JPS58165069A - Testing of short-circuited interruption in resistance interruption buffer type gas breaker - Google Patents

Testing of short-circuited interruption in resistance interruption buffer type gas breaker

Info

Publication number
JPS58165069A
JPS58165069A JP57046219A JP4621982A JPS58165069A JP S58165069 A JPS58165069 A JP S58165069A JP 57046219 A JP57046219 A JP 57046219A JP 4621982 A JP4621982 A JP 4621982A JP S58165069 A JPS58165069 A JP S58165069A
Authority
JP
Japan
Prior art keywords
breaker
transformer
short
type gas
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57046219A
Other languages
Japanese (ja)
Inventor
Hisatoshi Ikeda
久利 池田
Satoru Yanafumi
柳文 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57046219A priority Critical patent/JPS58165069A/en
Publication of JPS58165069A publication Critical patent/JPS58165069A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • G01R31/3333Apparatus, systems or circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To achieve a testing of short-circuited interruption effective for the verification of utility performance of a resistance interruption buffer type gas breaker by supplying current from a medium voltage transformer in the interruption of a low voltage transformer connected to a short-circuit generator. CONSTITUTION:The parting of pole is performed in an auxiliary breaker 7 on the secondary side of a low voltage transformer 4 connected to a short-circuit generator 1 synchronizing a main contact 13 of a sample resistance interruption buffer type gas breaker 8 to interrupt current flowing from the transformer 4 whose impedance is the smallest at the zero point of current. At the same time, a specified current flow to a resistance contact 11 through a resistance 12 from a mediumvoltage transformer 5 connected to the generator 11 while a high voltage is applied to a tank 14 of the breaker 8 from a high voltage transformer 6. Thereafter, with the parting of pole, the contact 11 is cut off at the zero point of current. Since the contact 11 is cut off after the interruption of the rated current at the contact 13, the pole parting property can be tested in ample equivalence to the actual operation while an insulation testing is allowed between the contacts 11 and 13 and in the tank 14 or the like thereby affording a testing of short-circuited interruption effective for the varification of utility performance.

Description

【発明の詳細な説明】 本発明は電力系統の変電所あるいは開閉所に用いられる
しゃ断器、特に抵抗しゃ断形のバッファ式ガスしゃ断器
の短絡しゃ断試験方法に関する本のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a book relating to a short-circuit breaker test method for circuit breakers used in power system substations or switchyards, particularly resistive breaker type buffer type gas circuit breakers.

系統の短絡容量の増大にともない、しゃ断器に要求され
るしゃ断器容量も増加の一途をたどっている。このため
、しゃ断器の端子での地給や短絡事故しゃ断のしゃ断性
能を検証する端子短絡故障試験には合成試験が一般C二
用いられている。
As the short-circuit capacity of the system increases, the breaker capacity required of the circuit breaker also continues to increase. For this reason, synthetic tests are generally used in terminal short-circuit failure tests to verify the earth supply at the terminals of circuit breakers and the disconnection performance of short-circuit failures.

合成試験は、低い給与電圧で短絡電流を短絡発電機から
供給し、しゃ断後の回復電圧をあらかじめ充電したコン
デンサ・バンクから印加する。特(:電流注入法では、
過渡回復電圧が電流零点と独立して印加する電圧重畳法
と違って、短絡発電機からの電流の零点近傍でコンデン
サの放電による高周波電流を重畳するので、仁の電流の
零点でしゃ断すると自動的砿:過渡回復電圧が印加され
る。
The synthetic test supplies the short circuit current from a short circuit generator at a low supply voltage, and the recovery voltage after interruption is applied from a precharged capacitor bank. Special (: In the current injection method,
Unlike the voltage superposition method in which the transient recovery voltage is applied independently of the current zero point, the high-frequency current due to the capacitor discharge is superimposed near the current zero point from the short-circuit generator, so when the current is cut off at the current zero point, the voltage is automatically cut off. Red: Transient recovery voltage is applied.

このため、電流零点近傍については直接試験との等個性
が高いとされている。
For this reason, it is said that near the current zero point, it has a high degree of individuality similar to direct testing.

しかしながら、電流注入法は、大容量のコンデサパンク
を必要とするので、容量の大きいしゃ断器では全点で試
験するのが困難となり、部分試験を行なう場合が多い。
However, since the current injection method requires a large capacity capacitor, it is difficult to test all points with a large capacity circuit breaker, and partial tests are often performed.

碍子型のしゃ断器では接点間の性能を検証すればよいの
で部分試験で充分である。しかし夕/り型のしゃ断器で
は、アークにさらされ、絶縁耐力が劣化しているか本し
れないいわゆる熱ガスが、sit部と接地タンクとの間
に充満することになり、この部分については全電圧で検
証する必要がある。
For insulator-type circuit breakers, a partial test is sufficient as it is only necessary to verify the performance between the contacts. However, in the evening type circuit breaker, the space between the sit part and the ground tank is filled with so-called hot gas that has been exposed to arc and has deteriorated dielectric strength, so this part is completely It is necessary to verify with voltage.

