JPS58166643A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS58166643A
JPS58166643A JP57049501A JP4950182A JPS58166643A JP S58166643 A JPS58166643 A JP S58166643A JP 57049501 A JP57049501 A JP 57049501A JP 4950182 A JP4950182 A JP 4950182A JP S58166643 A JPS58166643 A JP S58166643A
Authority
JP
Japan
Prior art keywords
noble metal
electrode
fuel cell
platinum
water repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57049501A
Other languages
Japanese (ja)
Inventor
Seiji Takeuchi
瀞士 武内
Kenzo Ishii
石井 謙蔵
Toshiki Kahara
俊樹 加原
Jinichi Imahashi
甚一 今橋
Akio Honchi
章夫 本地
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP57049501A priority Critical patent/JPS58166643A/en
Publication of JPS58166643A publication Critical patent/JPS58166643A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce a use amount of noble metal used as the active ingredient of a gas diffusive electrode, by forming a carrier layer consisting of colloidal noble metal fine particles of specific size onto a mixed layer of a carbon dust and water repellent agent. CONSTITUTION:Carbon powder of acetylene black or the like, a water repellent agent of polyflon dispersion liquid or the like and water are mixed, and a plate formed by applying this mixture onto carbon paper is dried. And then a protective colloid agent is added to a solution of noble metal salt to perform wet reduction and obtain colloid dispersion liquid about 10Angstrom particle diameter of noble metal, and the regulated colloidal platinum solution is impregnated to the plate to form an electrode plate by firing. In this way, a use amount of nobel metal can be reduced to eliminate the necessity for an activating process, and the preparation process of an electrode can be simplified.

Description

【発明の詳細な説明】 本発明は、燃料電池に係シ、特にガス拡散電極に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fuel cells, and more particularly to gas diffusion electrodes.

便来行われてきた本発明に最も近い公知例として特開昭
51−86734がある。この公知例は、多孔性導電性
粒子を有し疎水的に結合され基質によシ支持された燃料
電池の電極に活性金属を付加する方法に関する。すなわ
ち、上述のように形成され走電4には、白金の塩を含む
溶液に浸された後、電極の表裏に強制的に電位をかける
ことにより、導電性粒子上にのみ白金イオンを吸着させ
、その後乾燥し水素ガス還元を行なっている。本公知例
においては、電極に電位勾配を与える必要がアシ、大規
模な燃料電池用の電極の製作法としては、量産化にとぼ
しく、また白金イオンを沈着稜水素ガス還元を行うなど
工程が二段階になる。
The closest known example to the present invention, which has been carried out conventionally, is JP-A-51-86734. This known example relates to a method for adding active metals to electrodes of fuel cells comprising porous conductive particles, hydrophobically bonded and supported by a substrate. That is, in the electrotaxis 4 formed as described above, platinum ions are adsorbed only on the conductive particles by forcibly applying a potential to the front and back surfaces of the electrode after being immersed in a solution containing platinum salt. , and then dried and subjected to hydrogen gas reduction. In this known example, it is necessary to apply a potential gradient to the electrode, and as a manufacturing method for electrodes for large-scale fuel cells, it is difficult to mass produce, and it requires two steps such as depositing platinum ions and reducing hydrogen gas. It becomes a stage.

本発明の目的は、燃料電池に用いられるガス拡散電極の
活性成分である貴金属の使用量を低減した燃料電池を提
供するにある。
An object of the present invention is to provide a fuel cell in which the amount of noble metal used as an active component of the gas diffusion electrode used in the fuel cell is reduced.

燃料電池のガス拡散電極において鑞、燃料或いは酸化剤
ガス、電解質及び電極上の活性金属の三者が相接する点
、すなわち気−液一固体の三相界面で反応が進行する。
At the gas diffusion electrode of a fuel cell, a reaction proceeds at the point where the three components, the solder, the fuel or oxidant gas, the electrolyte, and the active metal on the electrode, come into contact with each other, that is, at the three-phase interface of gas-liquid-solid.

