JPS5816468A - Cell active substance - Google Patents

Cell active substance

Info

Publication number
JPS5816468A
JPS5816468A JP56114847A JP11484781A JPS5816468A JP S5816468 A JPS5816468 A JP S5816468A JP 56114847 A JP56114847 A JP 56114847A JP 11484781 A JP11484781 A JP 11484781A JP S5816468 A JPS5816468 A JP S5816468A
Authority
JP
Japan
Prior art keywords
graphite
fluorine
active substance
cell
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56114847A
Other languages
Japanese (ja)
Inventor
Yasushi Kida
喜田 康
Hisaharu Nakano
久治 中野
Shiro Moroi
師井 史郎
Akira Sakagami
阪上 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP56114847A priority Critical patent/JPS5816468A/en
Publication of JPS5816468A publication Critical patent/JPS5816468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the discharge potential, specific capacity and the utilization of the cell and to reduce the cost, by employing the graphite fluoride shown by (C2F)n to be produced through the reaction between the artifitial graphite and the fluorine as the main component of the cell active substance. CONSTITUTION:The graphite fluoride shown by (C2F)n to be produced through the reaction between the artifitial graphite and the fluorine is employed as the main component of the cell active substance. Said cell active substance is employed as the positive pole of the cell while the alkali metal such as Li, alkali earth metal such as Mg, Ca or Al or Al alloy is employed for the cathode. Water system or non-water system electrolyte can be used. The cell thus composed has high specific volume and the utilization of the active substance per unit volume and the high discharge potential, while having the excellent flatness and the good storage life. While since the artifitial graphite is used, (C2F)n can be manufactured in short time with high yield resulting in the considerable reduction of cost.

Description

【発明の詳細な説明】 本発明は電池活物質に関するものであり、詳細には、本
発明は、黒鉛原料として人造黒鉛を用いて榎られる式(
C2F)nで表わされるフッ化黒鉛を主成分とする電池
活物質に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery active material, and in particular, the present invention relates to a battery active material using artificial graphite as a graphite raw material.
The present invention relates to a battery active material whose main component is fluorinated graphite represented by C2F)n.

従来、・炭素材料とフッ素から合成されるフッ化黒鉛(
以下“GF”と称す)として、(CF)nの構造を有す
るものが知られており、かかる(CF)n型GFはその
特異な諸性質から電池活物質、潤滑剤。
Conventionally, fluorinated graphite synthesized from carbon material and fluorine (
(hereinafter referred to as "GF") having a (CF)n structure is known, and such (CF)n-type GF is used as a battery active material and a lubricant due to its unique properties.

防濡剤、防汚剤、撥水撥油剤などとして広範な分野で工
業的に高く評価されている。特に電池の活物質としての
用途に用いた場合、放電による電圧低下が長時間にわた
っそみられず、しかも電池の保存性が良好で、高エネル
ギー密度の一次電池を与えることがよく知られている(
例えば、特公昭48−28867号公報参照)。しかし
ながら、(CF)n型GFの合成には、目的生成物であ
る(CF)nの生成温度と生成した(CF)nの分解温
度が近接しているため、収率が極めて低いという大きな
欠点があった。
It is highly valued industrially in a wide range of fields as a wet-proofing agent, antifouling agent, water and oil repellent, etc. In particular, when used as an active material in batteries, it is well known that there is no voltage drop due to discharge over a long period of time, the battery has good storage stability, and it provides a primary battery with high energy density. There is (
For example, see Japanese Patent Publication No. 48-28867). However, the major drawback of the synthesis of (CF)n-type GF is that the yield is extremely low because the production temperature of the target product (CF)n and the decomposition temperature of the produced (CF)n are close to each other. was there.

そこで、本発明者らは先に、新規な構造を有するGFと
して比較的安価に極めて高い収率で得られる(C2F)
n型GFの製造に成功した。この新規な(C2F)n型
GF及びその製造法については、特開昭53−1028
93号明細書や米国特許第4139474号明細書に詳
述されているが、黒鉛を100〜760++nHgのフ
ッ素圧下において300〜500℃で加熱することによ
って得られる。黒鉛としては天然黒鉛2人造黒鉛、キッ
シュ黒鉛、熱分解黒鉛など又はその混合物が使われる。
Therefore, the present inventors first investigated (C2F), which can be obtained at a relatively low cost and in extremely high yield as a GF with a novel structure.
We succeeded in manufacturing n-type GF. Regarding this new (C2F) n-type GF and its manufacturing method, please refer to JP-A-53-1028.
As detailed in No. 93 and US Pat. No. 4,139,474, graphite is obtained by heating graphite at 300 to 500° C. under a fluorine pressure of 100 to 760 ++ nHg. As the graphite, natural graphite, artificial graphite, Quiche graphite, pyrolytic graphite, etc., or a mixture thereof is used.

