JPS58166780A - Superconductive electronic device - Google Patents

Superconductive electronic device

Info

Publication number
JPS58166780A
JPS58166780A JP57049095A JP4909582A JPS58166780A JP S58166780 A JPS58166780 A JP S58166780A JP 57049095 A JP57049095 A JP 57049095A JP 4909582 A JP4909582 A JP 4909582A JP S58166780 A JPS58166780 A JP S58166780A
Authority
JP
Japan
Prior art keywords
helium
superfluidized
saturation
saturated
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57049095A
Other languages
Japanese (ja)
Other versions
JPS6262478B2 (en
Inventor
Yoshinori Shiraku
善則 白楽
Hisanao Ogata
久直 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57049095A priority Critical patent/JPS58166780A/en
Publication of JPS58166780A publication Critical patent/JPS58166780A/en
Publication of JPS6262478B2 publication Critical patent/JPS6262478B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To eliminate the generation of foams on the cooling surface as well as to prevent the erroneous operation of the element of the titled electronic device by a method wherein superfluidized helium is used as the cooling medium which will be used to cool a superconductive electronic element. CONSTITUTION:Saturated superfluidized helium 14 is obtained by forcibly evacuating ordinary liquid helium (4.2K-1atm) to the extent that saturated steam pressure is brought down to approximately 38mm.Hg through the intermediary of an exhaust pipe 15 and a pressure adjusting valve 16. The evaporated saturation superfluidized helium 14 is supplied in the state wherein ordinary liquid helium 18 is brought into the temperature of approximately 2.2K using a heat exchanger 19 and adiabatically expanded to the saturated steam pressure of the saturation superfluidized helium 14 using a Joule-Thomson expanding valve 20. A signal transmitting line 9 is connected to the vessel of the saturation superfluidized helium 14 and the vessel of ordinary liquid helium 18 through the intermediary of a hermetic seal 21.

Description

【発明の詳細な説明】 本発明は超電導電子装置に係り、特にジョセフン素子を
高密度に集積した集積回路を冷却するに好適な超電導電
子装置の冷却に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting electronic device, and more particularly to cooling of a superconducting electronic device suitable for cooling an integrated circuit in which Josephine elements are integrated at high density.

従来の超電導電子装置における集積回路の冷却法につい
て、第1図を基に説明する。超電導電子素子の集積回路
1は容器2に満され九通常の液体ヘリウA (〜4.2
に、 〜1 atm) 3に浸種して冷却される。この
容器2内には凝縮熱交換器4が設けられ集積回路1の発
熱量を吸収して蒸発したヘリウムガスを凝縮液化して、
液体ヘリウム2の量を一定に保持する。この凝縮熱交換
器4は容器5を付属しておシ、この容器5に液体ヘリウ
ム6が注入弁7を有する注入路8から注入される。この
注入された液体ヘリウム6はそこで熱を吸収して蒸発し
、そしてこのヘリウムガスは、集積回路1と第1図には
図示しない常温部の電子装置と電気的な信号の伝達を受
けもつ多数の細線あるいは、薄膜で形成した複数の信号
伝達線9を冷却しながら、ガス回収弁lOを有する回収
路11へと導かれる。信号伝達線9は、先端部で常温部
の信号線と結合される。12は断熱材で、13は輻射シ
ールド板である。また、14は何んらかの原因で、液体
ヘリウム3に大きな熱しより乱があったとき、容器2内
の内圧が急激に上昇した場合に動作する安全弁である。
A method for cooling an integrated circuit in a conventional superconducting electronic device will be explained with reference to FIG. The integrated circuit 1 of the superconducting electronic device is filled in a container 2 with a normal liquid Helium A (~4.2
Then, it is soaked at ~1 atm) and cooled. A condensing heat exchanger 4 is provided in the container 2 to absorb the calorific value of the integrated circuit 1 and condense and liquefy the evaporated helium gas.
The amount of liquid helium 2 is kept constant. The condensing heat exchanger 4 is equipped with a container 5 into which liquid helium 6 is injected through an injection channel 8 having an injection valve 7 . The injected liquid helium 6 absorbs heat and evaporates there, and this helium gas is transferred to the integrated circuit 1 and to a large number of electronic devices (not shown in FIG. While cooling the plurality of signal transmission lines 9 formed of thin wires or thin films, the gas is guided to a recovery path 11 having a gas recovery valve IO. The signal transmission line 9 is connected to a signal line in the room temperature section at its tip. 12 is a heat insulating material, and 13 is a radiation shield plate. Further, 14 is a safety valve that operates when the internal pressure in the container 2 suddenly increases when the liquid helium 3 is heated or disturbed for some reason.

