JPS5816639B2 - High cooling performance mounting method - Google Patents

High cooling performance mounting method

Info

Publication number
JPS5816639B2
JPS5816639B2 JP15099678A JP15099678A JPS5816639B2 JP S5816639 B2 JPS5816639 B2 JP S5816639B2 JP 15099678 A JP15099678 A JP 15099678A JP 15099678 A JP15099678 A JP 15099678A JP S5816639 B2 JPS5816639 B2 JP S5816639B2
Authority
JP
Japan
Prior art keywords
heat
thermal resistance
low thermal
heat dissipation
packages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15099678A
Other languages
Japanese (ja)
Other versions
JPS5578556A (en
Inventor
小木曾建
武富剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15099678A priority Critical patent/JPS5816639B2/en
Publication of JPS5578556A publication Critical patent/JPS5578556A/en
Publication of JPS5816639B2 publication Critical patent/JPS5816639B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、高冷却性能実装方式、更に詳しくは、電子回
路素子より発生する熱流を、熱の三態(ふく射、伝導、
対流)の効果的組合せにより効率的に放熱する機構に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a high cooling performance mounting method, more specifically, heat flow generated from electronic circuit elements in three states of heat (radiation, conduction,
The invention relates to a mechanism for efficiently dissipating heat through an effective combination of convection.

従来、電子回路部品を搭載せるパッケージ群より成る電
子装置の放熱に関しては、該パッケージが一般にエポキ
シ又は紙フェノール等の基板、即ち高熱抵抗基材より成
るために、電子回路素子より発生した熱は一部配線パタ
ーンを通してパッケージ外へ伝導放熱されるが、大部分
のλはパッケージ間の空間へ熱伝導されて空間の温度を
上昇させ、対流により上方へ物質移動を行なった気流は
対流誘導板により架の前面または裏面側へ排気されてい
る。
Conventionally, with regard to heat dissipation of electronic devices consisting of a group of packages on which electronic circuit components are mounted, since the packages are generally made of a substrate such as epoxy or paper phenol, that is, a high heat resistance base material, the heat generated by the electronic circuit elements is limited. Heat is radiated by conduction to the outside of the package through the internal wiring pattern, but most of the heat is conducted to the space between the packages, raising the temperature of the space. exhaust to the front or back side.

2 しかしながら、電子装置の高性能化に伴なう高密度
化を実現していくうえで、従来の限られた上記対流放熱
方式では、電子素子の性能を充分満足させるような放熱
機構は実現不可能である。
2 However, in order to achieve higher densities due to higher performance of electronic devices, it is difficult to realize a heat dissipation mechanism that fully satisfies the performance of electronic devices using the conventional limited convection heat dissipation method described above. It is possible.

本発明はかかる従来の状況に対処する為になさ1れたも
のであり、従って本発明の目的は、前述の熱放散特性の
大幅な改善を目ざし、電子装置実装の高密度化に追随可
能ならしめる新規な高冷却性能熱放散方式を提供するこ
とにある。
The present invention has been made in order to cope with the conventional situation, and therefore, an object of the present invention is to significantly improve the heat dissipation characteristics described above, and to make it possible to keep up with the increasing density of electronic device packaging. The purpose of this invention is to provide a new high cooling performance heat dissipation method.

本発明の主な構成は、電子素子から伝熱ルート1を経て
外界と接する広い熱放散面までの熱放散効率を高めるた
めに、電子部品を搭載する基板自体をセラミックまたは
金属類等の低熱抵抗体で実現した低熱抵抗パッケージと
、該低熱抵抗パッケージ内で発生せる熱流を架四周側の
広い熱放散面へ・伝導で熱誘導する伝熱ハイウェイと、
前記低熱抵抗パッケージの占有する空間に伝達せる熱流
を排気するための側面対流誘導板と、該対流排気を促進
させる架杆ダクトより成る。
The main structure of the present invention is that in order to increase the efficiency of heat dissipation from the electronic elements to the wide heat dissipation surface in contact with the outside world via heat transfer route 1, the board on which the electronic components are mounted is made of a material with low thermal resistance such as ceramic or metal. A low thermal resistance package realized by the body, and a heat transfer highway that conducts the heat flow generated within the low thermal resistance package to a wide heat dissipation surface on the frame's 4th circumference by conduction.
It consists of a side convection guide plate for exhausting the heat flow transferred to the space occupied by the low thermal resistance package, and a frame duct for promoting the convection exhaust.

