JPS58165274A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS58165274A
JPS58165274A JP57047429A JP4742982A JPS58165274A JP S58165274 A JPS58165274 A JP S58165274A JP 57047429 A JP57047429 A JP 57047429A JP 4742982 A JP4742982 A JP 4742982A JP S58165274 A JPS58165274 A JP S58165274A
Authority
JP
Japan
Prior art keywords
fuel
water
fuel cell
methanol
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57047429A
Other languages
Japanese (ja)
Inventor
Hidejiro Kawana
川名 秀治郎
Tatsuo Horiba
達雄 堀場
Kazuo Iwamoto
岩本 一男
Kazunori Fujita
一紀 藤田
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57047429A priority Critical patent/JPS58165274A/en
Publication of JPS58165274A publication Critical patent/JPS58165274A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve operational stability of a fuel cell, by supplying fuel of methanol or the like and water independently of each other for a fuel electrode to hold a fuel ingredient and concentration of water in an anolyte in a steady state. CONSTITUTION:A methanol fuel cell is formed such that an air electrode 1 as the cathode, ion exchange film 2 and a methanol electrode 3 as the anode are closely attached in parallel to each other. If the cell is started, a controller 8 is operated to control opening and closing of a methanol supply valve 14 and water supply valve 13 and supply water and methanol into an anolyte 4 in accordance with temperature by a thermometer 9. In this way, fuel and water are supplied independently of each other, and concentration of water and fuel in the anolyte can be easily controlled to steadily hold an operational condition of the methanol fuel cell.

Description

【発明の詳細な説明】 本発明は液体燃料を用いる酸性電解液型燃料電池に係り
、特に硫酸電解液型メタノール 空気燃□料電池の水及
び燃料供給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acidic electrolyte fuel cell using liquid fuel, and more particularly to a method for supplying water and fuel to a sulfuric acid electrolyte methanol air fuel cell.

燃料としてのメタノールはセルスタックド硫酸タンクと
を循環するアノライト中に供給する。メタノールは、メ
タノールセンサーで濃度を検知して、消費して濃度の低
下した量を供給する。排ガスは熱交換器を通って排出し
、凝縮水は水タンクにもどす。
Methanol as a fuel is supplied to an anorite which circulates between a cell stacked sulfuric acid tank and a cell stacked sulfuric acid tank. The concentration of methanol is detected by a methanol sensor, and the amount of methanol that is consumed and reduced in concentration is supplied. The exhaust gas is discharged through a heat exchanger, and the condensed water is returned to the water tank.

上記の如く、従来は、水の供給制御はされていなかった
ので、アノライト(燃料室の電解液)中の水分は減少し
ていき、そやために硫酸濃度及びメタノール濃度の調節
は困:、−であった。またアノライトの供給はメタノ−
慕嘘び硫酸で、水の供給は制御されていなかつη111
11□ 本発明の目的は、燃料電池のアノライト中燃料成分と水
の濃度を定常に保つことにょシ燃料電池運転の安定性を
向上させることにある。
As mentioned above, in the past, water supply was not controlled, so the water content in the anolite (electrolyte in the fuel chamber) decreased, making it difficult to adjust the sulfuric acid and methanol concentrations. -It was. In addition, the supply of anolyte is
With sulfuric acid, water supply is uncontrolled and η111
11□ An object of the present invention is to improve the stability of fuel cell operation by keeping the concentrations of fuel components and water in the anolite of the fuel cell constant.

本発明は1)燃料電池から発生する熱を有効に蓄熱する
、2)燃料室及び空気室から発散する水を電池外に出さ
ず、もし系外に逃散した場合も必要水量を燃料室に供給
する、3)燃料及び水を別々に供給することによシすみ
やかに電池を定常状態にする、4)上記方法により電池
内アノライトの温度を最適値に保つことを目的としてい
る。
The present invention 1) effectively stores the heat generated from the fuel cell; 2) prevents water emitted from the fuel chamber and air chamber from leaving the cell; and even if water escapes outside the system, the required amount of water is supplied to the fuel chamber. 3) quickly bring the cell into a steady state by separately supplying fuel and water; 4) maintain the temperature of the anolite in the cell at an optimal value by the above method.

1)の蓄熱は、排ガスを熱交換器に通し、排熱で水タン
ク又は及び燃料タンク中の水又は及び燃料を加温するも
のである。
1) Heat storage involves passing the exhaust gas through a heat exchanger and using the exhaust heat to heat the water or fuel in the water tank or fuel tank.