このため、高電圧タンク型多点切しゃ断器では電流注入
法で部分試験を行なって接点間の性能を検証し、更に課
電部と接地タンク間等については、電圧重畳法を用いた
全点試験で検証する方法がとられている。
For this reason, for high-voltage tank-type multi-point circuit breakers, partial tests are performed using the current injection method to verify the performance between the contacts, and furthermore, between the energized part and the grounded tank, all points are tested using the voltage superimposition method. The method is to verify by testing.

また、系統容策が極端に大きくなって、しゃ断点数が大
きくなると1.アーク電圧による電流変歪をおさえるた
めにより高い給与電圧が必要となり、全点試験は電圧重
畳法でも極めて困難となる。このため、電流注入法で部
分試験をし、タンクを全電圧に耐える絶線架台にのせて
、夕/りから謀電部へ向かって電圧重畳法で全電圧を印
加する方法がとられている。
Also, if the system capacity becomes extremely large and the number of break points becomes large, 1. A higher supply voltage is required to suppress current distortion caused by arc voltage, and testing at all points becomes extremely difficult even with the voltage superimposition method. For this reason, a partial test is carried out using the current injection method, the tank is placed on a disconnected stand that can withstand the full voltage, and the full voltage is applied from the evening towards the power control section using the voltage superposition method. .

さて、都市における発電所の建設−による電力不足をお
ぎなうために、遠く離れた過疎地に発電所を建設し、長
距離送電線で都市へ電力を送る1000kV級のUlt
ra )(igh Vo%tage (UHV)送電が
計画されている。
Now, in order to make up for the power shortage caused by the construction of power plants in cities, we will build power plants in far away depopulated areas and send power to cities via long-distance transmission lines using 1000kV class ULTIMATE.
ra ) (high Vo%tage (UHV) power transmission is planned.

これにともないUHV系統の変電所用開閉機器に関する
研究も進められている。UHvIII圧の絶員甲靜を確
保するには、従来型の空気絶線型の開閉機器では巨大な
装置となるので、密閉型の開閉機器が採用され、しゃ断
器としてもタンク型のバッファ式ガスしゃ断器が採用さ
れると考えられる0またしゃ断電流としても53kAが
要求されるであろうから、大容量のしゃ断性能が要求さ
れ、6□カ、6b、よ、□1カ、al、、’z o ’
Oeつ、□6ユ4、九電流注入法で部分試験をd”7い
、電圧重畳法で絶縁架台でタンクを浮かせ:、トのタン
クから課電部に電圧を印加する上述の方法が必要となろ
う。
Along with this, research on switchgear for substations in UHV systems is also progressing. In order to ensure safety at UHvIII pressure, conventional air disconnection type switchgear would be a huge device, so closed type switchgear was adopted, and a tank-type buffer type gas breaker was used as a breaker. Since it is thought that 53 kA will be required as a cut-off current when the device is adopted, a large-capacity cut-off performance will be required. o'
Perform partial tests using the current injection method and float the tank on an insulated stand using the voltage superimposition method: The above method of applying voltage from the tank to the energized part is required. Let's become.

このような試験では、相肖大規模な設備が必要とはなる
が従来の技術の延長にあり、と考えられる。
Although such a test requires relatively large-scale equipment, it is considered to be an extension of conventional technology.

ところが、UHV系統ではしゃ断器は抵抗しゃ断方式と
することが必要であろう。これは、気中の破壊電圧がギ
ャップ長と共に上昇せず、飽和することから、送電線の
絶縁距離を妥当な値とし、且つ建設コストを妥当な本の
とするためには、開閉サージの値を低くおさえる必要が
あるからである。
However, in a UHV system, the circuit breaker must be of a resistive type. This is because the breakdown voltage in the air does not increase with the gap length and saturates, so in order to keep the insulation distance of the transmission line at a reasonable value and the construction cost at a reasonable value, the value of the switching surge must be adjusted. This is because it is necessary to keep it low.

過電圧倍数をこれに必要な1.5〜t、7puとするた
め(=は500Ω〜700Ωの抵抗を用いた抵抗しゃ断
(=よってしゃ断サージをおさえる必要がある。
In order to set the overvoltage multiple to the necessary 1.5 to 7 pu (= means resistance cutoff using a resistance of 500Ω to 700Ω) (=therefore, it is necessary to suppress the cutoff surge.

そしてタンク型のしゃ断器では碍子型のしゃ断器と異な
す、シゃ断抵抗及び抵抗接点も主接点と同一のタンク内
に納められる。従がって、抵抗接点と主接点の間(で:
も熱ガスが放出されること(=なり、この間の砲門□回
復の検証も必要となる。
In a tank-type circuit breaker, unlike an insulator-type circuit breaker, the disconnection resistance and resistance contact are also housed in the same tank as the main contact. Therefore, between the resistive contact and the main contact (at:
Also, hot gas is released (=), and it is also necessary to verify the recovery of the cannon during this time.

sc、 :[A&偏。12.2や。。□1.15□””
””””’′’ll: し、同一方向から接点を駆動する方式がとられる。
sc, :[A&biased. 12.2. . □1.15□””
""""'''ll: A method is adopted in which the contacts are driven from the same direction.