次に図面を参照して詳細に説明する。Next, a detailed description will be given with reference to the drawings.

1 第1図a、b、cは従来用いられてきている電子装
置の放熱実装形態を示す図であり、そのうち、aは架側
面カバーを除去して内部を示す部分正面図、bは第1図
aのb−b線に沿った概略断面図、Cはaのc −c線
に沿った概略断面図である。
1. Figures 1a, b, and c are diagrams showing heat dissipation mounting forms of electronic devices that have been conventionally used.Among them, a is a partial front view showing the inside with the frame side cover removed, and b is a partial front view showing the inside of the electronic device. FIG. 3 is a schematic sectional view taken along line bb in FIG. a, and C is a schematic sectional view taken along line cc in FIG.

いわゆる、一般的電子装置の構成は、電子部品6を搭載
せる印刷配線基板5をコネクタ7にプラダインする群を
収容棚4に収納したユニットと、該電子部品6より発生
した熱対流を排気するための対流誘導板8とを組合せて
架杆11,1rに取付けられ、更に架四周は架側面カバ
ー21,2r、3f3bにより包囲した構造である。
The configuration of a so-called general electronic device includes a unit in which a group of printed circuit boards 5 on which electronic components 6 are mounted and pladines connected to connectors 7 is stored in a storage shelf 4, and a unit for discharging heat convection generated from the electronic components 6. It has a structure in which it is attached to the frames 11, 1r in combination with the convection guide plate 8, and the four circumferences of the frame are further surrounded by frame side covers 21, 2r, 3f3b.

本構成における放熱形式は、基板5がエポキシ紙フェノ
ール等の高熱抵抗材で形成されているために、電子部品
類6の熱抵抗も高く、部品表面温度が高いところから、
横隣接例えば、基板5aに対して5b 、5c 、5d
等のふく射成分の透過作用をきたし、基板5a空間の温
度上昇は基板5a内で発生する熱量と前記ふく射作用に
よる熱量とが加算されて決定される。
The heat dissipation method in this configuration is such that since the board 5 is made of a high heat resistance material such as epoxy paper phenol, the heat resistance of the electronic components 6 is also high, and the surface temperature of the components is high.
Laterally adjacent, for example, 5b, 5c, 5d with respect to the substrate 5a
The temperature rise in the space of the substrate 5a is determined by adding the amount of heat generated within the substrate 5a and the amount of heat due to the radiation effect.

この熱量によって生ずる対流により暖められた気流は上
方へ移動するが、上段の電子部品への影響を遮断するた
めに、上昇気流は対流誘導板8により架側3f(又は3
b)へ排気されている。
The airflow warmed by convection generated by this amount of heat moves upward, but in order to block the influence on the electronic components on the upper stage, the rising airflow is moved by the convection guide plate 8 on the rack side 3f (or 3f).
b).

排気領域を第1図a、bで示すと、Xo×y×hoであ
り、この体積空間を利用して放熱が実施されている。
When the exhaust area is shown in FIG. 1 a and b, it is Xo x y x ho, and heat radiation is performed using this volume space.

次に、本発明の基本的な放熱原理を説明する。Next, the basic heat dissipation principle of the present invention will be explained.