その構造は炭素原子が格子構造をなす層が眉間距離約9
.OXでに対し、1つおきに1個のフッ素と結合してい
る点に特徴がある。しかし、両者とも炭素六角網目平面
の末端基には2個以上のフッ素が結合したCF2. C
F5基が存在する。従って、黒鉛が完全にフッ素化され
た(02F)nおよび(CF)nのF/C比は、各々0
.5および1.0以上となり、その過剰フッ素量はGF
結晶のab軸方向の結晶子が小さくなる3832、19
79を参照)。また、(C2F)nには(CF)nには
認められない940 cm−’に特異な赤外線吸収を示
す。しかしながら、原料黒鉛が完全にフッ素化されて(
C2F)nを生成するに要する時間は、特に(02F)
nを高い選択率をもって得るために好ましいマイルドな
条件下では極めて長く、例えば200〜250 mta
h (Tyler)のマダがスカル産天然黒鉛を375
℃、フッ素圧200mtHgでフッ素と反応させた場合
、その生成には120時間もの長い時間を必要とする。
Its structure consists of a layer of carbon atoms forming a lattice structure with a distance between the eyebrows of about 9
.. Unlike OX, it is unique in that every other fluorine is bonded to one fluorine. However, in both cases, CF2. C
The F5 group is present. Therefore, the F/C ratios of (02F)n and (CF)n, in which graphite is fully fluorinated, are each 0
.. 5 and 1.0 or more, and the amount of excess fluorine is GF
Crystallites in the ab-axis direction of the crystal become smaller 3832, 19
79). Furthermore, (C2F)n exhibits a unique infrared absorption at 940 cm-', which is not observed in (CF)n. However, the raw material graphite is completely fluorinated (
The time required to generate C2F)n is especially (02F)
Under mild conditions favorable for obtaining n with high selectivity, it is extremely long, for example 200 to 250 mta
Mada of h (Tyler) made 375 natural graphite from Skull.
When it is reacted with fluorine at a temperature of 200 mtHg and a fluorine pressure of 200 mtHg, its generation requires as long as 120 hours.

一方、電池活物質としての用途については特開昭55−
28246号明細書に詳述されているが、(C2F)n
は(CF)nよりも高い放電電位を示し、また電導剤の
混入も(CF)nに対するよりも少量で済み、それだけ
電極中の(C2F)nの含有量を増大することが出来る
ため有利である。
On the other hand, regarding the use as a battery active material,
Although detailed in the specification of No. 28246, (C2F)n
It is advantageous because it shows a higher discharge potential than (CF)n, and the amount of conductive agent mixed in is smaller than that for (CF)n, and the content of (CF)n in the electrode can be increased accordingly. be.

本発明者らは種々の原料および反応条件で生成した(C
2F)nの電池特性について研究する過程でそれらの条
件によってその電池特性が著しく異なることを知見した
The present inventors produced (C
In the process of researching the battery characteristics of 2F)n, we found that the battery characteristics differ significantly depending on the conditions.

即ち、(C2F)n型QFの原料とじて人造黒鉛を使用
してそれをフッ素化して得られる(C/)nを電池活物
質として用いた時、高い放電電位、比容量。
That is, when (C/)n, which is obtained by using artificial graphite as a raw material for (C2F)n-type QF and fluorinating it, is used as a battery active material, it has a high discharge potential and specific capacity.

利用率を示すことを知見した。さらに驚くべきことに、
天然黒鉛、熱分解黒鉛を原料とした場合に比べ、人造黒
鉛の場合、黒鉛が完全にフッ素化されて(C2F)nを
生成するに要する時間が極めて短時間ですむことをも知
見した。例えば、天然黒鉛をフッ素圧760 llHg
 r 375℃で120時間反応させたとき(02F)
nを収率100%で得たが、一方、人造黒鉛(平均粒径
300μで、フランクリンP−値が0.07)で上記と
同一条件で反応させれば、同じ100”%の収率を得る
のに18時間で達成できる。上記した知見に基き、本発
明は完成されたものである。
We found that it shows the usage rate. Even more surprising,
It has also been found that in the case of artificial graphite, the time required for completely fluorinating graphite to generate (C2F)n is extremely short compared to when natural graphite or pyrolytic graphite is used as a raw material. For example, natural graphite has a fluorine pressure of 760 llHg.
r When reacted at 375°C for 120 hours (02F)
On the other hand, if artificial graphite (average particle size 300μ, Franklin P-value 0.07) was reacted under the same conditions as above, the same 100% yield could be obtained. It can be achieved in 18 hours.Based on the above findings, the present invention has been completed.