しゃ断抵抗は一般には固定接触子側につけられるが、ス
ペースを充分に利用する場合、抵抗接点の操作棒を絶縁
物にして可動接点側につけられることもある。
The breaking resistor is generally attached to the fixed contact side, but if sufficient space is to be utilized, the operating rod of the resistive contact may be made an insulator and attached to the movable contact side.

主接点が閉の場合には主接点と抵抗接点の間の電位差は
生じない。しかし主接点がしゃ断し、抵抗接点へ電流が
転流すると抵抗C二電圧降下が生じ、主接点の固定接触
子側と抵抗接点の固定接触子側との間、あるいは主接点
の可動接触子側と抵抗接点の可動接触子側との間ζ=電
位差が生じることになる。
When the main contact is closed, there is no potential difference between the main contact and the resistive contact. However, when the main contact is cut off and the current is commutated to the resistance contact, a voltage drop occurs between the resistance C2 and the fixed contact side of the main contact and the fixed contact side of the resistance contact, or between the movable contact side of the main contact. A potential difference ζ=potential is generated between the movable contact side of the resistance contact and the movable contact side of the resistance contact.

このような、熱ガスにさらされた主接点と抵抗接点との
間の絶縁回復については、従来の試−法では検証するこ
とができず、新たな方法が必要となる。
Insulation recovery between the main contact and the resistive contact exposed to hot gas cannot be verified using conventional testing methods, and a new method is required.

また、バッファ式のガスしゃ断器では、操作機構の駆動
力を用いて、シリンダを動かし、ピストンとの相対運動
でガスを圧縮して高圧ガスを作物これを可動、固定電極
間に生じたアークに吹きつけて電流零点で消弧して、し
ゃ断する。この時ガスの吹き出し口はアークによって閉
率されるので、圧縮ガスの圧力は電流しゃ断の有無によ
って異なる。従がって、開極操作特性は電流しゃ断の有
無によって異なるととC二なる。一方、抵抗しゃ断方式
では抵抗接点としゃ断接点を同一の操作機構で駆動する
のが一般的な方法であるので、抵抗接点のしゃ断性能の
検証の場合C二も、主接点の電流しゃ断が必要となる。
In addition, in a buffer type gas breaker, the driving force of the operating mechanism is used to move the cylinder, and the gas is compressed by the relative movement with the piston, producing high-pressure gas. It is blown to extinguish the arc at the current zero point and shut off. At this time, the gas outlet is closed by an arc, so the pressure of the compressed gas varies depending on whether or not the current is interrupted. Therefore, the opening operation characteristics differ depending on whether or not current is interrupted. On the other hand, in the resistive cutoff method, the common method is to drive the resistive contact and the cutoff contact with the same operating mechanism, so when verifying the cutoff performance of the resistive contact, C2 also requires current cutoff of the main contact. Become.

本発明は、以上の点(二鑑みてなされたもので、抵抗接
点材のバッファ式ガスしゃ断器に対して、等個性の高い
短絡試験を行なうことができるようにした抵抗しゃ新形
バッファ式ガスしゃ断器の短絡しゃ断試験方法を提供す
ることを目的とする。
The present invention was made in view of the above two points, and the present invention has been made to provide a new type of resistance-contact buffer-type gas circuit breaker capable of conducting highly unique short-circuit tests on buffer-type gas circuit breakers using resistance contact materials. The purpose of this invention is to provide a short-circuit breaker test method.

本発明の構成を、第1図1−示すl実施例を本とに説明
する0短絡発電機1を投入器2、保饅しゃ断器3を介し
て3台の変圧器4.5.6の一次側に接続する。低圧の
電圧を発生する変圧器4の2次側には補助しゃ断器7を
介して供試しゃ断器8の一つの端子9aに接続し、しゃ
断器8の他端子9bを接地する。中圧の電圧を発生する
変圧器5の2次側は前記供試しゃ断器8の一つの端子9
aに接続し、更(=高圧の電圧を発生する変圧器6の2
次側は、絶縁架台toastobで絶縁支持された供試
しゃ断器8の接地タンク14に接続するものとする。
The configuration of the present invention will be explained with reference to the embodiment shown in FIG. Connect to the primary side. The secondary side of the transformer 4, which generates a low voltage, is connected to one terminal 9a of a test breaker 8 via an auxiliary breaker 7, and the other terminal 9b of the breaker 8 is grounded. The secondary side of the transformer 5 that generates medium voltage is connected to one terminal 9 of the test breaker 8.
connected to a, further (=transformer 6-2 which generates high voltage)
The next side shall be connected to the grounding tank 14 of the test breaker 8 which is insulated and supported by an insulating frame toastob.