気体は電極内のミクロボアーにまで拡散するが、液体社
比較的大きい孔にしか浸透しない。したがって活性金属
は、電解質が拡散できる範囲にのみ存在させれば、その
効果は大きい。従来一般的に行われてきたガス拡散電極
は、以下に記述する方法で形成されてきた。
The gas diffuses into the micropores within the electrode, but the liquid only penetrates into relatively large pores. Therefore, if the active metal is present only in a range where the electrolyte can diffuse, the effect will be great. Gas diffusion electrodes that have been commonly used in the past have been formed by the method described below.

一つの方法としては、カーボンの微粉末に白金の塩を含
浸し、これを乾式或いは湿式還元法により白金の微粒子
をカーボン微粉末上に高度に分散させ担持する。このよ
うKして調製され圧電極触媒とポリテトラフルオロエチ
レン(PTPE)との混合物をカーボンペーパに塗布し
九のち焼成して電極板を形成する。他の方法としCは、
カーボンの微粉末とポリテトラフルオロエチレンの混合
物をカーボンペーパに塗布し焼成した板へ白金の塩を含
浸した後、水素ガスで還元して電極板を形成する。この
ようにして形成嬶、・れた電極のモデルを第1図及び第
2図に示す。従来法の第1図においては、カーボン粉末
上に白金の微粒子を均一に分散せしめていることから、
形成された触媒層全域にわ九って白金粒子が存在する結
果、三相界(8)を形成しない部分にある白金は無駄に
なる。また第2図に示す方法においては、白金の壇を含
浸するため白金の錯イオンはカーボン粉末層のミクロボ
アーにまで入り込み第1図の方法にて形成された電極板
とほぼ同様の結果を与える。第1図及び第2図の符号は
夫々lが電極基板であるカーボンペーパ、2が触媒層、
3がカーボン粉末、4が貴金属粒子、5が)’TPE、
 6が触媒層のミクロボア、7が触媒層のマクロポアで
ある。本発明は、これらの欠点を補う九め、カーボン粉
末と撥水剤の混合物tカーボンペーパへ塗布して形成し
た板へ貴金属の微粒子を三相界面近傍へのみ担持するこ
とt可能とじ九ものである。すなわち責金桐の微粒子は
、貴金属の塩の溶液に保護コロイド剤を加えこれを湿式
還元を行うことにより貴金属の粒子径が約1OAのコロ
イ、:、ド分散液として[1!された。このコロイド分
散液中の保護コロイド剤の種類或匹は濃度を調節し、前
述の板へ含浸することによシ、カーボン粉末層の比較的
大きい孔すなわち三相界面形成′の場及び層の次面にの
み貴金属粒子を担持てきる仁とを確認し友10本発明法
による電極のモデル(2層電極)を第3図に示す、#I
3図に示し九例はカーボン粉末と撥水剤の混合層及び活
性金I14担持層の2相電極のモデルである。符号8は
触媒第一層、9は触媒第二層である。
One method is to impregnate fine carbon powder with platinum salt, and use a dry or wet reduction method to highly disperse and support platinum fine particles on the fine carbon powder. The mixture of the piezoelectrode catalyst and polytetrafluoroethylene (PTPE) thus prepared is coated on carbon paper and then fired to form an electrode plate. Another method C is
A mixture of fine carbon powder and polytetrafluoroethylene is applied to carbon paper, the fired plate is impregnated with platinum salt, and then reduced with hydrogen gas to form an electrode plate. A model of the electrode formed and broken in this manner is shown in FIGS. 1 and 2. In Fig. 1 of the conventional method, fine platinum particles are uniformly dispersed on the carbon powder.
As a result of the presence of platinum particles throughout the formed catalyst layer, the platinum in the portions where the three-phase boundary (8) is not formed is wasted. In addition, in the method shown in FIG. 2, the platinum complex ions penetrate into the micropores of the carbon powder layer to impregnate the platinum platform, giving almost the same result as the electrode plate formed by the method shown in FIG. In FIGS. 1 and 2, l is the carbon paper which is the electrode substrate, 2 is the catalyst layer,
3 is carbon powder, 4 is noble metal particle, 5 is )'TPE,
6 is a micropore of the catalyst layer, and 7 is a macropore of the catalyst layer. The present invention compensates for these drawbacks by making it possible to support fine metal particles only in the vicinity of the three-phase interface on a plate formed by applying a mixture of carbon powder and water repellent to carbon paper. be. In other words, fine particles of Sankin paulownia are produced by adding a protective colloid agent to a solution of a precious metal salt and subjecting it to wet reduction to form a colloid dispersion with a noble metal particle size of approximately 1 OA [1! It was done. By adjusting the type or concentration of the protective colloid in this colloidal dispersion and impregnating it into the plate described above, it is possible to control the relatively large pores of the carbon powder layer, that is, the site of three-phase interface formation, and the next stage of the layer. The model of the electrode (two-layer electrode) according to the present invention method is shown in Figure 3, #I.
The nine examples shown in Figure 3 are models of two-phase electrodes consisting of a mixed layer of carbon powder and water repellent and an active gold I14 supporting layer. Reference numeral 8 is a first catalyst layer, and 9 is a second catalyst layer.