しかして、本発明の一つの目的は、電池活物質として用
いた場合、高い放電電位、比容量、利用率をもつ式(C
2F)nで表わされるGFを提供することにある。
Therefore, one object of the present invention is to provide a formula (C
2F) To provide a GF represented by n.

本発明の他の諸目的、諸特徴及び諸利益は以下に述べる
説明から明かになろう。
Other objects, features, and advantages of the present invention will become apparent from the description that follows.

即ち、基本的には、本発明によれば、黒鉛原料として人
造黒鉛を用い、フッ素と反応して得られる式(C2F)
nで表わされるフッ化黒鉛を主成分とする電池活物質が
提供される。本発明に用いる人造黒鉛はO〜0.4のフ
ランクリンP−値を有しているのが好ましい。又、本発
明電池活物質の更に好ましい態様は、人造黒鉛とフッ素
とを100〜760111Hgのフッ素圧下に300〜
500℃の反応温度で生成物の重量増加がなくなるまで
反応させることにより得られる式(02F)nで表わさ
れるフッ化黒鉛を主成分とし、その鉾比が0.55〜0
.8であることを特徴とするものである。反応温度の更
に好ましい範囲は300〜450℃である。
That is, basically, according to the present invention, the formula (C2F) obtained by using artificial graphite as a graphite raw material and reacting it with fluorine.
A battery active material containing fluorinated graphite represented by n as a main component is provided. The artificial graphite used in the present invention preferably has a Franklin P-value of 0 to 0.4. Further, in a more preferred embodiment of the battery active material of the present invention, artificial graphite and fluorine are mixed under a fluorine pressure of 100 to 760111 Hg to
The main component is fluorinated graphite expressed by the formula (02F)n obtained by reacting at a reaction temperature of 500°C until there is no increase in the weight of the product, and the ratio is 0.55 to 0.
.. It is characterized by being 8. A more preferable range of reaction temperature is 300 to 450°C.

本発明において、「人造黒鉛」とは、コークス類(石油
コークス、ピッチコークス等>、p−hピッチ或いは有
機高分子化合物を炭化処理して得た炭素材料を約2,0
00〜3,000℃に加熱することにより、不純物を揮
発させると共に黒鉛化して、無定形な炭素原子の集合を
規則正しい黒鉛の網平面上の配列にしたものを言う。
In the present invention, "artificial graphite" refers to a carbon material obtained by carbonizing coke (petroleum coke, pitch coke, etc.), ph pitch, or an organic polymer compound.
By heating to 00 to 3,000°C, impurities are volatilized and graphitized, and amorphous carbon atoms are arranged in a regular graphite network plane.

又、フランクリンP−値とは黒鉛の結晶化度すなわち黒
鉛化度を示すもので、次式より計算して得ることができ
る。
Further, the Franklin P-value indicates the degree of crystallinity of graphite, that is, the degree of graphitization, and can be obtained by calculating from the following formula.

d(oo2) =3.440 0.086(]−P2)
(式中、d(。。2)はX@回折で測定される面間隔(
d(。。2))であり、PはフランクリンP−値を示す
 ) 。  (R,E、  Franklins  A
cta  Cryst、  +  4  +235  
e(1951))。
d(oo2) =3.440 0.086(]-P2)
(where d(..2) is the interplanar spacing measured by X@diffraction (
d(..2)), where P indicates the Franklin P-value). (R,E, Franklins A
cta Cryst, +4 +235
e (1951)).

本来、人造黒鉛は天然黒鉛、熱分解黒鉛に比べ、結晶の
ab軸方向の結晶子が小さく、全炭素に対する末端に存
在する炭素の割合が多いためにフッ素と結合して多量の
CF2. CF3基が生成し、GF中のF含有率が高く
なる。このため、CF2 + CF5基の放電電位に及
ぼす影響が懸念され、電池活物質としては、人造黒鉛よ
り製造した(C2F)nは使用されていなかった。しか
しながら、本発明者らの研究によれば、ある特定のフラ
ンクリンP−値をもった人造黒鉛を原料に使用するなら
ば、これらの基はGFの放電電位にはほとんど影響を与
えず、逆に比容量を増大させることを見出した。即ち、
これらの人造黒鉛を用いて製造した(02F)nを主成
分とするGFは、天然黒鉛から製造したそれに比べて遥
かに秀れた安定した電池特性を与えるものである。
Originally, compared to natural graphite and pyrolytic graphite, artificial graphite has smaller crystallites in the ab-axis direction of the crystal, and because the proportion of carbon present at the terminals to the total carbon is high, it combines with fluorine and produces a large amount of CF2. CF3 groups are generated, and the F content in GF increases. For this reason, there is concern about the influence of the CF2 + CF5 group on the discharge potential, and (C2F)n produced from artificial graphite has not been used as a battery active material. However, according to the research of the present inventors, if artificial graphite with a certain Franklin P-value is used as a raw material, these groups have almost no effect on the discharge potential of GF, and on the contrary, It has been found that the specific capacity can be increased. That is,
GF containing (02F)n as a main component produced using these artificial graphites provides far superior and stable battery characteristics compared to those produced from natural graphite.