供試しゃ断器8の端子9m、9bはそれぞれ絶縁物で接
地タンク14から絶縁され、2つの端子9a・9bの間
には、主接点13とこれに並列に抵抗12が抵抗接点1
1を介して接続されたしゃ断部が接続されてお秒、これ
らもタンク14から絶縁して収納されている。前記主接
点13は固定電極と可動電極を備えており、可動電極を
駆動する操作機構で可動電極の後方に設けられたバッフ
ァシリンダを駆動し、バッファシリンダに挿入されたバ
ッファピストンとの間でバッファ室のガス圧力を一ト昇
させ、この圧力ガスを電極間に発生したアークに吹付け
て消弧する構成とガっている。
The terminals 9m and 9b of the test circuit breaker 8 are each insulated from the grounding tank 14 with an insulator, and between the two terminals 9a and 9b, a main contact 13 and a resistor 12 are connected in parallel to the main contact 13.
These are also housed insulated from the tank 14. The main contact 13 includes a fixed electrode and a movable electrode, and an operation mechanism that drives the movable electrode drives a buffer cylinder provided behind the movable electrode, and a buffer piston inserted into the buffer cylinder is connected to the main contact 13. The structure is such that the gas pressure in the chamber is raised one step, and this pressurized gas is sprayed onto the arc generated between the electrodes to extinguish the arc.

次に本発明の作用1=つい:″CC説明。まず、保護し
ゃ断器3、補助しゃ断−7、供試しゃ断器8をすべ(閉
じた状絆で、役、:′大器2を投入すると1、  : 励磁された発電機1より;最もインピーダンスの小さい
低圧の嚢圧器4を介して、蝉絡電流が供試しゃ断器8の
主接点13に流れる。主接点13並びに主接点13と同
期して補助しゃ断器7を開極し、電流零点でしゃ断する
と、中圧の変圧器5より、抵抗12を介して抵抗接点1
1に電流が流れると共に、高圧の変圧器6より、タンク
14C;電圧が印加される。このとき、中圧の変圧器5
を含む短絡回路のりアクタンスは、しゃ断抵抗より充分
C:低い値にしておくと、抵抗接点11に所定の電流が
流れる。その後、抵抗接点11を開極して電流零点でし
ゃ断する。
Next, the effect of the present invention 1 = ``CC explanation. First, the protective breaker 3, the auxiliary breaker - 7, and the test breaker 8 are inserted (in a closed state, role, :' When the main breaker 2 is inserted, 1.: From the excited generator 1; the cicada fault current flows to the main contact 13 of the test breaker 8 through the low-pressure bladder pressure device 4 with the lowest impedance. When the auxiliary circuit breaker 7 is opened and cut off at the current zero point, the resistor contact 1 is connected from the medium voltage transformer 5 via the resistor 12.
A current flows through the tank 14C, and a voltage is applied from the high voltage transformer 6 to the tank 14C. At this time, medium voltage transformer 5
If the short-circuit actance including the resistance is set to a value sufficiently lower than the breaking resistance, a predetermined current will flow through the resistance contact 11. Thereafter, the resistance contact 11 is opened and cut off at the current zero point.

この実施例によれば、あらかじめ主接点13で定格しゃ
断電流をしゃ断した後、抵抗接点11のしゃ断をするの
で、開極特性についても実際と充分に等価な状態で抵抗
接点11のしゃ断試験かで負る。また、主接点13をし
ゃ断した後は、抵抗121−電流が流れるので電圧降下
が生じ抵抗接点11と主接点1′3の間の絶縁について
も、充分に検証することが・″できる。更C:高圧の変
圧器6から′j は、タンク14に□電圧を印加し、タンク14と課電部
との間に電位差と作ることができるので、タンク14と
課電部の間の絶縁についても、主接点13をしゃ断し九
後だけではなく抵抗接点11のしゃ断後についても模擬
することができ極めて有効である。
According to this embodiment, the resistor contact 11 is cut off after the rated cutoff current is cut off at the main contact 13, so that the cut-off test of the resistor contact 11 can be carried out with the opening characteristics fully equivalent to the actual state. incur In addition, after the main contact 13 is cut off, current flows through the resistor 121, resulting in a voltage drop, and the insulation between the resistive contact 11 and the main contact 1'3 can be sufficiently verified. :The high voltage transformer 6 to 'j can apply □ voltage to the tank 14 and create a potential difference between the tank 14 and the energized part, so the insulation between the tank 14 and the energized part can also be This is extremely effective because it can simulate not only what happens after the main contact 13 is cut off, but also what happens after the resistance contact 11 is cut off.

次に本発明の他の実施例について第2図を参−して説明
する。前述の実施例においては短絡電流を供給する短絡
発電機1を高圧の変圧@!#6に接続してこれよりタン
ク14に電圧を印加していた。
Next, another embodiment of the present invention will be described with reference to FIG. In the above-mentioned embodiment, the short-circuit generator 1 that supplies the short-circuit current is converted into a high-voltage transformer@! #6, and a voltage was applied to the tank 14 from this.