2)燃料室からの水分の発散は小量で、通常は炭酸ガス
に伴って出てくる硫酸ミストに含まれる程度と考えられ
る。一方空気室から次式で示す反応が空気極で進み水が
発生する。6倍のH+はメ1: タノ      、1、 −ル極でメタノール:1モルが水1モルと反応した時に
生じるものである。すなわち空気極ではメタノール1モ
ルの反応に伴って水が3モル発生する。
2) The amount of moisture emanating from the fuel chamber is small, and it is thought that it is usually contained in the sulfuric acid mist that comes out with carbon dioxide gas. On the other hand, from the air chamber, the reaction shown by the following equation proceeds at the air electrode and water is generated. 6 times as much H+ is generated when 1 mole of methanol reacts with 1 mole of water at the methane, 1, -l pole. That is, at the air electrode, 3 moles of water are generated with the reaction of 1 mole of methanol.

さらにメタノール極と空気極を分離しているイオン交換
膜を水素イオンに伴って水が透過する。透過量は電気量
1つアラデー当シ1から2モルである。すなわち、メタ
ノール極でメタノールが1モル灰地して6モルの水素イ
オンが発生しそれが空気極で酸素と反応して水に変わる
とすれば、水素イオンに伴って空気極へ移動する水は、
6モル〜12モルであるので空気室から出る水は約9モ
ルから15モルである。この水は水蒸気となって発散す
るのでこれが全て電池外へ出ると、周囲の湿度を上げる
と共に電池のアノライト中の水分をうしなうことになる
。そこで空気室からの排ガスを熱交換器を通して水蒸気
を回収してアノライト中又は水タンクにもどして利用す
る。
Furthermore, water passes through the ion exchange membrane that separates the methanol electrode and the air electrode together with hydrogen ions. The amount of permeation is 1 to 2 moles per 1 electrical charge. In other words, if 1 mole of methanol is ashed at the methanol electrode and 6 moles of hydrogen ions are generated, which reacts with oxygen at the air electrode and turns into water, then the water that moves to the air electrode with the hydrogen ions is ,
Since the amount of water is 6 to 12 moles, the amount of water coming out of the air chamber is about 9 to 15 moles. This water evaporates as water vapor, and if all this leaves the battery, it increases the surrounding humidity and depletes the moisture in the battery's anolite. Therefore, the exhaust gas from the air chamber is passed through a heat exchanger to recover water vapor and returned to the anorite or water tank for use.

3)電池始動時はアノライト温度が低いため電池の電圧
は低く、温度が上がるKしたがって電圧が上昇する。そ
こで電圧始動時は、燃料を十分に供給することで、アノ
ライト中の燃料はイオン交換膜を通って空気極で酸素と
反応し発生する熱で電池をあたためる。温度が上昇し定
常運転温度になったら、水と燃料を供給する。温度が上
昇しすぎた場合は、水のみを供給することで熱の発生を
抑え、温度を下げ、定常温度にする。以上の如く、水と
燃料を各々独立に電池に供給することにより、電池運転
条件をできるだけすみやかに定常に保とうとするもので
ある。
3) When starting the battery, the anorite temperature is low, so the battery voltage is low, and as the temperature rises, the voltage increases. Therefore, when starting at voltage, by supplying a sufficient amount of fuel, the fuel in the anorite passes through an ion exchange membrane and reacts with oxygen at the air electrode, warming the battery with the heat generated. Once the temperature rises to steady operating temperature, water and fuel are supplied. If the temperature rises too much, supplying only water suppresses heat generation and lowers the temperature to a steady state. As described above, by independently supplying water and fuel to the battery, it is attempted to maintain the battery operating conditions as quickly as possible.

4)上記運転制御方法を組み合わせることによシ、アノ
ライト成分の濃度及び温度を最適運転条件に保つもので
ある。
4) By combining the above operation control methods, the concentration and temperature of the anolyte component can be maintained at optimal operating conditions.

以下、本発明の一実施例を第1図によシ説明する。An embodiment of the present invention will be explained below with reference to FIG.

