JPS58166874A - Picture processing system - Google Patents

Picture processing system

Info

Publication number
JPS58166874A
JPS58166874A JP57049572A JP4957282A JPS58166874A JP S58166874 A JPS58166874 A JP S58166874A JP 57049572 A JP57049572 A JP 57049572A JP 4957282 A JP4957282 A JP 4957282A JP S58166874 A JPS58166874 A JP S58166874A
Authority
JP
Japan
Prior art keywords
signal
image
noise
picture
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57049572A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tsuchiya
博義 土屋
Katsuo Nakazato
中里 克雄
Kunio Sannomiya
三宮 邦夫
Hidehiko Kawakami
秀彦 川上
Hirotaka Otsuka
大塚 博隆
Hideo Uchida
内田 日出夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Graphic Communication Systems Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP57049572A priority Critical patent/JPS58166874A/en
Publication of JPS58166874A publication Critical patent/JPS58166874A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To obtain an easy-to-see recorded picture, by reading the picture with small and large scanning points, multiplying the signal subtraction value by the contour emphasis coefficient which is varied in response to the picture density and adding the signal obtained at a small scanning point. CONSTITUTION:The image of an original undergoes a photoelectric conversion through a slit having a normal level of image resolution and another slit larger than the former. A subtraction is carried out by an operational amplifier 10 between the signal which is read in a normal size and passed through an LPF 9 with elimination of the noise of the high frequency component and the blur signal which passed through an LPF 8 the noise of the high frequency component. These subtracted signals are fed to a multiplier 13. While a function generator 12 feeds the outputs of LPFs 8 and 9 and applies the output to the multiplier 13. The output signal given from the multiplier 13 is supplied to an adder 11 and added with the signal passed through the LPF 9 to be delivered in the form of a contour emphasizing signal. In such a way, both light and strong tones of picture can be partially expressed to obtain an easy-to-see recorded picture.

Description

【発明の詳細な説明】 本発明は、画像を大きな走査点と小さな走査点で読み、
これらの信号を用いて輪郭強調等を行なう画像処理方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention reads an image with large scanning points and small scanning points;
The present invention relates to an image processing method that performs edge enhancement etc. using these signals.

元のボケだ画像データからシャープな画像を得る画像処
理の手法として、画像の輪郭強調という手段がある。ま
た、画像データの中には不必要な情報(雑音)が含まれ
ており、これを除く手法として、#J像の雑音除去があ
る。画像の輪郭を強調するということは画像の2次元的
な濃度変化がはけしい所をさらに強調するということで
あり、別な表覗をすると、画像の持つ高い周波数成分の
所を強調することである。一方、画像データの中の雑音
は、一般に高周波成分を含んでおり、普通性なわれてい
る雑音除去とはこの高周波成分を除去することでもある
。つまりボケを与えることであるから、これら2つの画
像処理(輪郭強調と雑音除去)は相反するところがあり
、単純な処理方法では両立させることが困難である。
Image contour enhancement is an image processing method for obtaining sharp images from originally blurred image data. Further, the image data contains unnecessary information (noise), and a method for removing this information is noise removal of the #J image. Emphasizing the contours of an image means further emphasizing the parts of the image where the two-dimensional density changes are significant, and from a different perspective, emphasizing the high frequency components of the image. It is. On the other hand, noise in image data generally includes high frequency components, and noise removal, which is commonly known, also means removing these high frequency components. In other words, since the purpose is to impart blur, these two image processes (contour enhancement and noise removal) are contradictory, and it is difficult to achieve both with a simple processing method.

例として、ファクシミリ装置のように走査して画像を読
取り、記録するシステムを考えてみる。
As an example, consider a system that scans to read and record images, such as a facsimile machine.