第1図a、bを引用すると、発熱源の存在する領域S8
は、55=Xoxyoxhoの体積空間であり、前述せ
る従来の対流主体の放熱利用領域ScはS C−X o
X y X h oの体積空間を用いている。
Referring to Figure 1 a and b, the region S8 where the heat source exists
is a volume space of 55=Xoxyoxho, and the conventional convection-based heat dissipation utilization area Sc mentioned above is S C−X o
A volume space of X y X h o is used.

一般に、放熱性能は、単位体積当りに発生せる熱量に依
存した温度上昇を低下させることが性能の良さと定義で
きる。
In general, good heat dissipation performance can be defined as reducing the temperature rise depending on the amount of heat generated per unit volume.

従って、ここでは、架占有体積を最も性能良く利用する
ことが目的となる。
Therefore, the objective here is to utilize the volume occupied by the rack with the best performance.

そのためには、発熱源の存在体積Snを仮想的にS n
= x X y X hに近づけることが必要となる
For that purpose, the existing volume Sn of the heat source should be virtually S n
It is necessary to approach = x x y x h.

現実の電子装置の空間体積比の一例はSo:Sc:5n
=0.4 : 0.8 : 1.0となっている。
An example of the space volume ratio of an actual electronic device is So:Sc:5n
=0.4:0.8:1.0.

本例で判る様に現実の装置は末だ充分なる放熱性能の良
さが発揮されていない。
As can be seen from this example, actual devices do not exhibit sufficient heat dissipation performance.

この放熱性能を向上させる手段について、第2図を用い
て説明する。
Means for improving this heat dissipation performance will be explained using FIG. 2.

第2図は本発明の基本原理を説明する為の第1図すと同
様の断面図である。
FIG. 2 is a sectional view similar to FIG. 1 for explaining the basic principle of the present invention.

電子部品より発生した熱流は最終的には固体面からの放
熱の過程をとる。
The heat flow generated by electronic components ultimately takes the process of heat radiation from solid surfaces.

従って、固体面の拡大は放熱量の拡大を意味し、その結
果、熱源の温度上昇を減少させる。
Therefore, the enlargement of the solid surface means an increase in the amount of heat dissipation, and as a result, the temperature rise of the heat source is reduced.

すなわち、冷却性能を向上させる。That is, cooling performance is improved.

本発明は、従来放熱用として用いられていなかった架四
周側カバー2’、2r、3f、3b等の大きな放熱面に
着目し、固体放熱面としてこれらの大きな放熱面、更に
は、放熱面拡大の目的で付加的に設けられた放熱フィン
101,10r、101’、10r’等を利用している
The present invention focuses on the large heat dissipation surfaces such as the four-side covers 2', 2r, 3f, and 3b, which have not been used for heat dissipation in the past, and uses these large heat dissipation surfaces as solid heat dissipation surfaces, and further expands the heat dissipation surface. For this purpose, additionally provided radiation fins 101, 10r, 101', 10r', etc. are used.

ただし、この放熱効果を期待するのに不可決な要因とし
て次の配慮が必要となる。
However, in order to expect this heat dissipation effect, the following considerations must be taken into consideration as factors that are not acceptable.

基板5′内で発生する熱流が前述の架四周側の放熱面で
効率良く放散するためには、基板自体を低熱抵抗化(例
えば、セラミック、金属基材等による)して、良熱伝導
体9b 、9fを介することにより架四周側放熱を実現
する。
In order for the heat flow generated within the board 5' to be efficiently dissipated on the heat dissipation surface on the four circumferential sides of the rack, the board itself should have a low thermal resistance (e.g., made of ceramic, metal base material, etc.) and be made of a good thermal conductor. By passing through 9b and 9f, heat radiation from the four circumferential sides of the frame is realized.

該良熱伝導体9b。9fは、できる限り熱抵抗値が零に
近似させる構成をとることにより、仮想的に熱発生源と
しての基板テと大きな架四周側の放熱面が一体と見なせ
るために、高冷却性能を有する熱放散が可能となる。
The good thermal conductor 9b. 9F has a configuration in which the thermal resistance value is as close to zero as possible, so that the board as a heat generation source and the heat dissipation surface on the four sides of the large frame can be virtually considered as one body. Dissipation becomes possible.

