JPS58163498A - Thickener for sewage sludge - Google Patents

Thickener for sewage sludge

Info

Publication number
JPS58163498A
JPS58163498A JP57044554A JP4455482A JPS58163498A JP S58163498 A JPS58163498 A JP S58163498A JP 57044554 A JP57044554 A JP 57044554A JP 4455482 A JP4455482 A JP 4455482A JP S58163498 A JPS58163498 A JP S58163498A
Authority
JP
Japan
Prior art keywords
sewage sludge
heating
unit
gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57044554A
Other languages
Japanese (ja)
Other versions
JPS601079B2 (en
Inventor
Yasuo Hirose
広瀬 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP57044554A priority Critical patent/JPS601079B2/en
Priority to US06/415,963 priority patent/US4507127A/en
Priority to DE19823238163 priority patent/DE3238163A1/en
Priority to FR8221215A priority patent/FR2518525B1/en
Publication of JPS58163498A publication Critical patent/JPS58163498A/en
Priority to US06/689,210 priority patent/US4583470A/en
Priority to US06/689,105 priority patent/US4585463A/en
Publication of JPS601079B2 publication Critical patent/JPS601079B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently concentrate sewage sludge having a high water-retaining ratio, by providing a few heating-dehydrating units at a pipe for supplying sewage sludge provided at the central part, and providing a jacket chamber having a heat-transmitting wall at one side of the supply passage to each of the heating-dehydrating units. CONSTITUTION:Pressure in the jacket chamber 43-3 of the third unit u3 can be made equal to that in the jacket chamber 45-2 of the second unit u2 to hold negative pressure at 0.5kg/cm<2> and the temp. of evaporation at about 80 deg.C. Pressure in the jacket chamber 43-2 of the second unit u2 can be made equal to that in the jacket chamber 45-1 of the first unit u1 to hold negative pressure at 0.2kg/ cm<2> and the temp. of evaporation at about 60 deg.C. Pressure in the jacket chamber 43-1 of the first unit u1 can be made at 0.1kg/cm<2>, so that the temp. of evaporation can be hold at about 40 deg.C. Accordingly, the water-retaining ratio of supplied sewage sludge can be lowered from 80% to a value below 60%.

Description

【発明の詳細な説明】 下水汚泥を処理しようとするとき、そのはじめの工程に
おいて水分を除去することは重要である。下水汚泥は機
械的処理で水分率80チ乃至60%まで濃縮することが
できるが、さらに下水汚泥を加熱しその水分を蒸発させ
て水分率60チ乃至50%まで濃縮させればその後の処
理を非常に容易にかつ円滑に行うことができる。
DETAILED DESCRIPTION OF THE INVENTION When treating sewage sludge, it is important to remove water in the first step. Sewage sludge can be concentrated to a moisture content of 80% to 60% by mechanical treatment, but if the sewage sludge is further heated to evaporate the water and concentrated to a moisture content of 60% to 50%, subsequent treatment can be performed. It can be done very easily and smoothly.

本発明は水分率が80チ程度の比較的高水分率の下水汚
泥の処理に有効な濃縮装置に関する。
The present invention relates to a concentrating device that is effective in treating sewage sludge with a relatively high moisture content of about 80 inches.

本発明者はさきに第1図に示す下水汚泥の焼却装置を開
発している。また本発明者はさきに第1図の下水汚泥の
焼却装置の加熱器3の代シに使用する第2図、第3図に
示す加熱脱水器の開発をしている。
The present inventor has previously developed a sewage sludge incinerator shown in FIG. The present inventor has also previously developed a heating dehydrator shown in FIGS. 2 and 3, which is used in place of the heater 3 of the sewage sludge incinerator shown in FIG.

本発明は第1図の下水汚泥の焼却装置に使用する下水汚
泥の濃縮装置であり、第2図、第3図に示す下水汚泥の
加熱脱水器をさらに改良した下水汚泥の加熱脱水ユニッ
ト数基を直列に連ねて使用するものであるから、本発明
の説明に先立って、先づ、第1図の下水汚泥の焼却装置
と第2図、第3図の加熱脱水器について説明する。
The present invention is a sewage sludge thickening device used in the sewage sludge incinerator shown in FIG. 1, and the heating dehydrator shown in FIGS. 2 and 3 will be explained before explaining the present invention.