このような装置の画像データ雑音は大別して2つ考える
ことができる。1つは画像を読取る光電変換部で発生す
る雑音(光源の変動や光電変換素子の雑音)であり、他
は原稿そのものが持つ雑音である。前者は原稿を走査し
て画像データを得る過程で発生する雑音であるが、後者
は観察者が原稿から必要とす′る情報外の情報であり、
原稿に付着したゴミやキズ、原稿の紙質によるザラツキ
等が考えられる。雑音の性格として、前者は一次元的な
発生であり、後者は二次元的に存在しているものである
。これら雑音の内容において、−次几的な低周波成分の
雑音や、二次元的に広い面積を有する雑音はパターン識
別などの6雑な処理を行なわなければ除去できない。・
・ 高周波成分や狭い面積の孤立的な雑音について、従来一
般的に行なわれている輪郭強調処理では、雑音の周波数
成分をある程度予想して、これを除去しておいたり、少
しホケを与えたりした後に輪郭強調を行なうことが多い
。要するに、輪郭として取出したい周波数成分がどの辺
りに分布しているかを知って、その帯域の通過フィルタ
ーをかけることにより、画像の輪郭を検出して強調する
ことになる。
Image data noise in such devices can be broadly classified into two types. One is noise generated in the photoelectric conversion unit that reads the image (fluctuations in the light source and noise from the photoelectric conversion element), and the other is noise inherent in the document itself. The former is noise generated during the process of scanning the manuscript to obtain image data, but the latter is information outside of the information that the observer needs from the manuscript.
Possible causes include dust or scratches on the original, or roughness due to the paper quality of the original. Regarding the nature of the noise, the former occurs in one dimension, and the latter exists in two dimensions. Among these types of noise, noise of -order low frequency components and noise having a two-dimensionally wide area cannot be removed without performing complex processing such as pattern identification.・
・ Concerning high-frequency components and isolated noise in a narrow area, the conventional contour enhancement processing that is commonly performed predicts the frequency components of the noise to a certain extent and removes them or adds a slight blur. Contour enhancement is often performed afterwards. In short, by knowing where the frequency components you want to extract as contours are distributed and applying a pass filter for that band, you can detect and enhance the contours of the image.

以下図面をもとに、従来行なわれている輪郭強調の例を
説明していく。
An example of conventional contour enhancement will be explained below based on the drawings.

第1図は従来の輪郭強調を行なう装置のブロック図であ
り、第2図a −eは第1図の各ブロックの出力波形図
を示している。原稿1の像はレンズ2とハーフミラ−3
を通してスリット4とスリット60面に結像されている
。スリット4の穴は原稿1の像を正規の解像度に分触す
る大きさをもち、スリット6の穴はスリット4の穴より
大きな穴で作られている。その大きさの比は輪郭強調の
かけ方とのかねあいで□°決定されるものであり、輪郭
強調後の画像が視覚的に不自然にならない程度に決めら
れる。大きい穴の方のスリット6をボケマスクともいう
。当然のことながら、スリット6の穴の光像とスリット
4の穴の光像との原稿1の画像上における中心位置関係
は完全に一致させており、原稿1面上をファクシミリ装
置のように走査していくことになる。原稿1の面上にあ
る二重丸の内側がスリット4の穴に、二重丸の外側がス
リット6の穴に対応している走査点と考える。スリット
4の穴を通過した光は光電変換素子5に人シ、スリット
6の穴を通過した光は光電変換素子7に入って、電気信
号に変換される。光電変換素子6の出力波形を第2図(
a)に、光電変換素子7の出力波形を第2図(b)に示
す。これら2つの信号の振幅は、原稿の全白、全黒の場
合の最小、最大ピーク値で同じ値になるよう、光学的、
または電気的に調整されているものとする。光電変換部
+5の出力信号は低域通過フィルター9を、充電変換素
子7の出力信号は低域通過フィルター8を通り、高周波
成分の雑音を除去された信号となる。それぞれの信号を
重ね合わせた波形を第2図(c)に示す。実線が低域通
過フィルター9の出力信号であり、鎖線が低域通過フィ
ルター8の出力信号である。
FIG. 1 is a block diagram of a conventional edge enhancement device, and FIGS. 2a to 2e show output waveform diagrams of each block in FIG. 1. The image of original 1 is captured by lens 2 and half mirror 3.
The image is formed on the slit 4 and slit 60 planes through the beam. The slit 4 has a size that allows the image of the original 1 to be divided into regular resolutions, and the slit 6 is made larger than the slit 4. The size ratio is determined □° in consideration of the method of contour enhancement, and is determined to the extent that the image after contour enhancement does not look visually unnatural. The slit 6 on the larger hole side is also called a blur mask. Naturally, the optical image of the hole in the slit 6 and the optical image of the hole in the slit 4 are perfectly matched in their center positions on the image of the document 1, and the surface of the document 1 is scanned like a facsimile machine. I will continue to do so. It is considered that the inside of the double circle on the surface of the original 1 corresponds to the slit 4 hole, and the outside of the double circle corresponds to the slit 6 hole. The light passing through the slit 4 enters the photoelectric conversion element 5, and the light passing through the slit 6 enters the photoelectric conversion element 7, where it is converted into an electrical signal. The output waveform of the photoelectric conversion element 6 is shown in Figure 2 (
In a), the output waveform of the photoelectric conversion element 7 is shown in FIG. 2(b). The amplitudes of these two signals are optically
or shall be electrically regulated. The output signal of the photoelectric conversion unit +5 passes through a low-pass filter 9, and the output signal of the charging conversion element 7 passes through a low-pass filter 8, resulting in a signal from which high-frequency component noise has been removed. A waveform obtained by superimposing each signal is shown in FIG. 2(c). The solid line is the output signal of the low-pass filter 9, and the chain line is the output signal of the low-pass filter 8.

