れ、かつ経済的にも有利な脱蝋−脱俯方法を提供す
るものである。
This improvement was made in order to solve the above problems, and by improving the 4) (D':)j method, it was inspired by the steering force of copper removal and copper removal, and it was also economically effective. It provides an advantageous dewaxing-dedewing method.

即ち、本発明の脱硫・脱硝方法は、イオウ咳化鵜、MA
m化we゛含む−[110〜18U’lcの併カスにア
ン篭ニアカスを混入しに後炭素XI&膚割を光てんする
連:設された2基の反応場へ尋いて併カスの脱硫・脱硝
を行う方法において、アンモニアを混入した前記排ガス
を第l戊応梧へ導き絽1反応梧出日カスのイオウ絃化物
a[:が30099m以下になるようvc睨憾と付随的
に脱硝を行い、次いでU、第1反応場内口〃スの全部又
は−Stアンモニアガスの鼻注入恢第2反応塔へ鳴き王
として脱硝を付随的に脱硫を行うことを%似とするもの
である。
That is, the desulfurization/denitrification method of the present invention can be applied to
Contains 110 to 18 U'lc, and mixes annular scum into the sludge and then oxidizes the carbon XI and skin. In the method of denitration, the exhaust gas mixed with ammonia is led to the first reactor, and denitrification is performed concomitantly with a vc glare so that the sulfur compound a [: of the first reaction] is 30099 m or less. Then, the entire inside of the first reaction field or -St ammonia gas is injected into the second reaction tower through the nose, and denitrification and desulfurization are performed concomitantly.

以下、第3図に示す実施例により絆細に説明すると、活
性炭婚の縦本質靭を充てんした移動床方式からなる吊1
rst応塔l及び第2反応場2を連逼店せ、第2戊応塔
にはパイIセス配官が設けてあり、第lおよび第2反応
場人口にはアンモニア注入用の配営が設けられている。
The following is a detailed explanation of the embodiment shown in Fig. 3.
The second reaction tower 1 and the second reaction field 2 are connected, and the second reaction tower is equipped with a pipe I cess control, and the first and second reaction towers are equipped with ammonia injection arrangement. It is provided.

耕ガスは昇圧ファン3rcより昇圧後人口SOx vc
刈してSo X/NHI = 0.3〜Q、 6好まし
くは0.4〜Q、 Sとなるようにアンモニアが注入さ
れ、第1反応場内の活性炭と接触して王に腕懺を行う。
The plowing gas is the population SOx vc after being boosted by the booster fan 3rc.
Ammonia is injected so that So

但し、該反応場出口SOx績度は、前記説明を何った第
1図の枯木から300 ppm以下、好ましく i;j
 250 ppm以下となるよう8v及び宿社にの蒲w
#f同が返ばれる・ 造営人口SOx製置が1.OU Oppm機度の場合s
vは800〜I O(10hr  とする。この際付随
的脱硝は3 (11機反行なわれる。ついでこの処堆済
カスはアンモニアt−再注入lk第2反応塔へ尋人され
る。
However, the SOx performance at the outlet of the reaction field is preferably 300 ppm or less from the dead tree shown in Figure 1, which has been explained above.
Contains 8v and inn so that the concentration is below 250 ppm.
#f same is returned・ Construction population SOx production is 1. For OU Oppm machine
V is set to 800 to IO (10 hr). At this time, incidental denitrification is carried out 3 times (11 times). Then, the treated waste is transferred to the second reaction tower for reinjection of ammonia.

5vFi第l、第2反応塔を曾わせ九油性級の坊懺tを
出来るだけ少なくするために、^いsvを逃足する必要
があるが、亀IJ5j応堪は脱硫生体でしかも比較的低
い脱硫率で良いことからSOU〜1,0υ(lhr(常
温基準、以下同じ)。第2反応場は&銅王俸で比較的高
い脱硝率が公費であ−す ることから600〜fAOObr  tM定すれば艮い
In order to raise the 5vFi 1st and 2nd reaction towers and reduce the amount of 9-oil grade boiling as much as possible, it is necessary to escape the sv. Since the desulfurization rate is good, SOU ~ 1,0 υ (lhr (normal temperature standard, same below) It's funny.