本発明による電池活物質として用いられる(C2F)n
の原料は、フランクリンP−値が0−0.4の人造黒鉛
が好ましい。P値が0.4以上であると、GF中に’(
CF)nの含有率が増し、放電電位が低下する。
(C2F)n used as a battery active material according to the present invention
The raw material is preferably artificial graphite having a Franklin P-value of 0 to 0.4. When the P value is 0.4 or more, '(
The content of CF)n increases and the discharge potential decreases.

また、天然黒鉛を用いると放電電位、比容量が低下する
Furthermore, when natural graphite is used, the discharge potential and specific capacity decrease.

人造黒鉛のフッ素化によって得られた(02F)nが通
常の天然黒鉛などをフッ素化したものよりも何故に放電
電位が高いかは明確ではないが、人造黒鉛の結晶のab
軸方向の結晶子が天然黒鉛や熱分解黒鉛の結晶子よりも
小さく、従って人造黒鉛をフッ素化して得られた(C2
F)nの結晶子も小さい。
It is not clear why (02F)n obtained by fluorinating artificial graphite has a higher discharge potential than that obtained by fluorinating ordinary natural graphite, but the ab
The crystallites in the axial direction are smaller than those of natural graphite and pyrolytic graphite, and therefore, it was obtained by fluorinating artificial graphite (C2
F) The crystallites of n are also small.

そのため、電気化学的表面積が大きくなり、またLl 
 イオンがGF層間内部へ容易に拡散するためと考えら
れる。
Therefore, the electrochemical surface area becomes large and Ll
This is thought to be because ions easily diffuse into the GF interlayer.

本発明による電池活物質として用いられる(C2F)n
のFバ比は0.55〜0.8である。嘘比が0,55以
下では未反応黒鉛が残り、比容量が著しく低下する。ま
た、0,8以上ではGF中に(CF’)nの含有率が高
くなってお9、放電電位は低下する。
(C2F)n used as a battery active material according to the present invention
The F ratio is 0.55 to 0.8. If the lie ratio is less than 0.55, unreacted graphite remains and the specific capacity decreases significantly. Further, when the ratio is 0.8 or more, the content of (CF')n in GF becomes high, 9 and the discharge potential decreases.

本発明による(C2F)nを主成分とするフッ化黒鉛は
反応終了後フッ素雰囲気下500〜600℃の温度で結
晶化したものも同様な優れた特性を持つ。
The fluorinated graphite containing (C2F)n as a main component according to the present invention, which is crystallized at a temperature of 500 to 600 DEG C. in a fluorine atmosphere after completion of the reaction, has similar excellent properties.

式(CF)nで表わされるGFを電池活物質として利用
するためには(C2F)nに所定量の電導剤として炭素
粉末と粘結剤として例えばフッ素樹脂、膨張化黒鉛を加
え、所定の形状に成形することによって簡単に得ること
ができる。
In order to use GF represented by the formula (CF)n as a battery active material, a predetermined amount of carbon powder as a conductive agent and a fluororesin or expanded graphite as a binder, for example, are added to (C2F)n to give it a predetermined shape. It can be easily obtained by molding it into

この(02F)nよりなる電池活物質を電池に用いる場
合、これを正極とし、負極にはリチウムなどの゛アルカ
リ金属、マグネシウム。
When this battery active material made of (02F)n is used in a battery, it is used as a positive electrode, and an alkali metal such as lithium or magnesium is used as a negative electrode.

カルシウムなどのアルカリ土類金属又はアルミニウムの
単独或いはこれらを主成分とする合金を有利に用いるこ
とができる。電解質としては、用いる負極の種類による
が、非水系のみならず水系のものも使うことができる。
Alkaline earth metals such as calcium or aluminum alone or alloys containing these as main components can be advantageously used. As the electrolyte, depending on the type of negative electrode used, not only non-aqueous electrolytes but also aqueous electrolytes can be used.