本発明は下水汚泥の加熱脱水ユニット2基乃至4基を、
すなわち複数基を下水汚泥の供給路に直列に配設し、最
初のユニットが最も低圧に最後のユニットは最も高圧に
して前後連絡させて使用することによって、ますます高
濃度に下水汚泥を濃縮することを可能にしたものである
The present invention uses two to four heating dehydration units for sewage sludge,
In other words, by arranging multiple units in series in the sewage sludge supply path, with the first unit at the lowest pressure and the last unit at the highest pressure and connected back and forth, the sewage sludge is concentrated to an increasingly high concentration. This is what made it possible.

第1図において、ホラ・ぐ−1内の水分率カ約80%で
ある下水汚泥は送給手段2によって下水汚泥加熱器3を
通って加熱され、昇温されて流動砂床を有する下水汚泥
乾燥炉4へ供給される。該乾燥炉は砂層の下方スペース
から200℃乃至400℃に加熱した乾燥用気体分の必
要量が供給され、この気体分は砂層を流動させ、従って
供給された下水汚泥はこの流動砂床によって粉砕されな
がら乾燥される。該乾燥炉4で生成された生成物は送風
機11によって吸引され、分離手段5によって固体分と
気体分とに分けられる。固体分は該分離手段5の下方に
設けたホッパー内に落され、該ホラ・ぐ−底部に設けた
粉体供給手段6によって恒量づつ下水汚泥燃焼炉1へ供
給される。第1図にはこの燃焼炉は不完全燃焼炉Tと完
全燃焼炉T′とよりなる2段燃焼方式が示されているが
、かように2段燃焼にすることによってNo、、発生量
を大巾に低減させることができる。これらの燃焼に必要
な空気は送風機13によって先づ完全燃焼炉γ′の外−
に設けた空気予熱器14内を通って予熱された後按分さ
れて不完全燃焼炉Tと完全燃焼炉1′へ供給される。完
全燃焼炉7′の生成物は送風機10によって吸引される
が、熱交換器8を通シフイルター9を通シ、送風機10
によって排煙される。また前記分離手段5によって分離
された気体分は送風機11によって加圧され、循環配管
12によって循環され、該循環路に前記熱交換器8が設
けられていて該熱交換器によって200℃乃至400℃
に昇温される。該熱交換器8によって昇温される気体分
の量は乾燥炉4へ乾燥用として供給された気体分量Aと
該乾燥炉4内において供給された下水汚泥から生成され
た気体分量Bとの合計量でアリ、これら合計量のうちA
とはソ同量の気体分量が再び必要な乾燥用気体分量とし
て乾燥炉4へ供給され、残のBとは譬同量の気体分量は
加熱用気体分として加熱器3へ供給される。該加熱器3
を通り下水汚泥を加熱した後の気体分はドレン分離手琢
15を通り該ドレン分離手段によってドレンを系外へ排
出した後に気体分供給管16によって燃焼炉1へ供給さ
れる。乾燥炉4によって生成された下水汚泥加熱器はそ
のほとんどが水蒸気であって、該加熱器を通すことによ
って水蒸気をドレンとして系外へ排出した残シの気体分
が燃焼炉へ供給され、従って燃焼炉における水煮気分を
減少させることができるのがこの焼却システムの特徴で
ある。
In Fig. 1, sewage sludge with a moisture content of about 80% in a hollow tank 1 is heated by a feeding means 2 through a sewage sludge heater 3, and the temperature is raised to form a sewage sludge having a fluidized sand bed. It is supplied to the drying oven 4. The drying furnace is supplied with the required amount of drying gas heated to 200°C to 400°C from the space below the sand bed, and this gas fluidizes the sand bed, so that the supplied sewage sludge is pulverized by this fluidized sand bed. It is dried while being washed. The product produced in the drying oven 4 is sucked by a blower 11 and separated into a solid component and a gas component by a separating means 5. The solids are dropped into a hopper provided below the separation means 5, and are supplied in constant amounts to the sewage sludge combustion furnace 1 by a powder supply means 6 provided at the bottom of the conch. Figure 1 shows that this combustion furnace has a two-stage combustion system consisting of an incomplete combustion furnace T and a complete combustion furnace T'. It can be significantly reduced. The air necessary for these combustions is first delivered to the outside of the complete combustion furnace γ' by a blower 13.
After being preheated through an air preheater 14 provided in the air preheater 14, the air is divided and supplied to the incomplete combustion furnace T and the complete combustion furnace 1'. The products of the complete combustion furnace 7' are sucked in by a blower 10, passed through a heat exchanger 8, passed through a filter 9, and then passed through a blower 10.
Smoke is removed by Further, the gas separated by the separation means 5 is pressurized by a blower 11 and circulated by a circulation pipe 12, and the heat exchanger 8 is provided in the circulation path, and the temperature is increased from 200°C to 400°C by the heat exchanger.
The temperature is raised to The amount of gas heated by the heat exchanger 8 is the sum of the amount A of gas supplied to the drying furnace 4 for drying and the amount B of gas generated from the sewage sludge supplied in the drying furnace 4. Quantity is ant, A of these total amounts
The same amount of gas as B is again supplied to the drying oven 4 as a necessary drying gas amount, and the remaining gas amount, which is exactly the same as B, is supplied to the heater 3 as a heating gas amount. The heater 3
The gas after heating the sewage sludge passes through the drain separation means 15 and is discharged from the system by the drain separation means, and then is supplied to the combustion furnace 1 through the gas supply pipe 16. Most of the sewage sludge generated by the drying furnace 4 is steam, and by passing the water vapor through the heater and draining it out of the system, the residual gas is supplied to the combustion furnace, so that it is combusted. A feature of this incineration system is that it can reduce the amount of boiling water in the furnace.