以下本発明の実施例について記述するが本発明は、本実
施例になんら限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these examples in any way.

最初に燃料電池の電極とする板へ含浸する貴金属のコロ
イド(コロイド白金)のall製法について記述する。
First, a method for producing a noble metal colloid (colloidal platinum) to be impregnated into a plate serving as an electrode of a fuel cell will be described.

(1)  コロイド白金の−Jlli:メタノール15
0mt。
(1) Colloidal platinum -Jlli: methanol 15
0 mt.

水50mtにポリビニルアルコール(a1合&)L O
g を溶解tル、 次イテ塩化白金121!Ogt−溶
解し攪拌しながら苛性アルカリにて溶液のpHt約2に
調節する。その俵、70〜80Cで10時間程度還流還
元を行う。
50mt of water and polyvinyl alcohol (a1 go &) L O
Dissolve g, then proceed with platinum chloride 121! Ogt-Dissolve and adjust the pH of the solution to about 2 with caustic while stirring. The bales are subjected to reflux reduction at 70 to 80C for about 10 hours.

以上の操作で、白金の粒子径が10〜1SAim度のコ
ロイド白金が得られる。
Through the above operations, colloidal platinum having a platinum particle size of 10 to 1 SAim is obtained.

(2)  コロイド白金−ルテニウムの5ilai:メ
タノ−ル100mt、水20mtにポリビニルアルコー
ルls、ogを溶解する。次いで塩化白金allOgと
塩化ルテニウム6gを溶解し苛性アルカリで溶液のpH
を約2に調節する。その後、70〜80Cで10時間橿
度還流還元を行った後、35%のホルマリン5mAを加
え液の温度を600に保ちながら50%の苛性アルカリ
を除々に滴下し、pHが12になった点で反応を終了し
、メタノールを加えて液tを250mtとした。以上の
操作でコロイド白金−ルテニウムの溶液が調製される。
(2) Colloidal platinum-ruthenium 5ilai: Dissolve polyvinyl alcohol ls, og in 100 mt of methanol and 20 mt of water. Next, dissolve all Og of platinum chloride and 6g of ruthenium chloride, and adjust the pH of the solution with caustic alkali.
Adjust to about 2. After that, reflux reduction was carried out at 70 to 80C for 10 hours, and then 5 mA of 35% formalin was added, and 50% caustic alkali was gradually added dropwise while keeping the temperature of the solution at 600°C until the pH reached 12. The reaction was terminated, and methanol was added to make the liquid t 250 mt. Through the above operations, a colloidal platinum-ruthenium solution is prepared.