メタノール燃料電池はカソードとして空気極1゜イオン
交換膜2.アノードとしてメタノール極3が互いに平行
に密着している。電池内にはアノライト4が入っており
、空気極側には空気室5が位置する。空気人口6から入
った空気はプロワ−10よシ空気室に送られる。空気極
では酸素を消費し水蒸気を含んだ排ガスはメタノール極
からの炭酸ガスを伴い熱交換器15に入りガス中の水分
は凝縮してアノライト中にもどされる。この際と浸出さ
れた熱は水タンク11中の水及びメタノールタンク12
中のメタノールの加温に用いられる。
A methanol fuel cell has an air electrode as a cathode, an ion exchange membrane, and two. Methanol poles 3 as anodes are in close contact with each other in parallel. An anorite 4 is contained in the battery, and an air chamber 5 is located on the air electrode side. Air entering from the air port 6 is sent to the air chamber by the blower 10. At the air electrode, the exhaust gas which has consumed oxygen and contains water vapor enters the heat exchanger 15 together with carbon dioxide gas from the methanol electrode, and the water in the gas is condensed and returned to the anorite. At this time, the leached heat is transferred to the water in the water tank 11 and the methanol tank 12.
Used to heat the methanol inside.

水分を除去された排ガスは排出ロアから電池外へ放出さ
れる。電池を始動すると、制御装置8が働き温度計9に
よる温度にしたがってメタノール供給パルプ14と水供
給パルプ13の開閉を制御し水及びメタノールをアノラ
イト4中に供給する。
The exhaust gas from which water has been removed is discharged outside the battery from the exhaust lower. When the battery is started, the control device 8 operates to control the opening and closing of the methanol supply pulp 14 and the water supply pulp 13 in accordance with the temperature measured by the thermometer 9, thereby supplying water and methanol into the anolite 4.

本実施例によれば、空気極から放出される水分を熱交換
器で水にもどして再利用するので、水が電池の外へ放出
されるのを防止する。また、燃料と水の供給をおのおの
独立に行なうので、アノライト中の水及び燃料濃度の制
御をたやすくできる。
According to this embodiment, the moisture released from the air electrode is converted back into water by the heat exchanger and reused, thereby preventing water from being released outside the battery. Furthermore, since fuel and water are supplied independently, the concentrations of water and fuel in the anorite can be easily controlled.

燃料供給量制御は液面計17の指示により一高さに保つ
ことで行なう。
The fuel supply amount is controlled by maintaining it at a constant level according to the instructions from the liquid level gauge 17.

本発明によれば、メタノール燃料電池運転条件を定常に
保つことができ、水の電池外への逃散も最小限に抑える
ことができるので、電池の運転時の安定状態までの時間
がみじ臥<でき、また電池周囲の湿度を高めることもな
い。
According to the present invention, the operating conditions of the methanol fuel cell can be kept steady and the escape of water outside the cell can be minimized, so the time required for the cell to reach a stable state during operation is significantly reduced. <Also, it does not increase the humidity around the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るメタノール燃料電池の構成概略図
、第2図は、上部はアノライト温度変化と、温度の制御
範囲(斜線)を、下部は経過時間にともなうメタノール
と水の供給量を示す図である。 1・・・空気極、2・・・イオン交換膜、3・・・メタ
ノール極、4・・・アノライト、5・・・空気室、6・
・・空気入口、7・・・排出口、8・・・制御装置、9
・・・温度計、10・・・プロワ−111・・・水タン
ク、12・・・メタノールタンク、13・・・水供給パ
ルプ、14・・・メタノール供給パルプ、15・・・熱
交換器、16・・・電池本体、第 1 口 #20 に遍時円(4杭)
Figure 1 is a schematic diagram of the configuration of the methanol fuel cell according to the present invention. Figure 2 shows the changes in anolyte temperature and the temperature control range (hatched lines) in the upper part, and the amount of methanol and water supplied over time in the lower part. FIG. DESCRIPTION OF SYMBOLS 1...Air electrode, 2...Ion exchange membrane, 3...Methanol electrode, 4...Anolyte, 5...Air chamber, 6...
... Air inlet, 7... Outlet, 8... Control device, 9
... thermometer, 10 ... blower 111 ... water tank, 12 ... methanol tank, 13 ... water supply pulp, 14 ... methanol supply pulp, 15 ... heat exchanger, 16...Battery body, chronograph circle (4 stakes) in the 1st port #20

Claims (1)