この下水汚泥の焼却装置は比較的水分率が高率である下
水汚泥あるいは乾燥下水汚泥固体分のカロリーが350
0 Kcal1kg以下の低カロリーの下水汚泥の焼却
に好適であって、その焼却のだめの燃料の補給をほとん
どなくして自己の持つカロリーだけによって円滑に焼却
を果すことができる焼却システムであ諷。
This sewage sludge incinerator has 350 calories from sewage sludge with a relatively high moisture content or dried sewage sludge solids.
It is an incineration system that is suitable for incinerating low-calorie sewage sludge with 0 Kcal or less of 1 kg, and can perform incineration smoothly using only its own calories, almost eliminating the need to replenish the incineration tank with fuel.

しかしながら、燃焼炉T内へ供給される水分量は、さら
に少ないことが望ましいので、加熱器3に代えて下水汚
泥が含有している水分をできるだけ系外へ排出すること
ができる機能の加熱脱水器の採用が研究された。
However, it is desirable that the amount of water supplied into the combustion furnace T be even smaller, so instead of the heater 3, a heating dehydrator with a function that can discharge as much of the water contained in the sewage sludge as possible out of the system. The adoption of was studied.

第2図、第3図は本発明者が巣1図における下水汚泥の
加熱器の代りにすでに採用した加熱脱水器である。
Figures 2 and 3 show a heating dehydrator which the present inventor has already adopted in place of the sewage sludge heater in Figure 1.

第2図、第3図の加熱脱水器は、下水汚泥供給路21の
上部と下部とに通気性多孔壁22.23を設け、これら
多孔壁の外側にそれぞれ外套室24.25を設け、加熱
用気体分供給管26に切替弁27を設け、該切替弁2T
の下流の一方の分岐管28は一方の外套室24に、他方
の分岐管29は他方の外套室25にそれぞれ連通させる
。また外套室24の排出管30と外套室25の排出管3
1はいづれも切替弁32に連通され、該切替弁32より
下流の排出管33にバキウムデンプ34を設け、前記2
つの切替弁27.32は一定時間の間隔で連動して切替
が行なわれる構造−にする。
In the heating dehydrator shown in FIGS. 2 and 3, air permeable porous walls 22, 23 are provided at the upper and lower parts of the sewage sludge supply channel 21, and mantle chambers 24, 25 are provided outside these porous walls, respectively, and heating is performed. A switching valve 27 is provided in the gas supply pipe 26, and the switching valve 2T
One downstream branch pipe 28 communicates with one mantle chamber 24 , and the other branch pipe 29 communicates with the other mantle room 25 . Also, the discharge pipe 30 of the mantle chamber 24 and the discharge pipe 3 of the mantle chamber 25
1 are all communicated with a switching valve 32, and a bachium starch 34 is provided in a discharge pipe 33 downstream of the switching valve 32, and
The two switching valves 27 and 32 have a structure in which switching is performed in conjunction with each other at regular intervals.

この下水汚泥の加熱脱水器は切替弁27と32が一定時
間の間隔で連動して切替られるため、加熱用気体はパキ
ウムポンゾ34によって吸引されてまづいづれか1つの
外套室に入り、下水汚泥の供給管21を横断していづれ
か他の外套室に入シ、排出管33パキウムポンプ34、
ドレン分離手段15を通り、ドレンを分離した後の可燃
気体分が供給管16によって燃焼炉Tへ供給される。
In this sewage sludge heating dehydrator, the switching valves 27 and 32 are switched in conjunction with each other at regular intervals, so that the heating gas is sucked by the pachyumponzo 34 and first enters one of the mantle chambers to supply sewage sludge. Cross the pipe 21 and enter any other mantle chamber, discharge pipe 33, pachium pump 34,
After passing through the drain separation means 15 and separating the drain, the combustible gas component is supplied to the combustion furnace T through a supply pipe 16.