実施例 1 アセチレンブラックとポリフロンディスバージうにする
。この混合物をカーボンペーパ上に厚さ約60μmli
&になるよう塗布する。このようにして形成された板は
十分風乾された。その後、前と 述のコロイド白金溶液を板に含浸し、白金量が0、49
 m g / cm”とし風乾恢、32(l空気中で1
QIII間焼成し、電極板を形成した。
Example 1 Acetylene black and Polyflon diverge are combined. Spread this mixture on carbon paper to a thickness of about 60 μm.
Apply it so that it becomes &. The plate thus formed was thoroughly air-dried. After that, the plate was impregnated with the colloidal platinum solution mentioned above, and the amount of platinum was 0.49.
m g/cm”, air-dried, 32 (l in air)
It was fired for QIII to form an electrode plate.

実施例 2 アセチレンブラックとポリフロンディスバージ”17液
と水を混合し、PTFE量がアセチレンブラックに対し
50重量%となるようにする。この混合物をカーボンペ
ーパ上に厚さ305m程度になるよう塗布する。このよ
うにして形成された板は十分風乾後、コロイド白金溶液
を含浸し、白金量がα2Gmg/am”とし友、風乾後
、更にアセチレンブラックとPTFEの1合物を厚さ3
〇声ms度に塗布し風乾後コロイド白金を含浸し、白金
全量を0.40 m g 7cm”とし友、その後32
0C空気中にて1〇−焼成し電極板を1iliiした0
本実施例における電極は、2層電極構造である。
Example 2 Acetylene black, Polyflon Disverge 17 liquid, and water are mixed so that the amount of PTFE is 50% by weight based on the acetylene black. This mixture is coated on carbon paper to a thickness of about 305 m. After thoroughly air-drying the plate thus formed, it was impregnated with a colloidal platinum solution to adjust the platinum content to α2Gmg/am. After air-drying, a mixture of acetylene black and PTFE was further coated to a thickness of 3
〇Apply to 100 ms degree, and after air-drying, impregnate colloidal platinum to make the total amount of platinum 0.40 mg 7 cm”.
The electrode plate was baked for 10 minutes in 0C air.
The electrode in this example has a two-layer electrode structure.

実施例 3 アセチレンブラックとフッ化黒鉛とポリフロ/ディスバ
ージ漏ンと水及び界面活性剤を混合し、フッ化黒鉛及び
PTFE量がアセチレンブラックに対し、それぞれ50
重量%と20重量%となるようにした。この混合物をカ
ーボンペーパ上に約60am程度になるように塗布し十
分風乾する。
Example 3 Acetylene black, fluorinated graphite, polyflo/disverge leak, water, and a surfactant were mixed, and the amount of fluorinated graphite and PTFE was 50% each relative to acetylene black.
% by weight and 20% by weight. This mixture is coated on carbon paper to a thickness of about 60 am and thoroughly air-dried.

その後コロイド白金を含浸し、白金量を0.40m g
 / cts ” とし、320C空気中にて10閣焼
成し電極板を調製し友。
After that, it is impregnated with colloidal platinum, and the amount of platinum is 0.40 mg.
/cts'' and fired in air at 320C for 10 minutes to prepare an electrode plate.

実施例 4 本実施例は、2−元系触媒に関する。アセチレンブラッ
クとボリア0ンデイスバージM/液及び水を混合し、P
TFEJit−アセチレンブラックに対し50重量%と
する。この混合物をカーボンペーパに厚さ60μm根度
に塗布し、十分風乾後前述のコロイド白金4テニウムを
含浸し、白金量及びルテニウム量をα40 m g 7
cm”及び0.20mg/C114″ となるように調
製する。そのi、320C空気中で10III+焼成し
、電極板を形成した。
Example 4 This example relates to a two-component catalyst. Mix acetylene black, Borea 0-in-day barge M/liquid and water, P
TFEJit - 50% by weight based on acetylene black. This mixture was applied to carbon paper to a thickness of 60 μm, and after sufficiently air-dried, it was impregnated with the above-mentioned colloidal platinum 4thenium, and the amount of platinum and ruthenium was adjusted to α40 m g 7
cm" and 0.20 mg/C114". The sample was fired at 10III+ in 320C air to form an electrode plate.