本発明に係る放熱方式は、架四周放熱面101゜10r
、101’、10r’の架内面側および架外面側の両面
が放散面となるために、物理的架占有体積Snより以上
に仮想的架占有体積(放熱体積:Sn’)を得ることが
できる。
The heat dissipation method according to the present invention has four circumferential heat dissipation surfaces 101°10r.
, 101', 10r', both the inner surface and the outer surface of the rack serve as radiation surfaces, so it is possible to obtain a virtual occupied volume (heat dissipation volume: Sn') larger than the physical occupied volume Sn. .

従って、Sn<Sn’の関係から従来前えられなかった
高冷却性能が実現できる。
Therefore, due to the relationship of Sn<Sn', high cooling performance that has not been achieved in the past can be achieved.

また、前述の低熱抵抗基板テの適用により、基板間のふ
く射透過作用による影響が緩和される効果を持ち、放熱
性能向上に寄与している。
In addition, the use of the low thermal resistance substrate described above has the effect of alleviating the effects of radiation transmission between the substrates, contributing to improved heat dissipation performance.

一方、電子部品搭載基板テの部分で基板間の空間へ熱伝
達された対流気流は、前述の従来の手段以外に、架杆1
1,1rへ対流を誘導する対流誘導板8′(第3図参照
)を用いて連結することにより効果的な放熱が可能とな
る。
On the other hand, in addition to the conventional means mentioned above, the convection airflow that is heat-transferred to the space between the boards at the electronic component mounting board part can be
By connecting them using a convection guide plate 8' (see FIG. 3) that guides convection to 1 and 1r, effective heat dissipation becomes possible.

なぜならば、架杆11.1rが通風促進のダクトとして
機能するために、空間温度上昇の低下を実現できる。
This is because the frame rod 11.1r functions as a duct for promoting ventilation, so that it is possible to reduce the temperature rise in the space.

また、複合効果として基板間の風速が促進されることに
より、基板テの熱抵抗値が更に低下するために、冷却能
力を高め得る。
Further, as a combined effect, the wind speed between the substrates is increased, and the thermal resistance value of the substrates is further reduced, so that the cooling capacity can be increased.

次に、本発明をその良好な一実施例について第3図を参
照しながら更に具体的に説明する。
Next, a preferred embodiment of the present invention will be explained in more detail with reference to FIG.

第3図は本発明の一実施例を示す部分斜視図である。FIG. 3 is a partial perspective view showing one embodiment of the present invention.

本実施例は自然空冷形式における構成例であるが、発熱
基板の電力密度に応じて通風ダクト1rおよび放熱フィ
ン10rの上部にファンを用いて強制対流を実施すれば
、更に冷却能力は高めることができる。
Although this embodiment is an example of a natural air cooling type configuration, the cooling capacity can be further increased if forced convection is implemented using a fan above the ventilation duct 1r and the radiation fin 10r according to the power density of the heat generating board. can.

この強制空冷形式放熱法は前述の自然空冷形式にファン
を付加することにより実現可能であるから特にここでは
実施例として与えていないが、強制空冷形式であっても
良いことは言うまでもない。
This forced air cooling type heat dissipation method can be realized by adding a fan to the above-mentioned natural air cooling type, so although it is not particularly given as an example here, it goes without saying that forced air cooling type may be used.

本実施例で示す前記の良熱伝導体9f 、9bを任意に
設けることにより、基板5′と該良熱伝導体9fと放熱
面2r、10rが連結され、架の至る所に熱伝導の高い
熱伝導路が形成される。
By arbitrarily providing the good heat conductors 9f and 9b shown in this embodiment, the substrate 5', the good heat conductors 9f, and the heat radiation surfaces 2r and 10r are connected, and high heat conduction is achieved throughout the frame. A heat conduction path is formed.