つまり、鎖線の信号がボケマスクを通ったボケ信号であ
る。次に、演舞増幅器1oで低域フィルター9の信号か
ら低域連載フィルター8の信号を減算すると、演算増幅
器1oの出方信号波形は第2図(d)のようになる。こ
れが画像の輪郭信号である。
In other words, the signal indicated by the chain line is the blur signal that has passed through the blur mask. Next, when the signal of the low-pass serial filter 8 is subtracted from the signal of the low-pass filter 9 by the operational amplifier 1o, the output signal waveform of the operational amplifier 1o becomes as shown in FIG. 2(d). This is the image contour signal.

この輪郭信号の大きさは演算増幅器1oで適度に設定さ
れる。この輪郭信号と低域通過フィルター9の出力信号
とを加算器11で加算すると、加算器11の出力信号波
形は第2図(、)のように得られる。これが画像の輪郭
が強調された波形である。
The magnitude of this contour signal is appropriately set by the operational amplifier 1o. When this contour signal and the output signal of the low-pass filter 9 are added by the adder 11, the output signal waveform of the adder 11 is obtained as shown in FIG. This is a waveform in which the outline of the image is emphasized.

輪郭強調のアルゴリズムを数式で表わすと第(1)式の
ようになる。
The contour enhancement algorithm can be expressed mathematically as shown in equation (1).

A−a+F(a−b)   −−−=−−−−(1)A
:輪郭強調された信号 a;正規の大きさで読んだ信号(第1図の低域通過フィ
ルター9の出力信号) b:ボケ信号(第1図の低域通過フィルター8の出力信
号) F:輪郭強調係数(第1図の演算増幅器1゜で与えられ
る信号) 第2図(、)〜(、)の波形図においては、輪郭強調の
様子が理解しやすいように、波形(a) 、 (b)の
高周波雑音成分は低域通過フィルター8,9で完全に除
かれたようにして、以下の波形(c)〜(−)を描いて
いる。
A-a+F(a-b) ---=----(1)A
: Contour-enhanced signal a; Signal read at normal size (output signal of low-pass filter 9 in Figure 1) b: Blurred signal (output signal of low-pass filter 8 in Figure 1) F: Contour enhancement coefficient (signal given by the operational amplifier 1° in Figure 1) In the waveform diagrams in Figure 2 (,) to (,), waveforms (a), ( The high frequency noise component of b) is completely removed by the low pass filters 8 and 9, and the following waveforms (c) to (-) are drawn.

しかしながら、実際には低域通過フィルター8゜9では
除かれない雑音成分ができて、波形(d)の輪郭信号の
中に混在し、輪郭強調信号波形eの中に現われてくる。
However, in reality, noise components that cannot be removed by the low-pass filter 8.9 are generated, mixed in the contour signal of waveform (d), and appear in the contour emphasis signal waveform e.

この雑音成分は輪郭強調度を大きくすればする程、同じ
ように大きくなっていくことになる。
This noise component similarly increases as the degree of contour enhancement increases.