Aは液体窒素などで冷却された輻射シールドを有する断
熱真空である。
A is an adiabatic vacuum with a radiation shield cooled with liquid nitrogen or the like.

以上のように、従来の超電導電子装置の冷却は、通常の
液体ヘリウム(〜4.2 K 、〜latm)に超電導
電子素子の集積回路を浸漬するようになっていたので、
集積度が従来より高くなると、単位体積当りの発熱量が
大きくなシ、冷却面での熱流束が約0. OI W/ 
cat”以上になると、液体ヘリウムの自然対流冷却領
域を越え、核沸騰領域に移り、東、嘴回路チップの冷ノ
、(+而より、気泡が発生し2、この気泡の影普で、超
電導−子素子が誤動作するという欠点がめった。
As mentioned above, conventional cooling of superconducting electronic devices involved immersing the integrated circuit of the superconducting electronic element in ordinary liquid helium (~4.2 K, ~latm).
When the degree of integration is higher than before, the amount of heat generated per unit volume increases, and the heat flux on the cooling surface decreases to about 0. OI W/
When the temperature exceeds "cat", the natural convection cooling region of liquid helium is exceeded, and the region moves to the nucleate boiling region. - There was a problem that the device elements malfunctioned.

本発明の目的は、超咀導区子系子が誤動作しない冷却系
を有する超畦尋イ子装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a super masticating element device having a cooling system that prevents the super masticating element from malfunctioning.

本発明の籍mは、超螺害醒子累子を冷却する冷媒として
、通常のり和液体ヘリウム(〜4.2 K 。
The main feature of the present invention is that ordinary liquid helium (~4.2 K) is used as a refrigerant for cooling the super-screwed liquid helium.

l aim )の代わりに、超流動ヘリウムを使用する
ことによってその非常に優れた熱輸送特性のために超亀
導電子系子を昼密度に集積した集積回路の冷却面での熱
流束が0.01 w、、’ cna”以上でも、冷却面
で気泡の発生をなくシ、素子の誤動作をなくすことにあ
る。
By using superfluid helium instead of (l aim ), the heat flux at the cooling surface of an integrated circuit in which supertorque conductive electron systems are integrated at a diurnal density due to its very excellent heat transport properties is reduced to 0. 01 w,, 'cna' or more, the purpose is to eliminate the generation of bubbles on the cooling surface and prevent malfunction of the element.

以上、本発明の−実り汐1]を第2図により説明する。The above is a description of the embodiment 1 of the present invention with reference to FIG.