この熱抵抗の低い材料により形成された熱伝導の高い熱
伝導路を本発明に於て”熱流ハイウェイ″と定義する。
In the present invention, a heat conduction path with high heat conductivity formed of a material with low thermal resistance is defined as a "heat flow highway".

良熱伝導体9b 、9fとしては例えば低熱抵抗金属又
はヒートパイプ等を使用することができる。
As the good thermal conductors 9b and 9f, for example, a low thermal resistance metal or a heat pipe can be used.

以上、説明した如く、本発明による熱放散法を行えば、
従来の方法に比べて自然空冷、強制空冷の両者において
数倍の冷却能力の向上が得られる。
As explained above, if the heat dissipation method according to the present invention is performed,
Compared to conventional methods, cooling capacity can be improved several times in both natural air cooling and forced air cooling.

従って、高密度な装置構成を可能ならしめ、更には、前
述の熱流ハイウェイ構成により装置全体の温度が均一化
するために、素子の動作特性が良好となる総合的性能の
良好な装置を実現できる利点。
Therefore, it is possible to have a high-density device configuration, and furthermore, because the temperature of the entire device is made uniform by the heat flow highway configuration described above, it is possible to realize a device with good overall performance in which the operating characteristics of the elements are good. advantage.

を有する。has.

ここであげた発熱素子はキャンタイプ、デュアルインラ
インタイプ及びハイブリッドタイプの全てを包含してい
ることは言うまでもない。
It goes without saying that the heat generating elements mentioned here include all of the can type, dual in-line type, and hybrid type.

以上本発明はその良好な一実施例について説明されたが
、それは単なる例示的なものであり、ここで説明された
実施例によってのみ本願発明か限定されるものでないこ
とは勿論である。
Although the present invention has been described above with respect to one preferred embodiment thereof, this is merely an example, and it goes without saying that the present invention is not limited to the embodiment described herein.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a −cは従来方法に於ける装置構成の放熱を示
す図であり、第1図aは架側面カバーを除去して示す部
分正面図、第1図すは第1図aのb−b線に沿って切断
し矢印の方向に見た断面図、第1図Cは第1図aのc−
c線に沿って切断し矢印の方向に見た断面図、第2図は
本発明の原理説明図、第3図は本発明の一実施例を示す
斜視図である。 1 l 、 1 r−−−架杆、21.2r 、3f
、3b・・・・・・架側面カバー、4・・・・・・パッ
ケージ収容棚、5at5b、5c、5d、5’・・・・
・・電子部品類搭載基板、6・・・・・・電子部品類、
7・・・・・・コネクタ、8.&′・・・・・・対流誘
導板、9b 、 9f・・・・・・良熱伝導体、101
゜10 r 、 10 l’ 、 10 r’・−・−
放熱フィン、11−・・・・・コネクタ、パッケージ収
容棚の取付板、12・・・・・・架杆ダクト構成板。
Figures 1a to 1c are diagrams showing heat dissipation of the device configuration in the conventional method, Figure 1a is a partial front view with the side cover of the frame removed, A sectional view taken along line -b and seen in the direction of the arrow, Figure 1C is c- of Figure 1a.
FIG. 2 is a cross-sectional view taken along line c and viewed in the direction of the arrow, FIG. 2 is a diagram illustrating the principle of the present invention, and FIG. 3 is a perspective view showing an embodiment of the present invention. 1 l, 1 r --- frame, 21.2 r, 3 f
, 3b... Frame side cover, 4... Package storage shelf, 5at5b, 5c, 5d, 5'...
...Electronic parts mounting board, 6...Electronic parts,
7... Connector, 8. &'... Convection induction plate, 9b, 9f... Good thermal conductor, 101
゜10 r, 10 l', 10 r'・-・-
Heat dissipation fin, 11-... Connector, mounting plate for package storage shelf, 12-... Frame duct configuration plate.