【特許請求の範囲】 1、メタノール、ギ酸、ホルマリン等の液体燃料を用い
る酸性電解液型燃料電池において、燃料極に対してメタ
ノール等の燃料と水を互いに独立して供給することを特
徴とする燃料電池。 2 前配水の供給量は、あらかじめ設定した燃料と水の
混合割合にしたがい燃料消費量によって定めることを特
徴とする特許請求の範囲第1項記載の燃料電池。 3、前記水と燃料は互いに混合しないように各々別の水
タンクと燃料タンクに充填しであることを特徴とする特
許請求の範囲第2項記載の燃料電池。 4、前記燃料電池の燃料室から排出される排ガスは水タ
ンク又は燃料タンクに連なる凝縮器を兼ねる熱交換器を
通って燃料電池外へ排出される仁とを特徴とする特許請
求の範囲第3項記載の燃料電池。 5、前記排ガスが熱交換器を通過する際に排ガス中の水
蒸気、燃料蒸気及び電解液から飛散した酸ミストを液化
して、燃料室中の電解液にもどすことを特徴とする特許
請求の範囲第4項記載の燃料電池。 6、空気室から排出される水蒸気を含むガスは、上記熱
交換器を通過し、凝縮した水は水タンクにもどすことを
特徴とする特許請求の範囲第5項記載の燃料電池。 7、空気室から排出される排ガスと燃料室から排出され
る排ガスが混合した後に熱交換器を通ることを特徴とす
る特許請求の範囲第6項記載の燃料電池。 8、前記空気室から排ガスが熱交換器を通って生じた凝
縮水は燃料室中の電解液に注ぐことを特徴とする特許請
求の範囲第7項記載の燃料電池。 9、燃料室中のアノライトが予め設定された下限温度以
下の場合は燃料のみを、上限温度と下限温度の範囲では
燃料と水を予め決められた割合で供給し、上限温度以上
になった場合は水だけを供給することを特徴とする特許
請求の範囲第8項記載の燃料電池。
[Claims] 1. An acidic electrolyte fuel cell using liquid fuel such as methanol, formic acid, formalin, etc., characterized in that fuel such as methanol and water are supplied to the fuel electrode independently of each other. Fuel cell. 2. The fuel cell according to claim 1, wherein the pre-distribution water supply amount is determined by fuel consumption according to a preset fuel and water mixing ratio. 3. The fuel cell according to claim 2, wherein the water and fuel are filled in separate water tanks and fuel tanks, respectively, so that they do not mix with each other. 4. Exhaust gas discharged from the fuel chamber of the fuel cell passes through a water tank or a heat exchanger that also serves as a condenser connected to the fuel tank and is discharged to the outside of the fuel cell. Fuel cell as described in Section. 5. Claims characterized in that when the exhaust gas passes through a heat exchanger, water vapor, fuel vapor, and acid mist scattered from the electrolyte in the exhaust gas are liquefied and returned to the electrolyte in the fuel chamber. The fuel cell according to item 4. 6. The fuel cell according to claim 5, wherein the gas containing water vapor discharged from the air chamber passes through the heat exchanger, and the condensed water is returned to the water tank. 7. The fuel cell according to claim 6, wherein the exhaust gas discharged from the air chamber and the exhaust gas discharged from the fuel chamber are mixed and then passed through a heat exchanger. 8. The fuel cell according to claim 7, wherein the condensed water produced when the exhaust gas passes through a heat exchanger from the air chamber is poured into the electrolyte in the fuel chamber. 9. If the anorite in the fuel chamber is below the preset lower limit temperature, only fuel is supplied, and between the upper and lower temperature limits, fuel and water are supplied at a predetermined ratio, and when the temperature exceeds the upper limit temperature. 9. The fuel cell according to claim 8, wherein the fuel cell supplies only water.
JP57047429A 1982-03-26 1982-03-26 Fuel cell Pending JPS58165274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047429A JPS58165274A (en) 1982-03-26 1982-03-26 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047429A JPS58165274A (en) 1982-03-26 1982-03-26 Fuel cell

Publications (1)

Publication Number Publication Date
JPS58165274A true JPS58165274A (en) 1983-09-30

Family

ID=12774903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047429A Pending JPS58165274A (en) 1982-03-26 1982-03-26 Fuel cell

Country Status (1)