これは、集積回路1を飽和超流動ヘリウム14で冷却す
る装置を示す。飽和流動ヘリウム14を連続的に生成す
る方法について簡単に説明する。飽和超流動ヘリウム1
4け、通常の液体ヘリウム(4,2に、 〜1 alm
 )を排気管】5およびIE力調整弁16を介して真空
ポンプ17で、強制排気して飽、fl蒸気圧を約38 
m )(g以上とすることによって得られる。蒸発した
飽和超流動ヘリウム14ij:、通冨の液体ヘリウム1
8を、熱交換器19によってその温〆を約12Kまで低
丁させ、ジュール・トムンン膨張弁20で飽和Mi流動
ヘリウム14の飽和A気圧まで断熱膨張させて、補給さ
れる。16号伝達線7Vi、ハーメチックシール21を
ブrして飽和超I5!動ヘリウム14の僧と、通にのα
不ヘリウム18の槽の間を接続される。次に、本発明の
他の実施例を第3図により説明する。
This shows an apparatus for cooling an integrated circuit 1 with saturated superfluid helium 14. A method for continuously producing saturated flowing helium 14 will be briefly described. Saturated superfluid helium 1
4, ordinary liquid helium (4,2 to 1 alm
) is forcibly evacuated with the vacuum pump 17 via the exhaust pipe] 5 and the IE force adjustment valve 16 until the fl steam pressure is approximately 38
m) (obtained by g or more. Evaporated saturated superfluid helium 14ij:, saturated liquid helium 1
8 is lowered in temperature to about 12 K by a heat exchanger 19, and adiabatically expanded to the saturated A pressure of saturated Mi fluid helium 14 by a Joule-Thomson expansion valve 20, and then replenished. No. 16 transmission line 7Vi, hermetic seal 21 is broken and saturation exceeds I5! The monk of Motion Helium 14 and the expert α
A connection is made between the tanks of non-helium 18. Next, another embodiment of the present invention will be described with reference to FIG.

これは、集積回路lをサブクール超流動ヘリウム22で
冷却する装置の一例を示す。飽和超ft、wJヘリウム
23を生成する方法は、第2図で説明した方法と回憬で
ある。相違するのは、熱交換器24で、飽和超流動ヘリ
ウム23の僧と集積沖j路1を浸漬する僧を圧力的に完
全に分離した点である。
This shows an example of a device for cooling an integrated circuit l with subcooled superfluid helium 22. The method for producing saturated ultra-ft, wJ helium-23 is a reproduction of the method described in FIG. The difference is that the heat exchanger 24 completely separates the saturated superfluid helium 23 and the immersion layer 1 in terms of pressure.

こうすることによって、集積回路1を浸漬する超流動ヘ
リウムは、加圧ヘリウムガスボンへ25より弁26、熱
交換器27を介して導かれる細管28によっである一定
圧力に7JO圧することができ、超流動ヘリウム22は
、サブクールの状すに−「るくすことができ、好都合で
ある。以上二つの実施例では、飽和あるいは刀口圧超流
動ヘリウムを生成する基本的方法として、献体ヘリウム
の蒸発噌熱を利用している。これ以外に、磁気冷凍法な
どKよって、欲不ヘリウムの温度を約12に以Fにする
ことによってもuJ nEである。
By doing this, the superfluid helium immersing the integrated circuit 1 can be brought to a constant pressure of 7JO by the thin tube 28 which is led from the pressurized helium gas bomb 25 through the valve 26 and the heat exchanger 27. Superfluid helium 22 can be conveniently liquefied in a subcooled state. In the above two embodiments, evaporation of donor helium is used as a basic method for producing saturated or mouth-pressure superfluid helium. Heat is used.In addition to this, uJ nE can also be achieved by reducing the temperature of helium to about 12 F or below using magnetic refrigeration or the like.

本発明によれば、超電4電子累子の集積回路の冷却面に
おいて気泡が発生しないようセすることができるので、
素子の誤動作をなくすことができるという効果がある。
According to the present invention, it is possible to prevent bubbles from being generated on the cooling surface of the integrated circuit of the superelectric 4-electron cumulative circuit.
This has the effect of eliminating element malfunctions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超電導電子装置の冷却の一例を示す断面
図、第2図は本発明の一実施例を示す断面図、第3図は
本祐明の他の実S別を示す断面図である。 1・・・集積回路、2・・・通常の液体ヘリウム、9・
・・信号伝達醒、14・・・飽和超流切ヘリウム、19
・・・熱交換器、20・・・ジュール・トムノア膨’y
fx弁、22・・・サブクール超流動ヘリウム、23・
・・飽和超流動ヘリウム、24・・・熱交換器。
Fig. 1 is a cross-sectional view showing an example of cooling of a conventional superconducting electronic device, Fig. 2 is a cross-sectional view showing an embodiment of the present invention, and Fig. 3 is a cross-sectional view showing another example of Yumei Moto's actual S. It is. 1...Integrated circuit, 2...Ordinary liquid helium, 9.
...Signal transmission, 14...Saturated superflow helium, 19
...Heat exchanger, 20...Joule-Tomnoy expansion'y
fx valve, 22... subcooled superfluid helium, 23.
... Saturated superfluid helium, 24 ... heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 超電導電子素子の集積回路とこれを浸漬し、冷却する冷
媒と、前記二つを収納する容器より成る超電導電子装置
において、冷媒として超流動ヘリウムを使用することを
特徴とする超電導電子装置。
A superconducting electronic device comprising an integrated circuit of a superconducting electronic element, a refrigerant for immersing and cooling the integrated circuit, and a container for storing the two, characterized in that superfluid helium is used as the refrigerant.
JP57049095A 1982-03-29 1982-03-29 Superconductive electronic device Granted JPS58166780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049095A JPS58166780A (en) 1982-03-29 1982-03-29 Superconductive electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049095A JPS58166780A (en) 1982-03-29 1982-03-29 Superconductive electronic device