しかしながら、この加熱脱水器は連動する2つの切替弁
27.32を必要とし、かつ加熱用気体分を直接下水汚
泥中に吹込む方式である。
However, this heating dehydrator requires two interlocking switching valves 27 and 32, and is of a type in which the heating gas is blown directly into the sewage sludge.

第4図、第5図は、切替弁を使角せず下水( 汚泥は熱伝導金属板をへだてて間接加熱される方式の加
熱脱水ユニットを示す。本発明はこれら加熱脱水ユニッ
ト数基を使用するが、先づ該加熱脱水ユニットについて
説明する。
Figures 4 and 5 show a heating dehydration unit in which sewage (sludge) is indirectly heated by passing through a heat conductive metal plate without using a switching valve.The present invention uses several of these heating dehydration units. First, however, the heating dehydration unit will be explained.

41は下水汚泥の供給路である。第4図において下水汚
泥は矢印で示すごとく左から右へ進行し、左方にはたと
えばスクリウ式押出機のごとく下水汚泥を強制的に送シ
出す送給手段2を有し、右方に流動砂床を有する下水汚
泥の乾燥炉4を有する。°この下水汚泥供給路41の一
側壁にたとえば金属板など熱伝導壁42を設け、他側壁
にたとえば直径2μ乃至100μの通気孔を有する金網
あるいは焼結金属製の通気性多孔壁43を設ける。これ
ら壁42.43を介してそれぞれ外套室44.45を設
ける。該熱伝導壁42を有する外套室44に加熱用気体
分供給管46を連結し、高温の加熱用気体分を供給する
。また該外套室41#に排出管47を設け、該排出管4
7にドレン分離手段15を設け、該ドレン分離手段によ
って若干冷却された気体分からドレンを除去、した残シ
の気体分を下水汚泥気体分供給管16によって燃焼炉7
へ供給する。また通気性多孔壁43を有する外套室45
に吸引管49を設け、該吸引管49に冷却手段50とド
レン分離手段5 Jを設け、該吸引管49で吸引した気
体分からドレンを除去した後の気体分も下水汚泥気体分
供給管16によって搬送する。
41 is a sewage sludge supply route. In Fig. 4, the sewage sludge advances from left to right as shown by the arrow, and there is a feeding means 2 on the left side, such as a screw type extruder, for forcibly discharging the sewage sludge, and the sewage sludge flows on the right side. It has a sewage sludge drying furnace 4 having a sand bed. A heat conducting wall 42 such as a metal plate is provided on one side wall of this sewage sludge supply channel 41, and an air permeable porous wall 43 made of wire mesh or sintered metal having ventilation holes with a diameter of 2 μm to 100 μm is provided on the other side wall. A mantle chamber 44,45 is provided through each of these walls 42,43. A heating gas supply pipe 46 is connected to the mantle chamber 44 having the heat conduction wall 42 to supply high temperature heating gas. Further, a discharge pipe 47 is provided in the mantle chamber 41#, and the discharge pipe 4
7 is provided with a drain separation means 15, and the drain separation means removes the drain from the slightly cooled gas, and the residual gas is sent to the combustion furnace 7 through a sewage sludge gas supply pipe 16.
supply to The mantle chamber 45 also has a permeable porous wall 43.
A suction pipe 49 is provided in the suction pipe 49, a cooling means 50 and a drain separation means 5J are provided in the suction pipe 49, and the gas after drain is removed from the gas suctioned by the suction pipe 49 is also supplied to the sewage sludge gas supply pipe 16. transport.

この加熱脱水ユニットは、金属製熱伝導板を介した間接
加熱方式である。
This heating dehydration unit uses an indirect heating method via a metal heat conductive plate.

本発明の下水汚泥の濃縮装置をその実施例を示す第6図
によ2て説明する。
The sewage sludge thickening apparatus of the present invention will be explained with reference to FIG. 6, which shows an embodiment thereof.