Country Link
JP (1) JPS58165274A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0181569A2 (en) * 1984-10-31 1986-05-21 Hitachi, Ltd. Liquid fuel cell
JPS61107666A (en) * 1984-10-31 1986-05-26 Hitachi Ltd Liquid fuel cell
FR2764121A1 (en) * 1997-06-03 1998-12-04 Motorola Inc FUEL FOR LIQUID-FEED FUEL CELLS
WO2001003220A1 (en) * 1999-06-30 2001-01-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for operating a fuel cell
KR20030091485A (en) * 2002-05-28 2003-12-03 삼성에스디아이 주식회사 Fuel supplying method of direct liquid feed fuel cell and fuel cell apparatus adopting the same
JP2004178818A (en) * 2002-11-22 2004-06-24 Toshiba Corp Fuel cell system
EP1507304A1 (en) * 1994-10-18 2005-02-16 The University Of Southern California Organic fuel cell system and method of operation
JP2005100669A (en) * 2003-09-22 2005-04-14 Toyo Radiator Co Ltd Fuel cell system
WO2006025321A1 (en) * 2004-08-31 2006-03-09 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and method for controlling the same
CN100438167C (en) * 2003-12-17 2008-11-26 松下电器产业株式会社 Fuel cell system and power generation method in fuel cell system
US7479342B2 (en) 2003-06-18 2009-01-20 Panasonic Corporation Fuel cell
CN100463264C (en) * 2005-03-29 2009-02-18 株式会社东芝 Fuel cell
JP2010027623A (en) * 2009-10-30 2010-02-04 Minoru Umeda Fuel cell, and power generation method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0181569A2 (en) * 1984-10-31 1986-05-21 Hitachi, Ltd. Liquid fuel cell
JPS61107666A (en) * 1984-10-31 1986-05-26 Hitachi Ltd Liquid fuel cell
EP1507304A1 (en) * 1994-10-18 2005-02-16 The University Of Southern California Organic fuel cell system and method of operation
GB2325937B (en) * 1997-06-03 1999-04-14 Motorola Inc Fuel for liquid feed fuel cells
FR2764121A1 (en) * 1997-06-03 1998-12-04 Motorola Inc FUEL FOR LIQUID-FEED FUEL CELLS
GB2325937A (en) * 1997-06-03 1998-12-09 Motorola Inc Fuel composition for a liquid feed fuel cell
WO2001003220A1 (en) * 1999-06-30 2001-01-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for operating a fuel cell
KR20030091485A (en) * 2002-05-28 2003-12-03 삼성에스디아이 주식회사 Fuel supplying method of direct liquid feed fuel cell and fuel cell apparatus adopting the same
JP2004178818A (en) * 2002-11-22 2004-06-24 Toshiba Corp Fuel cell system
US7563524B2 (en) 2002-11-22 2009-07-21 Kabushiki Kaisha Toshiba Fuel cell system
US7479342B2 (en) 2003-06-18 2009-01-20 Panasonic Corporation Fuel cell
US8076043B2 (en) 2003-06-18 2011-12-13 Panasonic Corporation Fuel cell
JP4685339B2 (en) * 2003-09-22 2011-05-18 株式会社ティラド Fuel cell system
JP2005100669A (en) * 2003-09-22 2005-04-14 Toyo Radiator Co Ltd Fuel cell system
CN100438167C (en) * 2003-12-17 2008-11-26 松下电器产业株式会社 Fuel cell system and power generation method in fuel cell system
WO2006025321A1 (en) * 2004-08-31 2006-03-09 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and method for controlling the same
US8263283B2 (en) 2004-08-31 2012-09-11 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and control method thereof
CN100463264C (en) * 2005-03-29 2009-02-18 株式会社东芝 Fuel cell
JP2010027623A (en) * 2009-10-30 2010-02-04 Minoru Umeda Fuel cell, and power generation method thereof

Similar Documents

Publication Publication Date Title
JPS58165274A (en) Fuel cell
KR101248254B1 (en) Electricity production apparatus
JP2001006711A (en) Fuel cell system
US20100297513A1 (en) Fuel cell system
JP2000512797A (en) Direct-Methanol-Fuel Cell (DMFC)
CN102203999B (en) Fuel cell cooling
US6696186B1 (en) Humidifying device for a fuel cell, method for humidifying a fuel cell membrane and fuel cell
JP7117279B2 (en) Fuel cell vehicle and method for setting scavenging time when vehicle is stopped
US20020025460A1 (en) Fuel cell system
JP3638970B2 (en) Reforming raw material liquid supply device for methanol reformer for fuel cell
US4040435A (en) Fuel cells and methods of operating them
JP4126741B2 (en) Exhaust method for fuel cell device
JP4682386B2 (en) Fuel cell system
JP5135883B2 (en) Fuel cell system
JP4552236B2 (en) Fuel cell device
JP2018181541A (en) Fuel cell system
JP2008130392A (en) Fuel cell system
EP1052717B1 (en) Fuel cell system
JP4886255B2 (en) Fuel cell device
JP2004221020A (en) Standard water vapor generating device, humidifier for fuel cell, and gas/water control system for fuel cell
JP2006066112A (en) Fuel cell system
RU69322U1 (en) FUEL BATTERY FOR A STAND-ALONE POWER SUPPLY
KR20190081381A (en) The method for controlling partial pressure of hydrogen for the fuelcell system
JP2023540050A (en) Hydrogen/oxygen removal system in gas streams
JPS6223021Y2 (en)