以上のように、従来の輪郭強調を行なう画像処理方式で
は、正規の大きさで読んだ信号とボケ信号との差信号に
ある一定の係数をかけたものを正規の大きさで読んだ信
号に加えるものであるため、目立つ雑音を有する原稿を
読み取った場合は不妃要な雑音までも強調されて記録さ
れることになり、記録画像は見難いものとなる。またこ
れとは逆に、係数を変えて原稿に発生している雑音を抑
えようとすると、明確になっている輪郭がボケてしまい
、記録画像全体が不明確な画像となってしまう。
As described above, in the conventional image processing method that performs edge enhancement, the signal read at the normal size is obtained by multiplying the difference signal between the signal read at the normal size and the blur signal by a certain coefficient. Therefore, if a document with noticeable noise is read, even the unnecessary noise will be emphasized and recorded, making the recorded image difficult to see. On the other hand, if an attempt is made to suppress the noise occurring in the document by changing the coefficients, the clear outline will become blurred, and the entire recorded image will become unclear.

本発明は以上の問題点に鑑みてなされたもので、輪郭強
調係数を読み取り画像の濃度に応じて変化する関数とす
ることにより、不必要な雑音発生を抑えて輪郭強調を行
ったり、輪郭はそのままにした状態で目立つ雑音を抑え
ることのできる画像処理方式を揚物することを目的とす
るものである。
The present invention has been made in view of the above problems, and by making the contour enhancement coefficient a function that changes according to the density of the read image, it is possible to perform contour enhancement while suppressing the generation of unnecessary noise, and to The objective is to develop an image processing method that can suppress noticeable noise even when left undisturbed.

以下に本発明を実施例に基いて図面と共に説明する。The present invention will be described below based on examples and with drawings.

本発明は、雑音について更に考え、 ■ 雑音は画像信号の振幅方向に一様に同程度の大きさ
で存在しているとは限らないので、画像に応じて処理で
きる。
The present invention further considers noise. (1) Since noise does not necessarily exist uniformly in the same magnitude in the amplitude direction of an image signal, it can be processed depending on the image.

■ 画像を観察する人間にとって、画像の特定の部分(
たとえば明るい部分)の雑音が特に目☆一つため、これ
を小さくすれば良い。
■ For humans who observe images, certain parts of the image (
For example, the noise in bright areas is especially noticeable, so you can reduce it.

要するに画像や雑音内容により、他の雑音は多少増加し
ても特定部分の雑音を少なくすれば良いという事が判明
し、これに基いてなされたものである。
In short, it has been found that depending on the image and noise content, it is sufficient to reduce the noise in a specific part even if other noises increase somewhat, and this is based on this finding.

本発明では、第(1)式の輪郭強調において、輪郭強調
係数Fの与え方を種々麦作させることにより特定部分の
雑音を軽減した輪郭強調を行なうものである。輪郭強調
係数Fは画像内容により、任意の特性を与えてよいが、
代表的な例を第3図a〜hに示している。
In the present invention, in the contour enhancement of equation (1), the contour enhancement coefficient F is given in various ways to perform contour enhancement with noise reduction in a specific portion. The contour enhancement coefficient F may be given any characteristics depending on the image content, but
Representative examples are shown in Figures 3a-h.

第3図(−)は輪郭強調係数Fを無条件に一定の値に設
定したもので、これは従来性なわれてきた例である。同
図(b)は信号aまたは信号a−bの絶対値または信号
すの値がある設定値を越えると輪郭強調係数Fに一定の
値を与える例である。(同図の点線はそれと対称な特性
を示す。以下同様)パラメータとして信号a、1a−b
l、bの例で示しているが、他に信号aとbの比をとっ
たりするなど種々考えられる。同図(b)の特性はパラ
メータが設定値以下の所の雑音を増加させないようにす
るため設定値以上を輪郭強調する特性である。以下同様
の考え方で、同図(C)はパラメータが中間値のときの
み輪郭強調を行う、同図(d) 、(”) t (q)
はパラメータが大きくなるに従って輪郭強調度を大きく
する特性である。同図U) 、 (h)は同図(→、(
q)の逆特性であり為パラメータが小さくなるに従って
輪郭強調度を小さくする特性である。
In FIG. 3 (-), the contour enhancement coefficient F is unconditionally set to a constant value, which is a conventional example. FIG. 2B shows an example in which a constant value is given to the edge enhancement coefficient F when the absolute value of the signal a or the signal a-b or the value of the signal S exceeds a certain set value. (The dotted line in the figure shows the symmetrical characteristics. The same applies below) As parameters, the signals a, 1a-b
Although the example of l and b is shown, various other methods are possible, such as taking the ratio of signals a and b. The characteristic shown in FIG. 6(b) is a characteristic that emphasizes the outline of areas above the set value in order to prevent noise from increasing where the parameter is below the set value. Following the same idea, (C) in the same figure performs contour enhancement only when the parameter is an intermediate value, (d) in the same figure, ('') t (q)
is a characteristic that increases the degree of edge enhancement as the parameter increases. U) and (h) in the same figure are (→, (
This is the inverse characteristic of q), and therefore, the degree of contour enhancement decreases as the parameter decreases.