またアンモニア区人量はその王な反応式はMIJ■、0
式および次の■式 NO十Y、0.十NH畠−+NI+3/2)1.0  
  にi)に促がうと考えられる。*鋤では活性炭j−
のカス人口−では0式、中間部でFi[F]式によるも
の、田口部ではり、go、が王としてwgJbられ、平
均的には全体がの式によるものと見なして良い。1次通
常の排ガス中のNOx ij太鄭分NOであり、NO,
は少ないことが知られており、&伯はり式による反応が
王俸と考えて差しつかえない。
Also, the main reaction formula for the amount of ammonia is MIJ■, 0
Formula and the following ■Formula NO 10Y, 0. 1NH Hatake-+NI+3/2) 1.0
It is thought that i) will be encouraged. *Activated carbon in the plow
In the cass population -, the formula 0 is used, in the middle part the formula is based on the Fi[F] formula, and in the Taguchi part, the king is wgJb, and on average it can be considered that the whole is based on the formula. NOx in the primary normal exhaust gas is NO, NO,
It is known that there are few people, and it is safe to assume that the reaction based on the & Hakuhari style is the royal salary.

し几がって、アンモニアリークを抑え7を場合の許容ア
ンモニア壮大1には化学1−的に■式および0式から求
められる。アンモニア注入量が′ 適正憧より少なけれ
ばリークはなくなるが脱硝率の低下があり、逆に多けれ
ば脱硝率は増加するがリーク艦が急啄に上昇する横向が
酩められる。実験的には次の0式から適正注入量が求め
られ、係数には通常0.9〜1.1に選ばれ共合80意
が比較的高い場合は上限に、低い場合は下限に選定する
方がリークが少なくなる傾向がある。
Therefore, in order to suppress the ammonia leak, the maximum allowable ammonia in the case of 7 can be determined from the chemical formula (1) and the formula (0). If the amount of ammonia injected is less than the appropriate amount, the leak will disappear, but the denitrification rate will decrease; if it is too much, the denitrification rate will increase, but the leakage vessel will suddenly rise sideways. Experimentally, the appropriate injection amount is determined from the following formula, and the coefficient is usually selected between 0.9 and 1.1. If the conjugate value is relatively high, the upper limit is selected, and if it is low, the lower limit is selected. leaks tend to be less.

(hi)I s ) −K @((NOX ) ” ?
    + (80X ) ” ’I B □ x )
   010w ここに(Nag) :壮大Nl(、鎖度〔訃pm体槓ベ
ース〕(NO):第2設入口NO磯挟(−’)〔SOx
〕:1sOxlC#〕 ”1iox  ”第2坂の脱硝率 〔−〕η、。x :
 l  脱−率 〔僑〕 ・K :定数(K−0,9〜1.1) 8g2m応塔でμl惺の脱#li@とrLるようSvお
よび活性炭の油質時間が選ばれる。通常s■は人口hO
xdkKが200〜800 ppmではsuo〜80 
(l hr  が選ばれる。この場合脱硝率は65〜8
0チ、脱i1皐はほぼl0LIチが慢られる。
(hi)Is) -K @((NOX)”?
+ (80X) ”'I B □ x)
010w Here (Nag): Magnificent Nl (, chain degree [PM body base] (NO): 2nd installation entrance NO Isogami (-') [SOx
]:1sOxlC#] "1iox" Denitrification rate of the second slope [-]η,. x:
l Removal rate (K): Constant (K-0, 9 to 1.1) The oil quality time of Sv and activated carbon is selected so that the removal rate of μl and rL in the 8g2m reaction tower are the same. Usually s■ is population hO
When xdkK is 200 to 800 ppm, suo to 80
(l hr is selected. In this case, the denitrification rate is 65 to 8
0chi, I1Ko is almost l0LIChi.

したがってSXおよび第2反応塔を合わせた酩会幼軍は
75〜85g6の脱硝率とほぼl u ’Ll−の続懺
率が優られる。
Therefore, the combined SX and second reaction tower has an excellent denitrification rate of 75 to 85 g6 and a continuity rate of approximately lu'Ll-.