本発明による(C2F)nよりなる電池活物質を正極と
して用い、上記したような負極及び電解質を用いて構成
された電池は、活物質の単位体積当シの比□容量および
利用率が高く、放電電位も高くしかも平坦性に秀れ保存
寿命が良好であるという秀れた特性と共に、人造黒鉛を
用いたために原材料たる(C2F)nの製造が短時間で
しかも収率が高いために極めて安価に得ることができて
経済性の点でも極めて有利な高エネルギー密度の電池を
提供することができ、その工業的価値は極めて高い。
A battery constructed using the battery active material made of (C2F)n according to the present invention as a positive electrode, and the above-described negative electrode and electrolyte has a high capacity and utilization rate per unit volume of the active material, In addition to its excellent characteristics of high discharge potential, excellent flatness, and long shelf life, the raw material (C2F)n can be produced in a short time due to the use of artificial graphite and at a high yield, making it extremely inexpensive. It is possible to provide a battery with a high energy density that can be obtained in a short period of time and is extremely advantageous from the point of view of economic efficiency, and its industrial value is extremely high.

以下実施例により本発明を更に詳細に説明するが、本発
明の範囲は実施例に限定されるものではない。
The present invention will be explained in more detail below with reference to Examples, but the scope of the present invention is not limited to the Examples.

なお、GFの≠比はフッ素の測定方法で異るため、本発
明におけるF々比は次のフッ素の測定方法によって求め
た。
Note that since the GF ratio differs depending on the fluorine measurement method, the F ratio in the present invention was determined by the following fluorine measurement method.

白金ルッデにフッ化黒鉛100ダを精秤し、融剤(炭酸
カリウム、炭酸ナトリウム各2.5.9)と均一に混合
し、700〜750℃で溶融したのち、融成物を水で溶
解する。この一定量を分取し、PH3,4に調整し、ア
リゾリンレッドSを指示薬として用い標準硝酸トリウム
液で滴定する。滴定には自動光度滴定装置を用いた。炭
素は残りとする。
Precisely weigh 100 Da of fluorinated graphite in platinum Ludde, mix uniformly with flux (potassium carbonate, sodium carbonate each 2.5.9 kg), melt at 700-750°C, and then dissolve the melt in water. do. A certain amount of this is collected, adjusted to pH 3.4, and titrated with a standard thorium nitrate solution using Alizoline Red S as an indicator. An automatic photometric titrator was used for titration. Leave the carbon as the remainder.

文、利用率は、電極を放電した際に流れる電流をyアン
ペア、放電時間をt秒とすると、次式で求める。
The utilization rate is determined by the following formula, assuming that the current flowing when the electrode is discharged is y amperes and the discharge time is t seconds.

〔但し、Xは正極中に含まれるフッ素量■である〕実施
例1 (C2F)nを主成分とするフッ化黒鉛は、平均粒径3
00μの人造黒鉛(フラ′ンクリンP−値−007)を
フッ素圧760 xtnHg下にて380℃で18時間
反応させて得たものを用いた。
[However, X is the amount of fluorine contained in the positive electrode] Example 1 Fluorinated graphite whose main component is (C2F)n has an average particle size of 3
00μ artificial graphite (Franklin P value -007) was reacted at 380° C. for 18 hours under a fluorine pressure of 760×tnHg.

得られだフッ化黒鉛の賦化は0.73であったが、X線
回折図には・2θ= 10.1@にピークをもつ回折緩
かあり、また940crn−’に赤外線吸収會示し、(
C2F)型GFであることが証明された。
The enrichment of the obtained fluorinated graphite was 0.73, but the X-ray diffraction diagram showed a slight diffraction peak at 2θ = 10.1 @, and an infrared absorption peak at 940 crn-'. (
It was proved to be C2F) type GF.

また、このGFのフッ素含有量および真比重より計算し
た単位体積当りの比容量を表1に示す。
Further, Table 1 shows the specific capacity per unit volume calculated from the fluorine content and true specific gravity of this GF.

導電剤、粘結剤として膨張化黒鉛(東洋炭素製)を用い
て、(C2F)nと重量比1:1で混合し、約8800
 kl?/=2の圧で1分間圧縮し、直径10朋の被レ
ット状に成形したものを正極として愛別した。
Using expanded graphite (manufactured by Toyo Tanso Co., Ltd.) as a conductive agent and a binder, it was mixed with (C2F)n at a weight ratio of 1:1, resulting in approximately 8,800
kl? The mixture was compressed for 1 minute at a pressure of /=2 and formed into a pellet shape with a diameter of 10 mm, which was separated as a positive electrode.