この実施例では、主コンデンサ18を、充電ユニット2
0であらかじめ充電しでおき、主接点13を流れる電流
あるいは抵抗接点11を流れる′電流を検出器21で検
出し、電流零点でパルス発生器22より信号を出してス
イッチ19を閉じてタンク14に主コンデンサlF3よ
り電圧を印加するものやある。しゃ断後の過渡回復電圧
を模擬するように、リアクトル17と抵抗15、波形調
整コンデンサ16で波形を調整する。
In this embodiment, the main capacitor 18 is connected to the charging unit 2.
The detector 21 detects the current flowing through the main contact 13 or the current flowing through the resistance contact 11, and at the current zero point, a signal is output from the pulse generator 22, the switch 19 is closed, and the tank 14 is charged. There are some that apply voltage from the main capacitor IF3. The waveform is adjusted by the reactor 17, resistor 15, and waveform adjustment capacitor 16 so as to simulate the transient recovery voltage after the cutoff.

この場合主接点13の電流の電流零点と、抵抗接点11
の電流の電流零点の両方でタンク14に電圧を印加する
必要があり試験としては複数である。しかしながら、前
述の実施例の場合、過渡同復電圧を変圧器から印加する
ことになるので、過渡回復電圧として印加し得る波形が
制限されることになる。これに対し、仁の実施例では波
形を自由に選択できるので利点がある。
In this case, the current zero point of the current of the main contact 13 and the resistance contact 11
It is necessary to apply a voltage to the tank 14 at both the current zero point of the current, and there are multiple tests. However, in the case of the above embodiment, the transient recovery voltage is applied from the transformer, so the waveform that can be applied as the transient recovery voltage is limited. In contrast, Jin's embodiment has the advantage of being able to freely select the waveform.

本発明□においては、主接点13、抵抗12、抵抗接点
11を同一のタンク14内に収納する場合について示し
たが、別々に収納する場合に本、主接点13と抵抗接点
11の間の電圧印加は必要なくなる。しかし同一の操作
機構で主接点13と抵抗接点11を駆動する限り、この
試験法が適用される。
In the present invention □, the main contact 13, the resistor 12, and the resistance contact 11 are housed in the same tank 14. However, when they are housed separately, the voltage between the main contact 13 and the resistance contact 11 is Application is no longer necessary. However, as long as the main contact 13 and the resistance contact 11 are driven by the same operating mechanism, this test method is applicable.

尚碍子型のしゃ断器については、タンク型のしゃ断器で
必要であったタンクと課電部との間の絶縁の検証は必要
なくなるので、第1図では変圧器6は不要で、第2図で
は主コンデンサ18#が不必要であるが、全体としては
同じ試験法が適用される。
Regarding insulator-type circuit breakers, there is no need to verify the insulation between the tank and the energized part, which was necessary for tank-type circuit breakers, so the transformer 6 in Figure 1 is not required, and Figure 2 In this case, main capacitor 18# is unnecessary, but the same overall test method is applied.

また、短絡発電機及びこれを投入及びしゃ断する投入器
2、保膿しゃ断器3#については1セツトで示したが複
数のセットで行なっても同様の効果である。また変圧器
C二ついても、変圧器を複数個用いてもよいし、また低
圧、高圧を一つの変圧器の3つのタップからとってもよ
い。
Further, although the short-circuit generator, the input device 2 for inputting and disconnecting the generator, and the purulent breaker 3# are shown as one set, the same effect can be achieved even if a plurality of sets are used. Moreover, two transformers C may be used, a plurality of transformers may be used, and low voltage and high voltage may be obtained from three taps of one transformer.