さらVcgxおよび第2反応塔から排出逼れる活性炭は
脱庵器4に導びき公知の方法で不粘性ガス′I1.−気
下で400℃前体に加熱丹生し、第l、第2反応場にそ
れぞれ返送される。この除&!AI収されるSow 1
11mガスは―j生品(ロ)収装電5で健鹸または単俸
イオウ等として回収することができる。
Furthermore, Vcgx and the activated carbon discharged from the second reaction tower are led to a de-hemifying device 4 and converted into an inviscid gas 'I1. - The precursor is heated to 400° C. under air and returned to the first and second reaction sites, respectively. This exclusion &! AI collected Sow 1
11m gas can be recovered as sapon or simple sulfur at -j raw materials (b) collection equipment 5.

以上の説明により壇解できるように本尭明によれば、前
段および後RKおける錫塩の合理的分担および相米効果
により、広範囲カス条件に対し、前譚、後段の錫塩条件
が比較的自由Vc辿定でき、tたこの棟のプロセスとし
ては比軟的尚いSvと長い活性炭の涌留時間を遍択でき
るため、経済的かつ婉い脱硝率および脱甑傘が帰られる
メリットがある。
As can be understood from the above explanation, according to Takaaki Moto, due to the rational sharing of tin salt in the first and second RKs and the somai effect, the tin salt conditions in the first and second stages are relatively low compared to the wide range of scum conditions. Free Vc can be traced, relatively soft Sv and long activated carbon retention time can be selected for the t-tako building process, so it has the advantage of economical and low denitrification rate and dehydration. .

なお、それほど尚い脱4j14都を望まない場合ケよ、
w42反応塔VC尋人する排カスを一部バイパスさせる
ことにより布置のものを得ることができ、かつ第2反応
4を小さくできるから鮪隣的とする。また脱憾率をPJ
T望のもOK鯛整し丸い場合は一生品回収装一のオフカ
スを必賛11L第2の反応塔出口にパージし、残りをm
llの反応塔の人口ヘリサイクルすれば良い。通常−生
品回収糸の一生品への転化4Aは90〜97囁でめ0残
りは吸w塔人ロー\リサイクル処堪される。
By the way, if you don't really want to break away from 4J14,
By bypassing part of the waste from the W42 reaction tower VC, a similar configuration can be obtained, and the second reaction 4 can be made smaller, so it is considered similar to tuna. Also, increase the dropout rate by projecting
If the sea bream is round and round, purge the off-scrap from the 11L second reaction tower outlet, and leave the rest in m.
It is sufficient to recycle it to the artificial reactor of 1 liters of reaction tower. Normally - Conversion of raw product recovered yarn to raw product 4A is 90 to 97 whispers, and the rest is recycled.

その結果人口5Oxal&は3〜10%+%くなるが、
他の方法例えば専用のゾールカス処塩叙電を直く場合に
比して合理的である仁とから岑らこの方式が採用されて
いる。また−生品回収装置のオフカスの一師を糸外にパ
ージすることは吸516人口SOx 譲良が減少するば
かりか、系内で処−すべき80x凰が減少するため随往
畿寺の用役費、設置IiI谷墓が秋少しより一騎性が同
上するメリットがある。
As a result, the population 5Oxal& will be 3-10%+%,
This method has been adopted since it is more reasonable than other methods such as using a dedicated salt treatment method. In addition, purging the off-scrap of the raw material collection equipment outside the system not only reduces the amount of 516 SOx emissions, but also reduces the amount of waste to be disposed of within the system. There is an advantage that the official fee, installation IiI valley tomb is a little more one-knight than the same as above.

さらにこの方法では通常オフカス中のSOx @直に比
しNoxQ度が着しく低いため脱硝率に影普を与えず腕
体率のみ一節できるメリットがある。
Furthermore, this method has the advantage that it does not affect the denitrification rate and allows only the arm-body rate to be reduced because the NoxQ level is considerably lower than that of SOx in the off-gas.

第4因(NH,温潤ライン、銅生品回収峡置寺は4wh
O)は第2反応塔から排出される活性炭を全型、第1反
応塔に供給するようにし九場酋を示し、この方式で4本
%明の目的v′i漣敢される。
4th cause (NH, Onjun line, copper raw materials collection Kyogi temple is 4wh
O) shows that the activated carbon discharged from the second reaction tower is completely supplied to the first reaction tower, and in this way, the purpose of 4% light is achieved.