第4図は本発明の一実施例の装置のブロック図で、第1
図に示す装置に輪郭強調度を可変にする部分を付加した
ものの要部構成である。8,9゜10.11は第1図と
同じで、12は第3図(b)〜(ト))のような特性を
パラメータa、bで発生する回路、13は回路12の出
力信号で輪郭信号(演算増幅器1oの出力信号)の大き
さを制御する回路(たとえば乗算器)である。回路13
の出方信号は加算器11に入る。′ 1す回路12で第3図(#〜〜のような信号を発生する
/′ のは既知の枝針あるから詳細な説明は省略するが、たと
えば、レベル比較器、関数発生器、折線近似など現在市
販されている半導体素子や公知の技術で容易にできるも
のである。
FIG. 4 is a block diagram of an apparatus according to an embodiment of the present invention.
This is the main configuration of the device shown in the figure with a part that changes the degree of edge enhancement added. 8,9゜10.11 is the same as in Fig. 1, 12 is a circuit that generates the characteristics shown in Fig. 3 (b) to (g)) with parameters a and b, and 13 is the output signal of circuit 12. This is a circuit (for example, a multiplier) that controls the magnitude of the contour signal (the output signal of the operational amplifier 1o). circuit 13
The output signal enters the adder 11. ' 1 The circuit 12 generates the signals shown in Figure 3 ( This can be easily done using currently commercially available semiconductor devices and known techniques.

すなわち、低域通過フィルター8を通シ高域周波成分の
雑音が除去された正規の大きさで読んだ信号と、低域通
過フィルター9を通り高域周波成分の雑音が除去された
ボケ信号とが演算増幅器10で減算され、乗算器13に
入力される。一方、低域通過フィルター8,9を通過し
た両信号は関数発生器12に入力され、その出力は乗算
器13に入力される。このとき、関数発生器12は、フ
ィルター8,9のいずれか一方、または両方の出力に関
係づけて信号出力を取り出せる。乗算器13からの出力
信号は加算器11に入力され、低域通過フィルター9を
通過した信号と加え合わされ、輪郭強調信号として出力
される。
In other words, a signal of normal magnitude is passed through the low-pass filter 8 and the high-frequency component noise is removed, and a blurred signal is passed through the low-pass filter 9 and the high-frequency component noise is removed. is subtracted by the operational amplifier 10 and input to the multiplier 13. On the other hand, both signals that have passed through the low-pass filters 8 and 9 are input to a function generator 12, and the output thereof is input to a multiplier 13. At this time, the function generator 12 can take out the signal output in relation to the output of one or both of the filters 8 and 9. The output signal from the multiplier 13 is input to the adder 11, where it is added to the signal passed through the low-pass filter 9 and output as an edge-enhanced signal.

これまでの実施例では輪郭強調による雑音増加を減少す
るようにしたが、輪郭強調係数Fが負の時には逆に輪郭
を弱くすると同時に雑音も減少させることになることは
明らかである。
In the embodiments described above, the increase in noise due to edge enhancement has been reduced, but it is clear that when the edge enhancement coefficient F is negative, it weakens the edge and simultaneously reduces noise.