以上説明したように本発明は、抵抗しゃ断方式のバッフ
ァ式ガスしゃ断器の短絡しゃ断試験において、短絡発電
機を投入器、保膜しゃ断器を介して低圧及び中圧の電圧
を発生する2つの変圧器の1次に接続し、低圧変圧器は
補助しゃ断器を介して、供試しゃ断器の1方の端子に接
続し、中圧変圧器は直接供試しゃ断器の同じ端子に接続
し、史に供試しゃ断器の他端を接地することにより・、
主接点への短絡電流は低圧の変圧器から供給し、主接点
しゃ断と同時C二補助しゃ、断器をしゃ断して、中圧の
変圧器から、しゃ断抵抗を介して抵抗接点へ電流を供給
することC二なシ、主接点のアークによるノズル閉庵の
影響をうけ菟操作特性での試験が可能である。尚同−の
タンノ内に主接点、抵抗接点及び抵抗を収納する場合に
は、主接点と抵抗接点間の絶縁回復1:ついても充分検
証の可卯な試験が可能であると共に、更薯二高圧の変圧
器の1次を上記短絡発電機に接続したり、あらかじめ充
電され九コンデンサを用いて電流零点でスイッチを閉じ
ることにより、絶縁架台に設置されたタンクに電圧を印
加する仁とにより、接地タンク式のガスしゃ断器のタン
クと課電部の間の絶縁も検証することが可能で郷価性が
高く、実用性能の検証に有効な短絡しゃ断試験方法を提
供できる。
As explained above, in the short-circuit breaker test of a resistance-blocking type buffer type gas breaker, the present invention connects a short-circuit generator to two transformers that generate low and medium voltages through an injector and a membrane breaker. The low-voltage transformer is connected to one terminal of the test breaker through an auxiliary breaker, and the medium-voltage transformer is directly connected to the same terminal of the test breaker. By grounding the other end of the disconnector under test,
The short-circuit current to the main contact is supplied from the low-voltage transformer, and when the main contact is cut off, the C2 auxiliary cut-off is cut off, and the current is supplied from the medium-voltage transformer to the resistive contact via the cut-off resistor. Second, it is possible to test the operating characteristics under the influence of nozzle closure due to the arc of the main contact. In addition, if the main contact, resistance contact, and resistor are housed in the same tank, it is possible to conduct a test that can sufficiently verify the insulation recovery between the main contact and the resistance contact, and also to By connecting the primary of a high-voltage transformer to the short-circuit generator described above, or by applying voltage to a tank installed on an insulating pedestal, by closing a switch at the current zero point using a pre-charged nine capacitor, It is possible to verify the insulation between the tank and the energized part of a grounded tank-type gas circuit breaker, providing a highly cost-effective short-circuit breaker test method that is effective for verifying practical performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明1;よる異なる実施例の抵抗し
ゃ断方式のタンク型バッファ式ガスしゃ断器の短絡試験
回路を示す図である。 1・・・短絡発電機   2・・・投入器3・・・保饅
しゃ断器  4・・・低圧変圧器5・・・中圧変圧器 
  6・・・高圧変圧器7・・・補助しゃ断1y′器 
 8・・・供試しゃ断器゛、”・ 9a、9b・・一端子 :、    10a l l□
b、、、絶縁架台11・・・抵抗接点 :・:12・・
・抵抗□
FIGS. 1 and 2 are diagrams showing short-circuit test circuits for tank-type buffer type gas circuit breakers of resistance cutoff type according to different embodiments of the present invention. 1... Short-circuit generator 2... Injector 3... Safety breaker 4... Low voltage transformer 5... Medium voltage transformer
6...High voltage transformer 7...Auxiliary breaker 1y'
8... Test disconnector ゛, 9a, 9b... One terminal:, 10a l l□
b,,,Insulation stand 11...Resistance contact:...:12...
・Resistance□

Claims (3)