比較例 1 アセチレンブラツ゛りへ湿式還元法によ如白金を12重
童%担持した電惨触媒とポリフロンディスパージョン液
と水を混食し、PTFEilt−電極触媒に対し50重
量%になるようにした。この混合物をカーボンペーパ上
に厚さ60μm程度になるように塗布し、風乾後、32
0C空気中1101u焼成し、電極板倉形成した。
Comparative Example 1 An electrocatalyst carrying 12% of platinum by a wet reduction method in acetylene was mixed with Polyflon dispersion liquid and water so that the amount was 50% by weight with respect to the PTFEilt electrode catalyst. did. This mixture was coated on carbon paper to a thickness of about 60 μm, and after air drying,
It was fired in 0C air at 1101μ to form an electrode plate.

実施例 5 本実施例では、実施例1〜4及び比較例1で形成された
電極板についてi*oc、リン酸中での空気極としての
単極電位を調定してその性能を詳細した。その結果を表
1に示し友。
Example 5 In this example, the performance of the electrode plates formed in Examples 1 to 4 and Comparative Example 1 was detailed by adjusting the unipolar potential as an air electrode in i*oc and phosphoric acid. . The results are shown in Table 1.

表   1 以上のように本発明によれば、白金便用1を従来法に比
し25%減蓋しても、空気極電位は同勢かそれ以上の1
1を示すので、電池めコストダウンが可能となる。
Table 1 As described above, according to the present invention, even if the lid of platinum toilet 1 is reduced by 25% compared to the conventional method, the air electrode potential remains the same or higher.
1, it is possible to reduce battery costs.

本発明によれば電極板構造の比較的大きい細孔及び電極
面近傍すなわち、ガス−電解質が到達で龜る三相界面形
成の場へ粒子径の制御された貴金属粒子を担持てきるの
で同じ性能t−得るのに従来法に比し貴金属使用量を約
30%低減することができる。又電極板へ含浸するコロ
イド貴金属は、IIl製時に既に活性化されているため
、電也板含浸俵の活性化工程(例えば水素ガス還元)が
不賛であシ、電極の製作工程が簡略化される。
According to the present invention, noble metal particles with a controlled particle size can be carried in the relatively large pores of the electrode plate structure and in the vicinity of the electrode surface, that is, the place where the three-phase interface is formed where the gas-electrolyte reaches and slows down, resulting in the same performance. The amount of precious metal used can be reduced by about 30% compared to the conventional method to obtain T-. In addition, since the colloidal precious metal impregnated into the electrode plate is already activated when IIl is manufactured, the activation process (for example, hydrogen gas reduction) of the bale impregnated with the electrode plate is not satisfactory, and the electrode manufacturing process is simplified. be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、従来法による電極の断面図、第3
図は、本発明による電極の断面図である。 1・・・電極基材であるカーボンペーパ、2・・・触媒
層、3・・・カーボン粉末、4・・・貴金属粒子、8・
・・触媒第哨3PFJ 第1頁の続き ■出 願 人 日立化成工業株式会社 東京都新宿区西新宿2丁目1番 1号
Figures 1 and 2 are cross-sectional views of electrodes according to the conventional method;
The figure is a cross-sectional view of an electrode according to the invention. DESCRIPTION OF SYMBOLS 1... Carbon paper which is an electrode base material, 2... Catalyst layer, 3... Carbon powder, 4... Precious metal particles, 8...
...Continued from page 1 of Catalyst Sentinel 3PFJ ■Applicant Hitachi Chemical Co., Ltd. 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo

Claims (1)