この場合w&lおよび第2反応場から排出され′*fc
供給される活性炭量のバランスによって、遇駒分を脱離
塔へバイパスし7′Cり不足分を腕絵伶からt!L飯供
給するようにしても艮い。第2反応場で錫塩するBox
 ilは少ないから、排出される油性尿の80. a寓
意は第1反応塔の奴膚レベルである1410〜150■
/9活性炭に比べて者しく少なく通常3011v/ j
’程度であり、未だ十分なSθ!畝層金層余力ち、これ
をM1反応場に供給した場合、第1反工6塔における脱
銅匁米皐のは下をまねくが、処理すべきNow績腋耐性
に^くないかぎりその低下分は#IS2反応場でおぎな
うことができる。
In this case, it is discharged from w&l and the second reaction field'*fc
Depending on the balance of the amount of activated carbon supplied, the amount of activated carbon is bypassed to the desorption tower and the insufficient amount is taken from the t! Even if they try to provide L rice, it doesn't work. Box for tin salt in the second reaction field
Since the amount of il is small, the amount of oily urine excreted is 80. A is the level of the first reaction tower, 1410~150■
/9 Less intense than activated carbon, usually 3011v/j
' and is still sufficient Sθ! If the surplus gold layer in the ridge layer is supplied to the M1 reaction field, the decopper-removed momme in the 6th tower of the first reactor will be lowered, but the reduction will be lower unless there is a problem with the resistance of the now treated layer. minutes can be completed in the #IS2 reaction field.

その頼米出21Xkcr楢での活性次涌一時間は短かく
なるが、本方式のシリーズ幼木により緘−堪で処理すべ
き活性炭の菫は大巾に少なくなり、帛3図に示し穴パラ
レル方式に比べ活性炭の粉化による損失および脱−丹生
に必賛な用役寅および脱離装蝋設物責を減少畜せること
ができるメリットが6る。
Although the activation time for 21Xkcr oak will be shorter, the number of activated carbon violets that need to be treated in a row will be greatly reduced due to the series of young trees using this method. Compared to the conventional method, this method has the advantage of reducing losses due to pulverization of activated carbon, as well as the labor costs and equipment costs required for de-Nyu.

以上の実施例は移動床方式で説明したが、一般的には敷
地効率のよい直交流方式が遁しており、ま−7を固定床
方式とし多数のユニットを配管で切替る方式としても同
じ効果が優られ、あるいは第1反応塔を移動床、第2塔
を固定床の混成方式としても良い。
The above embodiments have been explained using a moving bed system, but in general, a cross-flow system with good site efficiency has prevailed, and it is the same even if Ma-7 is a fixed bed system and multiple units are switched using piping. If the effect is superior, it is also possible to use a mixed system in which the first reaction column is a moving bed and the second column is a fixed bed.

本発明で用いる炭3に質l1IIL潜絢には公知の力紙
で作られる活性炭、半成コークス、活性チャー01それ
らに鋼、鉄、バナジウム等の菫属緻化物を1個以上担持
し次ものが含まれ、第l仄応塔と菌2反応塔に充てんす
るものが異なっても艮い。
The charcoal 3 used in the present invention is made of activated carbon made from known power paper, semi-formed coke, activated char 01, and the following: It does not matter if the first reaction tower and the second bacterial reaction tower are filled with different materials.

なお、図中6はダン/l −f示す。Note that 6 in the figure indicates dan/l-f.

仄に、実施Sにより本発明0効来を明らかにする。By way of example, implementation S will clarify the effectiveness of the present invention.

機mf#s 1.06011PIII 10 Boxとa OOpp
mのNOxを含Mする石巌焚−イラ排ガスvt10,0
00 NWI/hr MRリ出しアンモニアvth l
 Q pprm混入後、145℃のm夏でA114ルク
ベルクスフ工アパント社製aX活性炭を10 d (J
iV 1000hr−”相幽)光テんしIしO移動床式
反応塔に尋人し几。
Machine mf#s 1.06011PIII 10 Box and a OOpp
Stone-fired exhaust gas containing M NOx vt10,0
00 NWI/hr MR discharge ammonia vth l
Q After mixing with pprm, 10 d (J
iV 1000hr-"Hikari Tenshi Ishio moving bed type reaction tower.