【特許請求の範囲】[Claims] (1)シゃ断抵抗を抵抗接点を介して主接点に並列に接
続して構成し、主接点は固定電極と可動電極とを具備し
、可−電極を駆動する一作機構で、可動電極の後方に設
けられたバッファシリンダを駆動する操作機構で、可動
電極の後方に設けられたパレファシリンダを駆動し、バ
ッフアシl) y lに挿入されたバッファピストンと
の間で、バッファシリンダ内のガス圧力を高めて電極間
に発生するアークC二圧カガスを吹付は消弧するバッフ
ァ式ガスし中断器の短絡しゃ断試験において、短絡発電
機の出力を、投入器及び保護しゃ断器を介して低圧及び
中圧の電圧を発生する少なくとも1台の変圧器の1次側
に接続し、前記変圧器の低−圧2次側を補助しゃ断器を
介して供試バッファ式ガスしゃ断器のミー導出端子C;
接続し、変圧器の中圧2次−は直接、前記−側導出端子
に接続し、更に供試バッファ式ガスしゃ断器の他側の導
出端子を接地して成り、主接点への短絡電流を変圧器の
低圧2次側から供給し、主接点しゃ断と同時に補助しゃ
断器をしゃ断して変圧器の中圧2次側からしゃ断抵抗を
介して電流を供給するようにした抵抗しゃ断形バッファ
式ガスしゃ断器の短絡しゃ断試験方法。
(1) A breaking resistor is connected in parallel to a main contact via a resistance contact, and the main contact is equipped with a fixed electrode and a movable electrode. The operation mechanism that drives the buffer cylinder installed at the rear drives the paraffer cylinder installed at the rear of the movable electrode, and the gas in the buffer cylinder is In the short-circuit breaker test, the output of the short-circuit generator is transferred to the low-pressure and Connect to the primary side of at least one transformer that generates medium voltage, and connect the low-voltage secondary side of the transformer to the me lead-out terminal C of the buffer type gas breaker under test via an auxiliary breaker. ;
The medium-voltage secondary of the transformer is directly connected to the negative side lead-out terminal, and the other side lead-out terminal of the test buffer type gas breaker is grounded to prevent short-circuit current to the main contact. Resistance cutoff type buffer type gas that is supplied from the low voltage secondary side of the transformer, cuts off the auxiliary breaker at the same time as the main contact is cut off, and supplies current from the medium voltage secondary side of the transformer via the cutoff resistor. Short-circuit breaker test method.
(2)絶線ガスを封入した接地タンク内にしゃ断抵抗“
を抵抗接点を介して主接点に並列に接続して構成し、主
接点は固定電極と可動電極とを具備し、可動電極を駆動
する操作機構で可動電極の後方に設けられた□バッフア
メリンダを駆動し、パックァシリツダ書−挿入されたバ
ッファピストンとの間でバッファシリンダ内のガス圧力
を高めて電極間に発生するアーク′に圧力ガスを吹付け
て消弧するバッファ式ガスしゃ断器の短絡しゃ断試験C
:おいて、前記接地タンクを絶縁物を介して支持し、短
絡発11機の出力を投入器及び保護しゃ断器を介して低
用、中圧及び高圧の電圧を発生する少なくとも1台の変
圧器の1次側に接続し、前記変圧器の低圧2次側を補助
しゃ断器を介して供試バッファ式ガスしゃ断器の一側の
導出端子に接続し、変圧器の中圧2次側は直接前記−側
基出端子に接続し、供試バッファ式ガスしゃ断器の他側
の導出端子を接地し、更C;前記変圧器の高圧2次側を
供試バッファ式ガスしゃ断器のタンクに接続して成り、
主接点への短絡電流を変圧器の低圧2次側から供給し、
主接点しゃ断後君=補助しゃ断器をしゃ断して変圧器の
中圧2次側からしゃ断抵抗を介して電流を供給するとと
もに変圧器の高圧2次側から前記供試バッファ式ガスし
ゃ断器のタンクに電圧を印加するようにした抵抗しゃ断
形バッファ式ガスしゃ断器の短絡しゃ断試験方法。
(2) A breaking resistance is installed in a grounded tank containing disconnection gas.
are connected in parallel to the main contact via a resistance contact, the main contact is equipped with a fixed electrode and a movable electrode, and the operating mechanism for driving the movable electrode is a □ buffer amelinda provided behind the movable electrode. Short-circuit breaker is a buffer-type gas breaker that drives the packer cylinder and the inserted buffer piston to increase the gas pressure in the buffer cylinder and extinguish the arc generated between the electrodes by blowing pressure gas. Exam C
: At least one transformer supporting the grounded tank through an insulator and generating low, medium and high voltages from the output of the 11 short-circuit generators through a closing device and a protective circuit breaker. The low-voltage secondary side of the transformer is connected to the lead-out terminal on one side of the test buffer type gas breaker via an auxiliary breaker, and the medium-voltage secondary side of the transformer is directly connected to the primary side of the transformer. Connect to the negative side base terminal, ground the other side lead-out terminal of the buffer type gas breaker under test, and connect the high voltage secondary side of the transformer to the tank of the buffer type gas breaker under test. And so,
The short circuit current to the main contacts is supplied from the low voltage secondary side of the transformer,
After the main contact is cut off = the auxiliary breaker is cut off and current is supplied from the medium voltage secondary side of the transformer via the breaker resistor, and at the same time from the high voltage secondary side of the transformer to the tank of the test buffer type gas breaker A short-circuit breaker test method for a resistance breaker type buffer type gas breaker in which a voltage is applied to the breaker.
(3)絶縁ガスを封入した。:)接地タンク内にしゃ断
、・1: 抵抗接点を介して主接点C;、1′並列1:接続して構
醪し、主接点は固定電極と可動電電とを具備し、可動電
、[1]・1゜ 極を駆動する操作機構で可動電極の後方C二股けられた
バッファシリンダを駆動し、バッファシリンダに挿入さ
れたバッファピストンとの間でバッファシリンダ内のガ
ス圧力を高めて電極間に発生するアークに圧力ガスを吹
付けて消弧するバッファ式ガスしゃ断器の短絡しゃ断試
験において、前記接地タンクを絶縁物を介して支持し、
短絡発電機の出力を投入器及び保護しゃ断器を介して低
圧。 及び中圧の電圧を発生する少なくとも1台の変圧器の1
次側に接続し、前記変圧器の低圧2次側を補助しゃ断器
を介して供試バッファ式ガスしゃ断器の一個の導出端子
に接続し、変圧器の中圧2次側は直接酌記−側導出端子
;二接続し、また供試バッファ式ガスしゃ断器の他側の
導出端子を接地して成り、主接点への短絡電流を変圧器
の低圧2次側から供給し、主接点しゃ断後に補助しゃ断
器をしゃ断して変圧器の中圧2次側からしゃ断抵抗を介
して電流を供給するとともに予め充電されたコンデンサ
から1:::i断電流の零点近傍で前記供試バッファ式
ガスv’、+断器のタンクに電圧を印加する11 ようにした抵抗しゃ断形バッファ式ガスしゃ断器の煙路
しゃ断試験方法。
(3) Filled with insulating gas. :) Breaking in the ground tank, ・1: Main contact C;, 1' Parallel 1: Connected and configured, the main contact is equipped with a fixed electrode and a movable electrode, and the movable electrode, [ 1] The operation mechanism that drives the 1° pole drives the buffer cylinder that is bifurcated at the rear of the movable electrode, and the gas pressure in the buffer cylinder is increased between the buffer piston inserted in the buffer cylinder and the gap between the electrodes is increased. In a short-circuit breaker test of a buffer type gas breaker that extinguishes an arc generated by blowing pressure gas, the grounded tank is supported via an insulator,
Short-circuit the output of the generator to low voltage through the input device and protective breaker. and at least one transformer generating medium voltage.
The low-voltage secondary side of the transformer is connected to one lead-out terminal of the test buffer type gas breaker through an auxiliary breaker, and the medium-voltage secondary side of the transformer is directly connected to the secondary side of the transformer. Side lead-out terminal: Two leads are connected, and the lead-out terminal on the other side of the test buffer type gas breaker is grounded.The short-circuit current to the main contact is supplied from the low-voltage secondary side of the transformer, and after the main contact is cut off, The auxiliary breaker is cut off, current is supplied from the medium-voltage secondary side of the transformer via the cutoff resistor, and the sample buffer type gas v 11 A flue duct cutoff test method for a resistance cutoff buffer type gas breaker in which a voltage is applied to the tank of the breaker.
JP57046219A 1982-03-25 1982-03-25 Testing of short-circuited interruption in resistance interruption buffer type gas breaker Pending JPS58165069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57046219A JPS58165069A (en) 1982-03-25 1982-03-25 Testing of short-circuited interruption in resistance interruption buffer type gas breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57046219A JPS58165069A (en) 1982-03-25 1982-03-25 Testing of short-circuited interruption in resistance interruption buffer type gas breaker