第5図(−)〜(e)は第4図の装置を用いて輪郭強調
係数Fを負から正まで変化させる場合の波形の一例を示
している。波形(−)は輪郭強調係数Fを信号aが0か
らalでの間は−1、a からa2までの1 間は0.82以上を1として与える図である。今、画像
の濃度が階段状の所を走査しているとして、信号&の波
形は同図(b)のように信号すの波形は同図(C)のよ
うに得られたとする。” 1 + n 21 n 3は
画像の中に含まれる雑音点による波形を示す。同図(d
)はa−bの波形で、同図(e)はAの波形を示す。へ
の波形のように、輪郭強調係数、Fの値が負の所は雑音
が小さく、輪郭も弱くなり、Fが00所はaの波形と変
らず、Fが正の所は雑音が大きく、輪郭も強くなってい
ることがわかる。
5(-) to 5(e) show examples of waveforms when the contour enhancement coefficient F is changed from negative to positive using the apparatus shown in FIG. The waveform (-) is a diagram in which the contour enhancement coefficient F is given as -1 when the signal a is from 0 to al, and as 1 when the signal a is 0.82 or more between a and a2. Assume that an area where the density of the image is step-like is being scanned, and the waveform of the signal & is obtained as shown in FIG. ” 1 + n 21 n 3 shows the waveform due to noise points included in the image.
) shows the waveform of a-b, and (e) of the same figure shows the waveform of A. As shown in the waveform of , where the value of the contour enhancement coefficient, F, is negative, the noise is small and the contour is weak, where F is 00, it is the same as the waveform of a, and where F is positive, the noise is large. It can be seen that the contours have also become stronger.

以上説明したように本発明によれば、輪郭強調係数を画
像の濃度に応じて変化させるものであるため、画像の濃
度の高い領域のみについて輪郭を強調し、その他の領域
での不要雑音の発生を抑えたり、また必要な輪郭はその
ままにした状態で、他の領域に生じている雑音のみを抑
えることができ、したがって、画像の淡い感じや激しい
感じを部分的に表現できるので見易い記録画像が得られ
る。
As explained above, according to the present invention, the contour enhancement coefficient is changed according to the density of the image, so that the contour is emphasized only in areas with high density of the image, and unnecessary noise is generated in other areas. In addition, it is possible to suppress only the noise occurring in other areas while leaving the necessary outline as is. Therefore, it is possible to partially express the pale or intense feeling of the image, resulting in a recorded image that is easy to see. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の輪郭強調装置のブロック図、第2図(a
)〜(e)は同装置の各部波形を示す波形図、第3図(
、)〜(h)は輪郭強調係数Fの特性を示す図、第4図
は本発明の画像処理方式の一実施例を示すブロック図、
第5図(−)〜(e)は同実施例の各部波形を示す波形
図である。 1・・・・・・原稿、2・・・・・・レンズ、3・・・
・・・ハーフミラ−14・・・・・・スリット、5・・
・・・・光電変換器、6・・・・・・スリット、7・・
・・・・光電変換器、8・・・・・・低域通過フィルタ
ー、9・・・・・・低域通過フィルター、10・・・・
・・演算増幅器(減算器)、11・・・・・・加算器、
12・・・・・・輪郭強調係数発生器、13・・・・・
・乗算器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1′(m 第2図 第3図
Figure 1 is a block diagram of a conventional contour enhancement device, and Figure 2 (a
) to (e) are waveform diagrams showing the waveforms of each part of the device, and Figure 3 (
, ) to (h) are diagrams showing the characteristics of the contour enhancement coefficient F, and FIG. 4 is a block diagram showing an embodiment of the image processing method of the present invention.
FIGS. 5(-) to 5(e) are waveform diagrams showing waveforms of various parts in the same embodiment. 1... Original, 2... Lens, 3...
...Half mirror-14...Slit, 5...
...Photoelectric converter, 6...Slit, 7...
...Photoelectric converter, 8...Low pass filter, 9...Low pass filter, 10...
... operational amplifier (subtractor), 11... adder,
12... Contour enhancement coefficient generator, 13...
- Multiplier. Name of agent: Patent attorney Toshio Nakao and 1 other person
1'(m Fig. 2 Fig. 3

Claims (4)