負極はリチウムブロックから切り出したものをそのまま
用いた。電解質としては過塩素酸リチウム(LiClO
4)をl mol/l溶解させたプロピレンカーボネイ
ト溶液を用いた。これら電池構成要素をテフロン容器に
入れ、実験は全て30℃アルゴン雰囲気のドライデック
ス内で行なった。電極間距離は10闘であった。
The negative electrode was cut out from a lithium block and used as it was. As an electrolyte, lithium perchlorate (LiClO
A propylene carbonate solution in which l mol/l of 4) was dissolved was used. These battery components were placed in a Teflon container, and all experiments were conducted in Drydex at 30° C. in an argon atmosphere. The distance between the electrodes was 10 mm.

本電池の20にΩ定抵抗負荷における放電特性を第1図
(4)に示す。
The discharge characteristics of this battery under a constant resistance load of 20Ω are shown in FIG. 1 (4).

実施例2 (C2F)nを主成分とするフッ化黒鉛は、平均粒径1
0μの人造黒鉛(フランクリンP−値=0.35)をフ
ッ緊圧760mmH%下にて360℃で18時間反応さ
せて得だものを用いた。
Example 2 Fluorinated graphite whose main component is (C2F)n has an average particle size of 1
The product obtained by reacting 0 μm artificial graphite (Franklin P-value = 0.35) at 360° C. for 18 hours under a vacuum pressure of 760 mmH% was used.

得られたGFのF/C比は0.76であったが、X線回
折図には2θ−10,4°に−一りをもつ回折線があり
、また、940ern−1′に赤外線吸収を示し、(C
2F)型GFであることが証明された。測定は実施例1
と同様である。
The F/C ratio of the obtained GF was 0.76, but the X-ray diffraction diagram had a -1 diffraction line at 2θ-10 and 4°, and there was an infrared absorption line at 940 ern-1'. and (C
2F) type GF. Measurement is in Example 1
It is similar to

本電池の20にΩ定抵抗負荷における放電特性を第1図
(B)に示す。またこのGFの比容量を表1に示す。
The discharge characteristics of this battery under a constant resistance load of 20Ω are shown in FIG. 1(B). Further, the specific capacity of this GF is shown in Table 1.

比較例1 フッ化黒鉛は平均粒径10μの天然黒鉛(フランクリン
P−値=1)をフッ素工760m1+Hg下にて380
℃で300時間反応せて得たものを用いた。
Comparative Example 1 Fluorinated graphite is natural graphite with an average particle size of 10 μm (Franklin P-value = 1) under a fluorine process of 760 m1 + Hg.
The one obtained by reacting at ℃ for 300 hours was used.

得られたCFのF/C比は0.63であったが、X線回
折図には2θ−10,0°にピークをもつ回折線がちり
、また9 40 cm−’に赤外線吸収を示し、(C2
F)型GFであることが証明された。測定は実施例1と
同様である。放電特性を第1図(Qに示す。
The F/C ratio of the obtained CF was 0.63, but the X-ray diffraction diagram had a few diffraction lines with a peak at 2θ-10.0° and also showed infrared absorption at 940 cm-'. , (C2
F) type GF was proven. The measurements were the same as in Example 1. The discharge characteristics are shown in Figure 1 (Q).

またこのGFの比容量を表1に示す。Further, the specific capacity of this GF is shown in Table 1.

比較例2 フッ化黒鉛は平均粒径15μの石油コークス(フランク
リンP−値=1.0.O)をフッ素工760mmHg下
にて280°Cで200時間反応せて得たものを用いた
Comparative Example 2 Fluorinated graphite was obtained by reacting petroleum coke with an average particle size of 15 μm (Franklin P-value = 1.0.0) at 280° C. for 200 hours under a fluorine process of 760 mmHg.

得られたGFの嘘比は1.03であり、X線回折図には
1,2θ=12.2°にピークをもつ回折線があり、9
40 cm−、’には赤外線吸収はなく、(CF)n型
GFであることが証明された。測定は実施例1と同様で
ある。放電特性を第1図(D)に示す。またこのGFの
比容量を表1に示す。
The lie ratio of the obtained GF was 1.03, and the X-ray diffraction diagram had a diffraction line with a peak at 1,2θ=12.2°, and 9
There was no infrared absorption at 40 cm-,', proving that it was a (CF)n-type GF. The measurements were the same as in Example 1. The discharge characteristics are shown in FIG. 1(D). Further, the specific capacity of this GF is shown in Table 1.

比較例3 フッ化黒鉛は平均粒径40μの人造黒鉛(フランクリン
P−値=0.51)をフッ素圧760 mm Hg下に
て360℃で300時間反応せて得たものを用いた。
Comparative Example 3 Fluorinated graphite was obtained by reacting artificial graphite (Franklin P-value = 0.51) with an average particle size of 40 μm at 360° C. for 300 hours under a fluorine pressure of 760 mm Hg.