Publications (1)

Publication Number Publication Date
JPS58165069A true JPS58165069A (en) 1983-09-30

Family

ID=12740989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57046219A Pending JPS58165069A (en) 1982-03-25 1982-03-25 Testing of short-circuited interruption in resistance interruption buffer type gas breaker

Country Status (1)

Country Link
JP (1) JPS58165069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879987A (en) * 2020-07-16 2020-11-03 北京瑞赛长城航空测控技术有限公司 High-voltage-resistant isolated contact detection circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879987A (en) * 2020-07-16 2020-11-03 北京瑞赛长城航空测控技术有限公司 High-voltage-resistant isolated contact detection circuit
CN111879987B (en) * 2020-07-16 2023-10-20 北京瑞赛长城航空测控技术有限公司 High-voltage-resistant isolated contact detection circuit

Similar Documents

Publication Publication Date Title
CN102364655A (en) Dynamic voltage sharing device of multi-break vacuum circuit breaker and parameter selection method for dynamic voltage sharing device
CN102967826B (en) Test method for electric endurance of switching capacitor set beaker of extra-high voltage project
CN203151088U (en) Single-phase grounding fault isolation device
CN103592536B (en) The laboratory simulation test method of power network neutral point dynamic earth fault method controling parameters
CN102623984A (en) System for grounding neutral point in power grid through controllable reactor and resistor in combined manner
WO2018109889A1 (en) Testing apparatus for dc circuit breaker
Smeets et al. Capacitive current switching duties of high-voltage circuit breakers: Background and practice of new IEC requirements
Sheng Design consideration of Weil-Dobke synthetic testing circuit for the interrupting testing of HV AC circuit breakers
CN202197100U (en) Transformer neutral point grounding protection device
CN202535062U (en) System for grounding combination of neutral point and resistor via controllable reactance in electric power grid
Sheng A synthetic test circuit for current switching tests of HVDC circuit breakers
JPS58165069A (en) Testing of short-circuited interruption in resistance interruption buffer type gas breaker
JP2991266B2 (en) Gas circuit breaker
US3842225A (en) High voltage circuit breaker utilizing insertion of a fixed resistance during opening and closing
Pramana et al. Simulation Study of Circuit Breaker Failure on Extra High Voltage Reactor
JP3103262B2 (en) Circuit breaker test circuit for switchgear
Cox et al. The influence of resistance switching on the design of high-voltage air-blast circuit-breakers
JP3185541B2 (en) High voltage circuit breaker synthesis test equipment
Smeets et al. Development of synthetic test methods for high-voltage circuit breakers 145–1200 kV
Redlund et al. A new fast protective device for high voltage series capacitors
JPH05325746A (en) Method of testing short-circuit cut-off of reisistance cut-off type puffer gas circuit breaker
Tokoyoda et al. Development and testing of EHV DC circuit breaker with current injection
Smeets et al. Testing of 800 and 1200 kV class circuit breakers
Cox et al. The performance of high-voltage oil circuit-breakers incorporating resistance switching
Smeets et al. Realization of transient recovery voltages for ultra high voltage circuit breakers in testing