活性炭の咳反応堪円のm留時閲を87hr(移送量0.
29 wl/by )に設定したとζろ脱硫率76.5
−1脱硝率87−が得られ、出口80x績直は249 
ppm、 Noxlli度は119 ppmとなった。
The cough reaction of activated charcoal was confirmed for 87 hours (transfer amount 0.
29 wl/by), the zeta-filtration desulfurization rate was 76.5.
-1 denitrification rate of 87- was obtained, exit 80x score was 249
ppm and Noxlli degree was 119 ppm.

更に、この処理済ガスにアンモニアを4o。Furthermore, add 4o of ammonia to this treated gas.

ppm4混入後1B’0’Cの温良で同一の粒状活性炭
14.9 wt (8V670hr−”相り11”/v
L7tM2の41111床式反応堪KNs人した。活性
炭の該反応塔内の滞留時間を48hr(移送量0−31
 wl/kr)vcW&定したところ、出口NOX線度
59ppm。
The same granular activated carbon with a temperature of 1B'0'C after mixing ppm4 14.9wt (8V670hr-"11"/v
41111 bed type reactions of L7tM2 were completed. The residence time of activated carbon in the reaction tower was 48 hr (transfer amount 0-31
wl/kr)vcW& was determined, and the outlet NOX linearity was 59 ppm.

SOx績度績度ppmとなり脱硝率710−1脱憾率1
00−が得られアンモニアリークは5 pprmとなっ
た。し次がって@l、!反応塔を合わせ穴総合脱硝率F
i80.3饅、脱―率は10(1−となり、を几活性炭
移送量は0.1i0d/hrとなる。
The SOx performance level is ppm and the denitrification rate is 710-1 and the denitrification rate is 1.
00- was obtained and the ammonia leak was 5 pprm. Then @l! Combined hole total denitrification rate F of reaction tower
At i80.3, the removal rate is 10 (1-), and the activated carbon transfer amount is 0.1i0d/hr.

このm釆から明らかなように、比較的低I/&活性炭の
滞留時間(移送量)で非常に卓越し次脱硝率及び脱−率
が得られた。
As is clear from this m-bottle, excellent denitrification and removal rates were obtained with a relatively low residence time (transfer amount) of activated carbon.

実施例2 1l施例1の装置において第2の移動床式反応塔から排
出される活性炭を第1の移動床式反応塔に供給するよう
にし、IUI4sIと同一条件で排カスを絽Io反応塔
に導入し、gi4!!縦のし反応塔内の油貿時間i27
.0kr(移送量0.8 ? wt/kr)に設定した
ところ出口80x 111度は2 I Oppwa。
Example 2 In the apparatus of 1l Example 1, the activated carbon discharged from the second moving bed reaction tower was supplied to the first moving bed reaction tower, and the waste was passed through the sieve Io reaction tower under the same conditions as IUI4sI. Introduced to gi4! ! Oil trade time in vertical reaction tower i27
.. When set to 0kr (transfer amount 0.8? wt/kr), the exit 80x 111 degrees is 2 I Oppwa.

Nox嶺1には256 ppmとなnm硫率7@、ll
1l。
Nox ridge 1 has a nm sulfur rate of 256 ppm, 7 @, ll
1l.

脱硝率14.5優が得られた。この処理済ガスにアンモ
ニアを4soppmN混入後150’cの一度で#!2
の反応塔に導びvhた。活性炭の第2の反応塔内でOW
貿時閾を40hr(移送量o、37w1/by )に設
定したところ、出口NOx嬢JXは59 ppm%80
x11度o ppmとな9脱硝率77、。
A denitrification rate of 14.5 was obtained. After mixing 4 soppmN of ammonia into this treated gas, #! 2
The reactor was introduced into the reaction column of vh. OW in the second reaction column of activated carbon
When the trade time threshold was set to 40hr (transfer amount o, 37w1/by), the exit NOx girl JX was 59 ppm%80
x 11 degrees o ppm, 9 denitrification rate 77.

−1脱−$100−が得られ、アンモニアリークはi 
ppmとなった。
-1 removal -$100- is obtained, and ammonia leak is i
ppm.