得られたGFの嘘比は0.82であり、X線回折図には
2θ=124°にピークをもつ回折線があり、940c
rn−1には小さな赤外線吸収を示しくCF\と(C2
F)nの混合物であるを考えられる。測定は実流側1と
同様である。放電特性を第2図(匂に示す。
The lie ratio of the obtained GF was 0.82, and the X-ray diffraction diagram had a diffraction line with a peak at 2θ = 124°, with a peak of 940c.
rn-1 shows small infrared absorption, and CF\ and (C2
F) is considered to be a mixture of n. The measurement is the same as on the actual flow side 1. The discharge characteristics are shown in Figure 2.

比較例4 フッ化黒鉛は平均粒径40μの人造黒鉛(フランクリン
P−値=0.14)をフッ素圧760mmHg下にて3
60℃で2時間反応させて得たものを用いた。
Comparative Example 4 Fluorinated graphite is artificial graphite (Franklin P-value = 0.14) with an average particle size of 40 μm under a fluorine pressure of 760 mmHg.
The product obtained by reacting at 60°C for 2 hours was used.

得られたGFの賦化はo4.gであり、X線回折図には
2θ=11.2°にピークをもつ回折線があり、940
 cm−’ には赤外線吸収を示し、(C2F)n型G
Fであることが証明された。ただし、未反応黒鉛もX線
回折図において検出された。測定は実施例1と同様であ
る。放電特性を第2図(乃に示す。
The obtained GF enrichment was o4. g, and the X-ray diffraction diagram has a diffraction line with a peak at 2θ = 11.2°, 940
cm-' shows infrared absorption, (C2F)n-type G
It was proven that F. However, unreacted graphite was also detected in the X-ray diffraction pattern. The measurements were the same as in Example 1. The discharge characteristics are shown in Figure 2.

比較例5 フッ化黒鉛は平均粒径10μの人造黒鉛(フランクリン
P−値=0.07)をフッ緊圧760顛Hg下にて51
0℃で2時間反応させて得たものを用いた。
Comparative Example 5 Fluorinated graphite is artificial graphite (Franklin P-value = 0.07) with an average particle size of 10 μm under a pressure of 760 Hg.
The product obtained by reacting at 0°C for 2 hours was used.

得られたGFのF/C比は0.87であり、X線回折図
には2θ−13,1’にピークをもつ回折線があり、9
40crn−1には小さな赤外線吸収を示し、測定は実
施例1と同様である。
The F/C ratio of the obtained GF was 0.87, and the X-ray diffraction diagram had a diffraction line with a peak at 2θ-13,1'.
40crn-1 shows small infrared absorption, and the measurement is the same as in Example 1.

放電特性を第2図(G)に示す。The discharge characteristics are shown in FIG. 2 (G).

表1から明かなように、電池活物質として使用した場合
、(C2F)nは(CF)nと比較して放電電位が高い
という特命があるが、フッ素含有量が小さいため比容量
は(CF)nよシ劣る。しかし人造黒鉛から生成した(
C2F)nを主成分とするA、Bの比容量は天然黒鉛か
ら生成したものCと比べ数段に向上しくCF)nのそれ
Dに匹敵するほどになる。
As is clear from Table 1, when used as a battery active material, (CF)n has a special characteristic of having a higher discharge potential than (CF)n, but due to its small fluorine content, the specific capacity is )n is inferior. However, it was produced from artificial graphite (
The specific capacitance of A and B containing C2F)n as a main component is much improved compared to C produced from natural graphite, and is comparable to that of D of CF)n.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、種々のフッ化黒鉛を電池活物質に
用いた場合の利用率と放電電位との関係曲線を示す。
FIGS. 1 and 2 show relationship curves between utilization factor and discharge potential when various fluorinated graphites are used as battery active materials.

Claims (4)