Publications (2)

Publication Number Publication Date
JPS58166780A true JPS58166780A (en) 1983-10-01
JPS6262478B2 JPS6262478B2 (en) 1987-12-26

Family

ID=12821528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049095A Granted JPS58166780A (en) 1982-03-29 1982-03-29 Superconductive electronic device

Country Status (1)

Country Link
JP (1) JPS58166780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123912A (en) * 1983-12-09 1985-07-02 Tech Res & Dev Inst Of Japan Def Agency Cooling device of squid
JPS61232542A (en) * 1985-04-08 1986-10-16 Jeol Ltd Sample cooling apparatus
JP2017215089A (en) * 2016-05-31 2017-12-07 株式会社前川製作所 Cooling device and cooling method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119789A (en) * 1974-02-22 1975-09-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119789A (en) * 1974-02-22 1975-09-19

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123912A (en) * 1983-12-09 1985-07-02 Tech Res & Dev Inst Of Japan Def Agency Cooling device of squid
JPH038589B2 (en) * 1983-12-09 1991-02-06 Boeicho Gijutsu Kenkyu Honbucho
JPS61232542A (en) * 1985-04-08 1986-10-16 Jeol Ltd Sample cooling apparatus
JP2017215089A (en) * 2016-05-31 2017-12-07 株式会社前川製作所 Cooling device and cooling method

Also Published As

Publication number Publication date
JPS6262478B2 (en) 1987-12-26

Similar Documents

Publication Publication Date Title
JP2821241B2 (en) Cryostat with liquefaction refrigerator
KR102506491B1 (en) Fault-tolerant cryogenic cooling system
JPS5880474A (en) Cryogenic cooling device
US3375675A (en) Low temperature refrigerating apparatus
JPH0357389B2 (en)
US4209657A (en) Apparatus for immersion-cooling superconductor
US5661980A (en) Thermally stabilized dewar assembly, and its preparation
JPS58166780A (en) Superconductive electronic device
JP2006343075A (en) Cryogenic refrigerator using mechanical refrigerator and joule-thomson expansion
JPS6238393A (en) Emergency core cooling method and device
US5347819A (en) Method and apparatus for manufacturing superfluidity helium
Green The integration of liquid cryogen cooling and cryocoolers with superconducting electronic systems
JPS63302259A (en) Cryogenic generator
US3302417A (en) Coupling arrangement between cryogenic refrigerator and heat load
JPS59200166A (en) Solid sublimating cooler and operation method thereof
JPS59214280A (en) Cryostat
JP4031319B2 (en) Cryogenic holding device
Wiseman et al. CEBAF cryounit loss of vacuum experiment
US3908397A (en) Cooling system
JPS61116250A (en) Superconductive device and cooling method thereof
US11749435B2 (en) Pre-cooling and removing ice build-up from cryogenic cooling arrangements
US4030900A (en) Cooling device
RU2057653C1 (en) Cryostat for magnetic suspension vehicle
JPS6023761A (en) Refrigerator and system thereof
KR20230108924A (en) Apparatus for storing liquefied hydrogen using cryogenic refrigerator