【特許請求の範囲】[Claims] (1)小さい走査点で画像を読んで得た信号から、大き
い走査点で前記画像を読んで得た信号を減算し、前記減
算して得た信号に輪郭強調係数を乗算し、前記乗算して
得た信号に前記小さい走査点で画像を読んで得た信号を
加算″i〕とトj Iニー前記輪郭強調係数を前記画像
の濃度 に応じて変化させることを特徴とする画像処理方式。
(1) Subtract the signal obtained by reading the image at a large scanning point from the signal obtained by reading the image at a small scanning point, multiply the signal obtained by the subtraction by an edge enhancement coefficient, and perform the multiplication. The image processing method is characterized in that a signal obtained by reading the image at the small scanning point is added to a signal obtained by reading the image at the small scanning point, and the edge enhancement coefficient is changed according to the density of the image.
(2)輪郭強調係数を、小さい走査点で読んだ信号の変
化に応じて変化させることを特徴とする特許請求の範囲
第1項記載の画像処理方式。
(2) The image processing method according to claim 1, characterized in that the contour enhancement coefficient is changed according to changes in signals read at small scanning points.
(3)輪郭強調係数を、大きい走査点で読んだ信号の変
化に応じて変化させることを特徴とする特許請求の範囲
第1項記載の画像処理方式。
(3) The image processing method according to claim 1, wherein the contour enhancement coefficient is changed in accordance with changes in signals read at large scanning points.
(4)輪郭強調係数を、小さい走査点および大きい走査
点で読んだ信号の変化に応じて変化させることを特徴と
する特許請求の範囲第1項記載の画像処理方式。
(4) The image processing method according to claim 1, wherein the contour enhancement coefficient is changed according to changes in signals read at small scanning points and large scanning points.
JP57049572A 1982-03-26 1982-03-26 Picture processing system Pending JPS58166874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049572A JPS58166874A (en) 1982-03-26 1982-03-26 Picture processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049572A JPS58166874A (en) 1982-03-26 1982-03-26 Picture processing system

Publications (1)

Publication Number Publication Date
JPS58166874A true JPS58166874A (en) 1983-10-03

Family

ID=12834919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049572A Pending JPS58166874A (en) 1982-03-26 1982-03-26 Picture processing system

Country Status (1)

Country Link
JP (1) JPS58166874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603269A (en) * 1983-06-20 1985-01-09 Fuji Photo Film Co Ltd System for emphasizing sharpness of picture
JPS60114086A (en) * 1983-11-25 1985-06-20 Matsushita Graphic Commun Syst Inc Picture profile emphasis system
JPS61123274A (en) * 1984-11-19 1986-06-11 Ricoh Co Ltd Picture processing system
JPS62118481A (en) * 1985-11-18 1987-05-29 Konishiroku Photo Ind Co Ltd Picture processing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603269A (en) * 1983-06-20 1985-01-09 Fuji Photo Film Co Ltd System for emphasizing sharpness of picture
JPH0471390B2 (en) * 1983-06-20 1992-11-13 Fuji Photo Film Co Ltd
JPS60114086A (en) * 1983-11-25 1985-06-20 Matsushita Graphic Commun Syst Inc Picture profile emphasis system
JPS61123274A (en) * 1984-11-19 1986-06-11 Ricoh Co Ltd Picture processing system
JPS62118481A (en) * 1985-11-18 1987-05-29 Konishiroku Photo Ind Co Ltd Picture processing method

Similar Documents

Publication Publication Date Title
JP3359390B2 (en) Spatial filter device
US4074231A (en) Pattern processing system
US6055340A (en) Method and apparatus for processing digital images to suppress their noise and enhancing their sharpness
JPH11250246A (en) Image processing method and image processor
EP0726672A3 (en) Image processing method and apparatus
JP2001005960A (en) Method and device for processing image
JPS6142262B2 (en)
JPH02275589A (en) Method and device for processing image signal
JP2006246200A (en) Image processing device and method therefor
US6323855B1 (en) Sharpening edge features in digital image providing high frequency edge enhancement
JP3700798B2 (en) Image processing method and apparatus
JP3343457B2 (en) Image processing device
JPS58166874A (en) Picture processing system
JP3114208B2 (en) Adaptive image enhancement circuit
JP4017312B2 (en) Image processing method, image processing apparatus, and recording medium
EP0420418B1 (en) Video signal noise reducing circuits
Russo Piecewise linear model-based image enhancement
JPH10105701A (en) Method and device for radio graph emphasis processing
US20020076116A1 (en) Fast implementation of homomorphic filters for image enhancement
JP2885066B2 (en) Image processing device
JPH09107479A (en) Method and device for image processing
JP3512581B2 (en) Image filtering method, image filtering device, and image edge enhancement processing device
JP3106831B2 (en) Video signal processing device
JPH0348980A (en) Contour emphasizing process system
JP2655602B2 (en) Image enhancement circuit