Claims (1)

【特許請求の範囲】[Claims] 1 電子部品類を搭載する複数の基板を低熱抵抗体によ
り形成し、該低熱抵抗パッケージの面より該低熱抵抗パ
ッケージ間の空間へ熱伝達される一部の熱流を対流誘導
板により側面の架杆へ対流誘導し、前記架杆を通風促進
のダクトとして機能させ、暖められた対流気流を排気処
理すると共に、前記低熱抵抗パッケージ間のふく射伝熱
送受分と前記低熱抵抗パッケージ内で発生する熱流分を
架側四周へ接続して伝熱誘導する熱流ハイウェイに接続
することにより、終局的に架四周側の金物面を利用して
放熱排気処理することを特徴とする空冷型の高冷却性能
実装方式。
1. A plurality of substrates on which electronic components are mounted are formed of low thermal resistance materials, and a part of the heat flow transferred from the surface of the low thermal resistance packages to the space between the low thermal resistance packages is transferred to a side frame using a convection guide plate. The frame rod functions as a duct to promote ventilation, and the heated convective airflow is exhausted, and the radiation heat transmission and reception between the low thermal resistance packages and the heat flow generated within the low thermal resistance package are An air-cooled high-cooling performance mounting method characterized by connecting to the four sides of the rack and connecting it to a heat flow highway that induces heat transfer, and ultimately performing heat dissipation and exhaust treatment using the metal surfaces on the four sides of the rack. .
JP15099678A 1978-12-08 1978-12-08 High cooling performance mounting method Expired JPS5816639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15099678A JPS5816639B2 (en) 1978-12-08 1978-12-08 High cooling performance mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15099678A JPS5816639B2 (en) 1978-12-08 1978-12-08 High cooling performance mounting method

Publications (2)

Publication Number Publication Date
JPS5578556A JPS5578556A (en) 1980-06-13
JPS5816639B2 true JPS5816639B2 (en) 1983-04-01

Family

ID=15508994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15099678A Expired JPS5816639B2 (en) 1978-12-08 1978-12-08 High cooling performance mounting method

Country Status (1)

Country Link
JP (1) JPS5816639B2 (en)

Also Published As

Publication number Publication date
JPS5578556A (en) 1980-06-13

Similar Documents

Publication Publication Date Title
JP3094780B2 (en) Electronic equipment
JPH0629683A (en) Heat pipe type heat dissipation unit for electronic apparatus
WO1999026460A1 (en) Cooling system for semiconductor die carrier
JP3566935B2 (en) Electronic equipment cooling device
US3730264A (en) Frontal heat exchanger for racks of heat dissipating apparatus
JPH11341743A (en) Dynamo-electric machine
JP2735306B2 (en) Substrate cooling device
JPS5816639B2 (en) High cooling performance mounting method
JPH10270616A (en) Apparatus for radiating heat of electronic components
US20060256523A1 (en) Fan and heat sink combination
JP3700881B2 (en) Cooling structure
JPS63192256A (en) Integrated circuit cooling constitution
US20030081383A1 (en) Composite fins for heatsinks
JPH06216555A (en) Heat pipe type cooling device for electronic parts
US6399877B1 (en) Heat sink
JPH041757Y2 (en)
JPH04266091A (en) Cooling mechanism for electronic device
JPH07288391A (en) Cooling structure of high heat generation element
JPH04139863A (en) Shielding case for semiconductor element served also for heat dissipation
JP3026383B2 (en) Semiconductor device
JPS63227099A (en) Radiation structure of electronic device
JPH07226466A (en) Cooling system of semiconductor element
JPH06216554A (en) Heat pipe type cooling device for electronic parts
JPS6215842A (en) Cooling structure of electronic apparatus
JPH1032393A (en) Heat dissipation unit for electronic apparatus