し次がって$1.f1反応嗜を合わせたh酋脱硝率は8
0.1優、脱硫率は100−一となり、また活性炭移送
量はOS 7 d/hh−となる。実施例1より!1!
に低い活性炭移送量で卓越した脱硝率及び脱硫率が得ら
れた。
Then $1. The h-denitrification rate including the f1 reaction is 8.
0.1, the desulfurization rate is 100-1, and the activated carbon transfer amount is OS 7 d/hh-. From Example 1! 1!
Excellent denitrification and desulfurization rates were obtained with low activated carbon transfer rates.

実施例3 石R焚ゼイ2排ガスを145℃の温度で10iの活性炭
を充てんした移動床反応塔に纒びき、SOx績度8空関
速KCBV)と脱硝率の関係を試練した。□この場合、
入口80x磯度は反応塔出口カスを入口にリサイクルし
て’d4 lll、 、 NOx嬢笈0不足分はNH,
を酸化して入口220 ppmとなるよう、注入lll
豊した。活性炭の滞留時間は48 hrとし、アンモニ
ア注入蓋は本文0式で決められる徴皮に調整したところ
脱硝率について下表に示す結果が得られた。
Example 3 Exhaust gas from Stone R-burning Zei 2 was introduced into a moving bed reaction tower filled with 10I of activated carbon at a temperature of 145° C., and the relationship between SOx performance (8 air velocity KCBV) and denitrification rate was tested. □In this case,
At the inlet 80x, the waste from the reaction tower outlet is recycled to the inlet, and the NOx loss is 0, and the shortage is NH,
Inject 1ll to oxidize it to 220 ppm at the inlet.
It was rich. The residence time of the activated carbon was 48 hr, and the ammonia injection lid was adjusted to the skin characteristic determined by formula 0 in the text, and the results shown in the table below regarding the denitrification rate were obtained.

第 l 赤 (表中O脱TI/4率の単位は−である。)これより、
脱Mlと80K濃度反びSvとの関係が明らかとなり、
特に、脱硫・脱硝を行うに*してSθx&Ilを低くす
る( 800 ppm以下) itど高い脱硝率が得ら
れることが明らかとなつ九ことは注目すべ龜で66゜ 実施例4 実施例3の装置において1人口カス条件とアンモニア注
入量とアンモニアリーク量の関係を試験し皮。
No.l Red (The unit of O removal TI/4 rate in the table is -.) From this,
The relationship between deMl removal and 80K concentration warping Sv was clarified,
In particular, it should be noted that when performing desulfurization and denitrification*, it is clear that a high denitration rate can be obtained by lowering Sθx & Il (below 800 ppm). We tested the relationship between one population condition, the amount of ammonia injection, and the amount of ammonia leak.

入口ガス温度145’Cで活性炭滞留時間48hrとし
たところ下表の結果が得られた。
When the inlet gas temperature was 145'C and the activated carbon residence time was 48 hours, the results shown in the table below were obtained.

(以下余白) □ 第2表の結果より、注入すべきアンモニア賞は塩論NH
&注入量を満足していればよいことがW14確となつ九
。又、ゲストムlではNH,注入蓋が多い次めK NM
、リーク量も多くな9、テストA5及び6では、80K
が全く存在しないため、アンモニアが活性炭に吸着され
ずアンモニアリーク量が多かつ危。
(Left below) □ From the results in Table 2, the ammonia that should be injected is Salt Theory NH.
&W14 is certain that it is enough as long as the injection amount is satisfied. Also, in Gestom 1, there are many NH, injection lids, and then K NM.
, 80K in 9, tests A5 and 6, which have a large amount of leakage.
Since there is no ammonia at all, the activated carbon does not adsorb ammonia and the amount of ammonia leaks is large and dangerous.

東に、テストA4はNH,リーク量は満足し慢る4のの
、80K議度が高いため脱硝率は低かった。
On the other hand, test A4 was NH, and although the leakage amount was satisfactory, the denitrification rate was low due to the high 80K temperature.