第6図において、中央に下水汚泥の供給路41を設は該
供給路41に直列に3基の前記の加熱脱水ユニットU1
、U2、U3を連らねて設ける。それぞれの加熱脱水ユ
ニットは供給路41の一側に熱伝導壁4.2を有する外
套室44を設けて該外套室に加熱用気体供給管46と排
出管47を設け、供給路41の他側に通気性多孔壁43
を有する外套室45を設けて該外套室に蒸発下水汚泥か
ら生じた蒸発気体を吸引する吸引管49を設けた構造の
ものである。本発明の濃縮装置においては、中央の下水
汚泥の供給路41に対し上記構造の加熱脱水ユニットU
を2個乃至4個程度すなわち複数個設けるのであるが、
第6図にあっては3個設けている。そして第1加熱脱水
ユ二ツ)ulの蒸発気体の吸引管49−1に冷却手段5
0とドレン分離手段51を設けている。また各加熱脱水
ユニットの排出管47.47′・・・にそれぞれドレン
分離手段15.15’・・・を設け、かようにドレン分
離手段15.15′・・・によってドレンを系外に抽出
した残の気体分は下水汚泥気体分供給管16によって気
体燃料としてしかるべき所へ、たとえば燃焼炉7へ送ら
れる。第1番目の加熱脱水ユニットUlの加熱用気体供
給管46−1は第2ユニツ)u2の蒸発気体の吸引管4
9−2と連結し、第2ユニツトu2の加熱用気体供給管
46−2は第3ユニツ)usの蒸発気体の吸引管49−
3と連結する。そして一番最後のユニットである第3ユ
ニツトu3の加熱用気体供給管46−3に高圧高温であ
る加熱用気体供給管と連結させる。
In FIG. 6, a sewage sludge supply channel 41 is provided in the center, and three heating dehydration units U1 are connected in series to the supply channel 41.
, U2, and U3 are provided in series. Each heating dehydration unit is provided with a jacket chamber 44 having a heat conductive wall 4.2 on one side of the supply path 41, a heating gas supply pipe 46 and a discharge pipe 47 in the jacket chamber, and a heating gas supply pipe 46 and a discharge pipe 47 on the other side of the supply path 41. Breathable porous wall 43
It has a structure in which a mantle chamber 45 is provided, and a suction pipe 49 is provided in the mantle chamber to suck in the evaporated gas generated from the evaporated sewage sludge. In the thickening device of the present invention, the heating dehydration unit U having the above structure is connected to the central sewage sludge supply path 41.
About 2 to 4 of them are provided, that is, a plurality of them.
In FIG. 6, three are provided. Then, the cooling means 5 is connected to the suction pipe 49-1 of the evaporated gas of the first heating dehydration unit
0 and drain separation means 51 are provided. In addition, drain separation means 15.15'... are provided in the discharge pipes 47, 47'... of each heating dehydration unit, and the drain is extracted from the system by the drain separation means 15.15'... The remaining gas is sent as gaseous fuel to an appropriate location, for example, to the combustion furnace 7, through the sewage sludge gas supply pipe 16. The heating gas supply pipe 46-1 of the first heating dehydration unit Ul is the suction pipe 4 of the evaporated gas of the second unit U2.
9-2, the heating gas supply pipe 46-2 of the second unit U2 is connected to the evaporation gas suction pipe 49-2 of the third unit U2.
Connect with 3. Then, the heating gas supply pipe 46-3 of the third unit u3, which is the last unit, is connected to a high pressure and high temperature heating gas supply pipe.

第6図に示す濃縮装置において第3ユニツトに加熱用と
して送られる気体分は第1図における送風機11によっ
て水柱1200乃至1500+mに加圧され熱交換器8
によって250℃程度に昇温されている。イ3ユニット
u3の外套室43−3の圧力は第2ユニツトu2の外套
室45−2の゛圧力と等しく負圧0.5#/dで従って
蒸発温度は80℃程度にすることができる。第2二二ツ
)u2の外套室43−2の圧力は第1ユニツトulの外
套室45−1の圧力と等しく負圧0.2却/crIで従
って蒸発温度は60℃程度にすることができる。第1ユ
ニツ)ulの外套室43−1の圧力は0.1Af/71
177!にすることができ蒸発温度を40℃程度にする
ことができる。
In the concentrator shown in FIG. 6, the gas sent to the third unit for heating is pressurized to a water column of 1200 to 1500+m by the blower 11 shown in FIG.
The temperature is raised to about 250°C. The pressure in the jacket chamber 43-3 of the third unit u3 is equal to the pressure in the jacket chamber 45-2 of the second unit u2, which is a negative pressure of 0.5 #/d, and therefore the evaporation temperature can be set to about 80°C. 2nd 2nd) The pressure in the mantle chamber 43-2 of u2 is equal to the pressure in the mantle room 45-1 of the first unit ul, which is a negative pressure of 0.2 mol/crI, so the evaporation temperature can be set to about 60°C. can. 1st unit) The pressure in the mantle chamber 43-1 of ul is 0.1Af/71
177! The evaporation temperature can be set to about 40°C.