【特許請求の範囲】 1、多孔質導電性基材とカーボン粉末と撥水剤と触媒活
性金^とから成るガス拡散型4iiを有する燃料電池に
おいて、カーボン粉末と撥水剤の混合層及び貴金属微粒
子の担持層が交互く形成され圧電他を有することを特徴
とする燃料電池。 2、特許請求の範囲3111項において、前記貴金属微
粒子は、その粒子径がIOA程度にコロイド化され九こ
とを特徴とする燃料電池。 & 特許請求の範囲第1項において、前記貴金属微粒子
は、周期律表#I8族のうちの少なくとも1種を含むこ
とを特徴とする燃料電池。 4、特許請求の範囲第1項一おいて、前記撥水剤はポリ
テトラフルオロエチレン或いはポリテトラフルオロエチ
レンとフッ化黒鉛との混合物からなることt%黴とする
燃料電池。
[Claims] 1. A fuel cell having a gas diffusion type 4ii consisting of a porous conductive base material, carbon powder, a water repellent agent, and catalytically active gold^, a mixed layer of carbon powder and a water repellent agent, and a noble metal. A fuel cell characterized in that support layers of fine particles are alternately formed and have a piezoelectric element. 2. The fuel cell according to claim 3111, wherein the noble metal fine particles are colloidized and have a particle size of approximately IOA. & The fuel cell according to claim 1, wherein the noble metal fine particles include at least one member of group #I8 of the periodic table. 4. The fuel cell according to claim 1, wherein the water repellent is made of polytetrafluoroethylene or a mixture of polytetrafluoroethylene and fluorinated graphite.
JP57049501A 1982-03-27 1982-03-27 Fuel cell Pending JPS58166643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049501A JPS58166643A (en) 1982-03-27 1982-03-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049501A JPS58166643A (en) 1982-03-27 1982-03-27 Fuel cell

Publications (1)

Publication Number Publication Date
JPS58166643A true JPS58166643A (en) 1983-10-01

Family

ID=12832884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049501A Pending JPS58166643A (en) 1982-03-27 1982-03-27 Fuel cell

Country Status (1)

Country Link
JP (1) JPS58166643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216457A (en) * 1984-04-11 1985-10-29 Hitachi Ltd Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216457A (en) * 1984-04-11 1985-10-29 Hitachi Ltd Fuel cell

Similar Documents

Publication Publication Date Title
US3899354A (en) Gas electrodes and a process for producing them
US5234777A (en) Membrane catalyst layer for fuel cells
US5211984A (en) Membrane catalyst layer for fuel cells
US4407905A (en) Fuel cell
US3985578A (en) Tailored-carbon substrate for fuel cell electrodes
US6645660B2 (en) Screen-printing paste and screen-printing method of fabricating a gas diffusion electrode
EP0603175A1 (en) High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it
JPH0652871A (en) Solid highpolymer fuel cell
US3549423A (en) Method for manufacturing foam type electrode
JP2010267539A (en) Method of manufacturing gas diffusion layer for fuel cell
JP2020528199A (en) Multifunctional electrode additive
JPH05283082A (en) Gas diffused electrode and manufacture thereof
JPH07147162A (en) Manufacture of jointed body of electrolytic film and electrode
JP3648988B2 (en) Fuel cell electrode and method of manufacturing the same
JPS58166643A (en) Fuel cell
JPH06275282A (en) Fuel cell
JPS6023962A (en) Electrode for fuel cell
JPH0644984A (en) Electrode for solid high polymer electrolyte fuel cell
Tyurin et al. Electrocatalytic properties of a composite based on cobalt porphyrin pyropolymer and Nafion
JP3649013B2 (en) Method for producing electrode for fuel cell
JPH0888011A (en) Solid polymer electrolyte fuel cell
JP2905551B2 (en) Method for producing electrode for fuel cell
JP2011023170A (en) Method for manufacturing electrode of fuel cell
JP2896774B1 (en) Method for supporting catalyst on gas diffusion electrode
JPH0722035A (en) Manufacture of electrode for fuel cell