このように、脱硫・脱硝法におけるSOx痰度やNHI
 2人量等が脱硫率及び脱硝率へ及ぼす影響は非電に大
きく1本願発明によって初めて前記知見に基づいて共に
卓越した脱硫率及び脱硝率が得られ皮。
In this way, the SOx sputum level and NHI in desulfurization and denitrification methods
2.The influence of the amount of personnel etc. on the desulfurization rate and the NOx removal rate is much larger than that of the non-electronics. 1.The present invention is the first to achieve excellent desulfurization and NOx removal rates based on the above knowledge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は入口80置m&と平均脱硝率との関係を示し、
第2図は人口No−皮と平均脱硝率との114!係を示
す。第3図及び第4図は本練発明の実施の1m様を示す
。 l・・・m1反応塔   2・・・編2反応梧4・・・
脱 m  器    S・・・−生品圓収装置特許出願
人 住友重機械工業株式会社
Figure 1 shows the relationship between the inlet 80m& and the average denitrification rate.
Figure 2 shows the population No. 114 and the average denitrification rate! Indicates the person in charge. Figures 3 and 4 show a 1-meter view of the practical implementation of the present invention. l...m1 reaction tower 2...edition 2 reaction go 4...
Demitter S... - Raw material collection device patent applicant Sumitomo Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、 イオウ酸化物、m本酸化物を含む温[110〜1
80℃の耕カスにアンモニアガスを混入し皮後災累負吸
嵩剤を充てんする巡設場れた2基の反応塔へ尋いて排カ
スの脱4jIJL@腕銅を行う方法において、アン4:
エアを混入した前記排ガスを絽lJX応堪へ褥亀縞1反
応堪出ロカスOイオク咳化#aa蒙度がB u Q p
pm以下になるようrc脱憾と付随的に脱1at竹い、
次いで該第1反応塔出ロガスの全部又は−鄭をアンモニ
アカスO丹注入11反応塔へ尋自王として脱硝を付随的
に脱硫を行う仁とを贅輩とする脱硫・脱硝方法。 2、第1反応場出ロガスのイオウ識化物績[會250 
ppm以下とする午とを特徴とする時計111求の範囲
第l積餡1の方法。 3、第1反応#b田ロガスへのアンモニア社入蓋が次式
に基づいて決定されることを特徴とする請求 法。 [ NHs ] = K ●(( NOx ]リ  +
( 130x) *ηBoz ’ow ここで〔洲.〕;注入庫.績直(ppm)(No!) 
:ll *反応基人口ilillg敵化物凝BL ( 
ppm)(801):第2反応塔人ロイオウ敵化vlI
幽[ (ppm)”lIox””反応塔の脱硝率〔−〕 ダ.。、sag反応堪脱蝋率〔一〕 K :定 数(K崗o.s〜1.1ン
[Claims] 1. Sulfur oxide, temperature [110 to 1] containing m-sulfur oxide
In the method of removing waste scum by mixing ammonia gas into 80℃ plow waste and filling two reaction towers at a construction site with a skin-damaging bulk absorbent, Anne 4 :
The exhaust gas mixed with air is transferred to JX and the reaction is 1 reaction.
rc removal and concomitant removal of 1at bamboo so that it is below pm,
A desulfurization and denitration method in which all of the log gas discharged from the first reaction tower or the ammonia gas is then injected into the 11th reaction tower and denitrified and additionally desulfurized. 2. Sulfur identification results of log gas emitted from the first reaction field [kai 250
1. The method of 1st filling in the range 111 of the watch, which is characterized by the amount of ppm or less. 3. A billing method characterized in that the amount of ammonia added to the first reaction #b loggas is determined based on the following formula. [NHs] = K ●((NOx) +
(130x) *ηBoz 'ow Here [Su. ] ; Injection warehouse. Performance record (ppm) (No!)
:ll *Reactive group population illillg enemy solidification BL (
ppm) (801): 2nd reaction tower person Royoh enemy vlI
Denitrification rate of reaction tower [-] da.., dewaxing rate of sag reaction [1] K: Constant (Ko.s ~ 1.1 n
JP57050124A 1982-03-30 1982-03-30 Desulfurizing and denitrating method Pending JPS58166922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050124A JPS58166922A (en) 1982-03-30 1982-03-30 Desulfurizing and denitrating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050124A JPS58166922A (en) 1982-03-30 1982-03-30 Desulfurizing and denitrating method

Publications (1)

Publication Number Publication Date
JPS58166922A true JPS58166922A (en) 1983-10-03

Family

ID=12850372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050124A Pending JPS58166922A (en) 1982-03-30 1982-03-30 Desulfurizing and denitrating method