本発明の下水汚泥の濃縮装置は、加熱脱水ユニットを多
段にすることによって、たとえば、供給された下水汚泥
の水分率が80チであったのを本濃縮装置を通った後に
おける下水汚泥の水分率を60−以下にすることができ
る。すなわち供給された下水汚泥の量が100 Ton
で水分率が80チであれば供給時における下水汚泥の組
成は固形分量は20Ton。
The sewage sludge thickening device of the present invention has a multi-stage heating dehydration unit, so that, for example, when the moisture content of the supplied sewage sludge is 80%, the water content of the sewage sludge after passing through the present thickening device is The ratio can be made 60- or less. In other words, the amount of sewage sludge supplied is 100 tons.
If the moisture content is 80 tons, the composition of sewage sludge at the time of supply has a solid content of 20 tons.

水分量は80 Tonである。この濃縮装置を通った結
果水分率60チとなるということは、固形分20 To
n水分30 Tonの組成にすることで、50Tonの
水分がこの濃縮装置によって除去されている。かように
本濃縮装置は高度の濃縮を果すことができ、下水汚泥の
処理工程の初期においてかように高度の濃縮を果してお
けば後工程の処理量も50 Tonと少くなり、かつ水
分率も60%であるから円滑に処理をすることができ、
単に下水汚泥の焼却が容易になるだけでなく下水汚泥か
ら種々の資源の回収を図ることができる。
The water content is 80 tons. As a result of passing through this concentrator, the moisture content is 60 cm, which means that the solid content is 20 To
By setting the composition to 30 tons of water, 50 tons of water is removed by this concentrator. In this way, this concentrator can achieve a high degree of concentration, and if such a high degree of concentration is achieved at the beginning of the sewage sludge treatment process, the amount to be processed in the subsequent process will be reduced to 50 tons, and the moisture content will also be reduced. Since it is 60%, it can be processed smoothly,
This not only makes it easier to incinerate sewage sludge, but also allows recovery of various resources from sewage sludge.

第7図は本発明者が本濃縮装置について業火な実験を重
ねた結果まとめた本下水汚泥濃縮装置の効果を示したグ
ラフである。
FIG. 7 is a graph showing the effects of the present sewage sludge thickening device, which the inventor has compiled as a result of repeated experiments with the present thickening device.

第7図のグラフについて説明をすれば、下のグラフにお
いて縦軸は本濃縮装置に供給される下水汚泥の水分率を
示し、横軸は本濃縮装置から排出される下水汚泥の水分
率を示し、4本のカーブはそれぞれ設置した加熱脱水ユ
ニットの数によって濃縮程度が異ることを示している。
To explain the graph in Figure 7, in the graph below, the vertical axis shows the moisture content of sewage sludge supplied to this thickening device, and the horizontal axis shows the water percentage of sewage sludge discharged from this thickening device. , the four curves each indicate that the degree of concentration differs depending on the number of heating dehydration units installed.

たとえば供給された下水汚泥が水分率801%であって
、ユニット数が3段である場合、この濃縮装置から排出
される下水汚泥の水分率を57チにすることができる。
For example, if the supplied sewage sludge has a moisture content of 801% and the number of units is three, the moisture content of the sewage sludge discharged from this thickening device can be 57%.