【特許請求の範囲】[Claims] (1)  黒鉛原料として人造黒鉛を用い、フッ素と反
応して得られる式(02F)nで表わされるフッ化黒鉛
を主成分とする電池活物質。
(1) A battery active material whose main component is fluorinated graphite expressed by the formula (02F)n obtained by reacting artificial graphite as a graphite raw material with fluorine.
(2)該人造黒鉛のフランクリンpH:O〜0.4であ
ることを特徴とする特許請求の範囲第1項請求の電池活
物質。
(2) The battery active material according to claim 1, wherein the artificial graphite has a Franklin pH of 0 to 0.4.
(3)  人造黒鉛とフッ素とを100〜760朋Hg
のフッ素圧下に300〜500 ’Cの反応温度で生成
物の重量増加がなくなるまで反応させることにより得ら
れる式(CF)nで表わされるフッ化黒鉛を主成分とし
、そのF/C比が0.55〜0.8であることを特徴と
する特許請求の範囲第1項又は第2項請求の電池活物質
(3) Artificial graphite and fluorine at 100 to 760 Hg
The main component is fluorinated graphite represented by the formula (CF)n, which is obtained by reacting at a reaction temperature of 300 to 500'C under a fluorine pressure of .55 to 0.8, the battery active material according to claim 1 or claim 2.
(4)該反応温度が300〜450 ℃である特許請求
の範囲第3項請求の電池活物質。
(4) The battery active material according to claim 3, wherein the reaction temperature is 300 to 450°C.
JP56114847A 1981-07-22 1981-07-22 Cell active substance Pending JPS5816468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56114847A JPS5816468A (en) 1981-07-22 1981-07-22 Cell active substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56114847A JPS5816468A (en) 1981-07-22 1981-07-22 Cell active substance

Publications (1)

Publication Number Publication Date
JPS5816468A true JPS5816468A (en) 1983-01-31

Family

ID=14648191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56114847A Pending JPS5816468A (en) 1981-07-22 1981-07-22 Cell active substance

Country Status (1)

Country Link
JP (1) JPS5816468A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128657A (en) * 1982-01-26 1983-08-01 Matsushita Electric Ind Co Ltd Battery
JPS5987763A (en) * 1982-11-10 1984-05-21 Daikin Ind Ltd Active material for battery
JPS59228362A (en) * 1983-06-09 1984-12-21 Daikin Ind Ltd Battery active material
JPS6028169A (en) * 1983-07-22 1985-02-13 Daikin Ind Ltd Active material of battery
JPS6095856A (en) * 1983-10-28 1985-05-29 Daikin Ind Ltd Active material for battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528246A (en) * 1978-08-21 1980-02-28 Oyo Kagaku Kenkyusho Active material for battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528246A (en) * 1978-08-21 1980-02-28 Oyo Kagaku Kenkyusho Active material for battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128657A (en) * 1982-01-26 1983-08-01 Matsushita Electric Ind Co Ltd Battery
JPS5987763A (en) * 1982-11-10 1984-05-21 Daikin Ind Ltd Active material for battery
JPH0221099B2 (en) * 1982-11-10 1990-05-11 Daikin Ind Ltd
JPS59228362A (en) * 1983-06-09 1984-12-21 Daikin Ind Ltd Battery active material
JPH0251220B2 (en) * 1983-06-09 1990-11-06 Daikin Ind Ltd
JPS6028169A (en) * 1983-07-22 1985-02-13 Daikin Ind Ltd Active material of battery
JPS6095856A (en) * 1983-10-28 1985-05-29 Daikin Ind Ltd Active material for battery

Similar Documents

Publication Publication Date Title
US4753786A (en) Method for producing graphite fluoride
EP2061115B1 (en) Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same
US3907597A (en) Nonaqueous cell having an electrolyte containing sulfolane or an alkyl-substituted derivative thereof
US4247608A (en) Electrolytic cell of high voltage
US8057769B2 (en) Method for making phosphate-based electrode active materials
JP2009064730A (en) Magnesium ion containing nonaqueous electrolyte, manufacturing method thereof, and electrochemical device
JP2006302590A (en) Manufacturing method of electrolyte for lithium ion battery and battery using it
TW554562B (en) Nonaqueous electrolytic secondary battery and method of manufacturing the same
CN110518192B (en) Active material for fluoride ion secondary battery and fluoride ion secondary battery using same
WO2015046124A1 (en) Vanadium solid-salt battery
CN102420328A (en) Positive electrode active material for lithium primary cell
CN103081184B (en) It is used for the metal imido compound of the lithium battery with high storage capacity and galvanic element as anode material
JPS5816468A (en) Cell active substance
US5156933A (en) Method of manufacturing manganese dioxide
US9564633B2 (en) Hybrid silicon and carbon clathrates
JP4747505B2 (en) Non-aqueous electrolyte battery
KR102423392B1 (en) High power electrode materials
JP5056823B2 (en) Lithium iron phosphate and secondary battery using the same
US20230039527A1 (en) Cathode and electrolyte chemistry for scalable zinc ion battery
US6322927B1 (en) Vanadate cathode active material and method of making same
JP2006236889A (en) Nonaqueous electrolyte primary battery
EP4048636A1 (en) Lmo cathode compositions
JP2908822B2 (en) Electrode
KR20170014784A (en) Negative active material for electrochemical device
JPS6231962A (en) Secondary battery