Country Status (1)

Country Link
JP (1) JPS58166922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171737A (en) * 1986-01-23 1987-07-28 Electric Power Dev Co Ltd Operation method for dry desulfurization and denitration facility
CN1126594C (en) * 1995-06-28 2003-11-05 三菱重工业株式会社 Flue-gas treatment system
US6814948B1 (en) 1995-06-28 2004-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Exhaust gas treating systems
CN104785096A (en) * 2015-03-31 2015-07-22 中冶华天工程技术有限公司 Two-section type active coke/charcoal desulfurization and denitration integrated tower and desulfurization and denitration system
JP7317254B1 (en) * 2023-02-09 2023-07-28 日鉄エンジニアリング株式会社 Desulfurization and denitration equipment and desulfurization and denitration method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106526A (en) * 1979-02-08 1980-08-15 Sumitomo Heavy Ind Ltd Removing method for nitrogen oxide and sulfur oxide from waste gas
JPS56163739A (en) * 1980-04-18 1981-12-16 Bergwerksverband Gmbh Method of removing sulfur oxide and nitrogen oxide in waste gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106526A (en) * 1979-02-08 1980-08-15 Sumitomo Heavy Ind Ltd Removing method for nitrogen oxide and sulfur oxide from waste gas
JPS56163739A (en) * 1980-04-18 1981-12-16 Bergwerksverband Gmbh Method of removing sulfur oxide and nitrogen oxide in waste gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171737A (en) * 1986-01-23 1987-07-28 Electric Power Dev Co Ltd Operation method for dry desulfurization and denitration facility
CN1126594C (en) * 1995-06-28 2003-11-05 三菱重工业株式会社 Flue-gas treatment system
US6814948B1 (en) 1995-06-28 2004-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Exhaust gas treating systems
CN104785096A (en) * 2015-03-31 2015-07-22 中冶华天工程技术有限公司 Two-section type active coke/charcoal desulfurization and denitration integrated tower and desulfurization and denitration system
JP7317254B1 (en) * 2023-02-09 2023-07-28 日鉄エンジニアリング株式会社 Desulfurization and denitration equipment and desulfurization and denitration method

Similar Documents

Publication Publication Date Title
DE69114503T2 (en) METHOD FOR IN-LINE HYDROLYSIS OF UREA.
US4044098A (en) Removal of mercury from gas streams using hydrogen sulfide and amines
CN1053636C (en) Active carbon fine desulfurizer and its preparation
CN102061261B (en) Method for culturing microalgae by utilizing flue gas of coal fired power plant
JPS5843222A (en) Method for removing sulfur oxide and nitrogen oxide from waste gas
JPS58166922A (en) Desulfurizing and denitrating method
DE102009013691A1 (en) Combined exhaust gas treatment of ammonia and nitrogen oxide-containing waste gas streams in industrial plants
CN101732956B (en) Process for producing manganese salt by using sulfur-containing smoke gas
DE2802194A1 (en) PROCEDURE FOR REMOVING NITROGEN OXIDES FROM GASES CONTAINING NITROGEN
CN109939549A (en) A kind of integrated conduct method and device of flue gas
DE3443686C2 (en)
CN103768919A (en) Flue gas desulfurization and denitrification process method
WO2023221647A1 (en) Device and method for controlling ammonia escape of ammonia-based decarbonization system
CN107866111A (en) A kind of lateritic nickel ore nickel-iron smelting flue gas treating process
CN106823710A (en) A kind of oil plant light-end products intermediate storage tank foul waste gas comprehensive treatment device
FI88363B (en) ROEKGASANLAEGGNING
CN112321132A (en) Municipal sludge treatment and utilization method
JPS58193720A (en) Desulfurizing and denitrating method of waste gas
CN213357080U (en) Novel ecological floating island
CN105344358B (en) For the preparation method and the method for processing nitrogen oxides pollution gas of the catalyst for handling nitrogen oxides pollution gas
RU2081685C1 (en) Method for purifying flue gases from nitrogen oxides
Moorehead Hot gas desulfurization using transport reactors
SU1375569A1 (en) Method of final purification of waste water from heavy metal salts
CN109847548B (en) Liquid phase reducing agent, preparation method and application
Bennett et al. WESCO coal gasification plans: Navajo considerations