上のグラフは縦軸に下水汚泥の処理において熱資源とし
て回収される乾燥下水汚泥固体分のパーセントが示され
ている。また4本のカーブは乾燥下水汚泥固体分の持つ
カロリーがそれぞれ5000 Kcalから2000 
KeaJと高カロリーである場合と低カロリーである場
合に熱資源の回収率がどのように異なるかを示している
。たとえば加熱脱水ユニットを3段にして濃縮装置から
排出される下水汚泥の水分率を57チとした場合、この
下水汚泥の乾燥固体分の持つカロリーが3000 Kc
al/#であればこの固体分の熱資源としての回収率は
06であって使用される下水汚泥の乾燥固体分が持つカ
ロリーの40%量で上記濃縮を行うことができる。すな
わち毎日水分率80チの下水汚泥100 Tonを処理
する場合そしてこの下水汚泥の乾燥固体分のカロリーが
3000 KcaA!/#であれば100 Tpnの下
水汚泥の固体分は20 Tonであるからそのうちの8
 Tonが濃縮処理に使用され12 Ton分すなわち
3600万Kcal  を熱資源として回収することが
できる。
In the above graph, the vertical axis shows the percentage of dry sewage sludge solids that is recovered as a heat resource in the treatment of sewage sludge. In addition, the four curves indicate that the calorie content of dried sewage sludge solids ranges from 5,000 Kcal to 2,000 Kcal.
It shows how the recovery rate of heat resources differs between KeaJ and high calorie and low calorie cases. For example, if the water content of sewage sludge discharged from a thickening device is set to 57 cm using a three-stage heating dewatering unit, the calorie content of the dry solid content of this sewage sludge is 3000 Kc.
If it is al/#, the recovery rate of this solid content as a heat resource is 06, and the above concentration can be performed with 40% of the calories of the dry solid content of the sewage sludge used. That is, when 100 tons of sewage sludge with a moisture content of 80 inches is treated every day, the calorie content of the dry solid content of this sewage sludge is 3000 KcaA! /#, the solid content of sewage sludge of 100 Tpn is 20 Ton, so 8 of it is
Ton is used in the concentration process, and 12 Ton, or 36 million Kcal, can be recovered as heat resources.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明者がさきに開発した下水汚泥の焼却装置
の説明図である。第2図、第3図は本発明者がさきに開
発した下水汚泥の加熱脱水器の側断面図と■−■断面図
である。 第4図、第5図は本発明の濃縮装置に使用する下水汚泥
の加熱脱水ユニットの側断面図とv−■断面図である。 第6図は本発明に係る下水汚泥の濃縮装置の説明図であ
る。第7図は本発明の下水汚泥の濃縮装置の効果を示し
0゛     たグラフである。 41は下水汚泥供給路、42は熱伝導壁、43は通気性
多孔壁、44.45は外套室、46は加熱用気体供給管
、4Tは排出管、。 15はドレン分離手段、16は下水汚泥気体分供給管、
49は吸引管、50は冷却手段、51はドレン分離手段
& 代理人 大越善彦、−
FIG. 1 is an explanatory diagram of a sewage sludge incinerator previously developed by the present inventor. FIGS. 2 and 3 are a side sectional view and a sectional view taken along the line 1--2 of a sewage sludge heating dehydrator previously developed by the present inventor. FIGS. 4 and 5 are a side sectional view and a sectional view taken along the line V--2 of a sewage sludge heating dehydration unit used in the thickening apparatus of the present invention. FIG. 6 is an explanatory diagram of a sewage sludge thickening apparatus according to the present invention. FIG. 7 is a graph showing the effect of the sewage sludge thickening apparatus of the present invention. 41 is a sewage sludge supply channel, 42 is a heat conduction wall, 43 is a permeable porous wall, 44.45 is a mantle chamber, 46 is a heating gas supply pipe, and 4T is a discharge pipe. 15 is a drain separation means, 16 is a sewage sludge gas supply pipe,
49 is a suction pipe, 50 is a cooling means, 51 is a drain separation means & agent Yoshihiko Okoshi, -

Claims (1)

【特許請求の範囲】[Claims] 中央に下水汚泥の供給路41を設け、該供給路41に直
列にして数基の加熱脱水ユニットu1  u2・・・を
設け、それぞれの加熱脱水ユニットは、供給路41の一
側に熱伝導壁42を有する外套室44を設け、該外套室
44に加熱用気体供給管46と排出管47を設け、供給
路41の他側に通気性多孔壁43を有する外套室45を
設け、該外套室45に蒸発気体の吸引管49を設けた構
造にし、第1加熱脱水ユニツ)U+の蒸発気体の吸引管
49−1に冷却手段50とドレン分離手段51を設け、
各加熱脱水ユニットの排出管47.47’・・・にそれ
ぞれドレン分離手段15.15′・・・を設け、これら
ドレン分離手段でドレンを分離した気体分は下水汚泥気
体分供給管16によって気体燃料として搬送されるよう
にし、第に番目の加熱脱水ユニツ)Ukの加熱用気体供
給管46−にはその次のユニットである第に+1番目の
加熱脱水ユニットUk+1の蒸発気体の吸引管49=に
+tと連結し、一番最後のユニットである第n番目の加
熱脱水ユニツ)Unの加熱用気体供給管46−nに加熱
用気体供給管を連結させた下水汚泥の濃縮装置。
A sewage sludge supply channel 41 is provided in the center, and several heating dehydration units u1, u2, etc. are provided in series with the supply channel 41, and each heating dehydration unit has a heat conductive wall on one side of the supply channel 41. 42, a heating gas supply pipe 46 and a discharge pipe 47 are provided in the mantle room 44, a mantle room 45 having an air permeable porous wall 43 is provided on the other side of the supply path 41, and the mantle room 44 is provided with a heating gas supply pipe 46 and a discharge pipe 47. 45 is provided with an evaporated gas suction pipe 49, and the evaporated gas suction pipe 49-1 of the first heating dehydration unit) U+ is provided with a cooling means 50 and a drain separation means 51,
Drain separation means 15, 15'... are provided in the discharge pipes 47, 47'... of each heating dehydration unit, and the gas separated from the drain by these drain separation means is converted into gas by the sewage sludge gas supply pipe 16. The heating gas supply pipe 46- of the 1st heating and dehydrating unit Uk is connected to the suction pipe 49 of the evaporated gas of the 1st heating and dehydrating unit Uk+1, which is the next unit. A sewage sludge concentrating device in which a heating gas supply pipe is connected to a heating gas supply pipe 46-n of the n-th heating dehydration unit (un) which is the last unit.
JP57044554A 1981-12-21 1982-03-23 Sewage sludge thickening equipment Expired JPS601079B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57044554A JPS601079B2 (en) 1982-03-23 1982-03-23 Sewage sludge thickening equipment
US06/415,963 US4507127A (en) 1981-12-21 1982-09-08 System for recovering resources from sludge
DE19823238163 DE3238163A1 (en) 1981-12-21 1982-10-14 SYSTEM FOR RECOVERING RAW MATERIAL FROM SLUDGE
FR8221215A FR2518525B1 (en) 1981-12-21 1982-12-17 DEVICE FOR RECOVERING PRODUCTS AND ENERGY FROM SLUDGE
US06/689,210 US4583470A (en) 1981-12-21 1985-01-07 Ash disposer for system to recover resources from sludge
US06/689,105 US4585463A (en) 1981-12-21 1985-01-07 Concentrator and feeder of sludge for system to recover resources from sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044554A JPS601079B2 (en) 1982-03-23 1982-03-23 Sewage sludge thickening equipment

Publications (2)

Publication Number Publication Date
JPS58163498A true JPS58163498A (en) 1983-09-28
JPS601079B2 JPS601079B2 (en) 1985-01-11

Family

ID=12694715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044554A Expired JPS601079B2 (en) 1981-12-21 1982-03-23 Sewage sludge thickening equipment

Country Status (1)

Country Link
JP (1) JPS601079B2 (en)

Also Published As

Publication number Publication date
JPS601079B2 (en) 1985-01-11

Similar Documents

Publication Publication Date Title
US4583470A (en) Ash disposer for system to recover resources from sludge
US3946495A (en) Method and apparatus for drying moisture-containing solids particularly domestic refuse and sludge cakes
US1895284A (en) Direct heated vertical retort
US3638708A (en) Methods of multiple stage evaporation from heat sources other than steam
JP4445147B2 (en) Sludge treatment method and apparatus
CN103058490B (en) Multi-stage inner circulating fluidized bed sludge drying and fluidized bed incinerating device and method
BE1008464A3 (en) Method and apparatus for processing waste with power kalorisch.
US4120644A (en) Apparatus for regeneration of spent active carbon
JP4445148B2 (en) Sludge treatment method and apparatus
Mininni et al. A design model of sewage sludge incineration plants with energy recovery
AU659317B2 (en) Process of drying water-containing solids in a fluidized bed
JPS601077B2 (en) Sewage sludge evaporative concentrator
KR101565312B1 (en) Apparatus for Drying Sludge of High Efficiency Using Reheater Steam
US4374092A (en) System for electrically heating and regenerating spent activated carbon
US8939676B2 (en) Ammonia stripper
JPH11116966A (en) Heat treatment equipment of waste containing high water content
US5616216A (en) Process and device for treating waste by direct contact
US4455282A (en) Electric furnace for continously heating and regenerating spent activated carbon
SU1695091A1 (en) Fuel drying and combustion plant
JPS58163498A (en) Thickener for sewage sludge
US3580193A (en) Heat treated waste sludge disposal
HU196574B (en) Equipment for producing phosphorus pentoxide by using reaction heat
US5685709A (en) Apparatus for heat treatment of lime sludge
US2121662A (en) Incineration of sewage sludge and other waste materials
JP3905700B2 (en) Method and apparatus for manufacturing ground improvement material