JPS5816342B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS5816342B2
JPS5816342B2 JP51150205A JP15020576A JPS5816342B2 JP S5816342 B2 JPS5816342 B2 JP S5816342B2 JP 51150205 A JP51150205 A JP 51150205A JP 15020576 A JP15020576 A JP 15020576A JP S5816342 B2 JPS5816342 B2 JP S5816342B2
Authority
JP
Japan
Prior art keywords
type
transistor
insulating film
layers
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51150205A
Other languages
Japanese (ja)
Other versions
JPS5373982A (en
Inventor
野口英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51150205A priority Critical patent/JPS5816342B2/en
Priority to US05/859,872 priority patent/US4143390A/en
Publication of JPS5373982A publication Critical patent/JPS5373982A/en
Publication of JPS5816342B2 publication Critical patent/JPS5816342B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/1778Structural details for adapting physical parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明はMO8型電界効果トランジスタ(以下単KMO
8)ランジスタという)を用いて論理ゲート回路、RO
M、デコーダ等を構成するための半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an MO8 type field effect transistor (hereinafter simply KMO).
8) Logic gate circuit, RO using transistors)
The present invention relates to a semiconductor device for configuring a decoder and the like.

第1図ないし第3図は従来のシリコンゲートE/D(エ
ンハンスメント/テフレツション)MOS)ランジスタ
を用いたマスクROMの構成を示すもので、第1図は同
ROMを構成する集積回路の一部パターン平面図、第2
図は第1図の■−■線に沿う断面図、第3図は第1図の
等価回路図である。
Figures 1 to 3 show the configuration of a mask ROM using a conventional silicon gate E/D (enhancement/teflation) transistor. Figure 1 shows a partial pattern of an integrated circuit that constitutes the ROM. Floor plan, 2nd
The figure is a sectional view taken along the line ■--■ in FIG. 1, and FIG. 3 is an equivalent circuit diagram of FIG. 1.

図中■1〜■4は多結晶シリコンよりなる入力ライン(
駆動線)、0□はアルミニウムよりなる出力ライン(読
出し線)である。
In the figure, ■1 to ■4 are input lines made of polycrystalline silicon (
0□ is an output line (readout line) made of aluminum.

また1はP型シリコン基板、2,3,4はN十型ソース
層、5.6はN十型ドレイン層、7はSiO2よりなる
ゲート絶縁膜、8は5i02よりなる厚い絶縁膜、9は
PSGよりなる絶縁膜、1o、iiは出力ライン0□
とドレイン層6を接続するためのコンタクト孔である。
Further, 1 is a P-type silicon substrate, 2, 3, and 4 are N0 type source layers, 5.6 is an N0 type drain layer, 7 is a gate insulating film made of SiO2, 8 is a thick insulating film made of 5i02, and 9 is a Insulating film made of PSG, 1o and ii are output lines 0□
This is a contact hole for connecting the drain layer 6 and the drain layer 6.

即ち第1図、第2図の構成は、第3図に示される如くエ
ンハンスメント型トランジスタT1〜T4の各ドレイン
を出力ライン01 とアース間に並列接続し、出力ラ
イン01 をデプレッション型負荷MO8)ランジスタ
12を介して電源VDD に接続してなるノア回路を形
成している。
That is, in the configuration of FIGS. 1 and 2, as shown in FIG. 3, the drains of enhancement type transistors T1 to T4 are connected in parallel between the output line 01 and the ground, and the output line 01 is connected to the depletion type load MO8). 12 to form a NOR circuit connected to the power supply VDD.

そしてトランジスタT3は厚い絶縁膜8によりゲート閾
値電圧が高く、動作不能になっている。
The transistor T3 has a high gate threshold voltage due to the thick insulating film 8, and is rendered inoperable.

しかしながら上記構成でなるマスクROMは、出力ライ
ン01にトランジスタT、 、 T2. T4を接続す
るためにコンタクト孔10,11が必要であり、このた
めアルミよりなる出カライン010段切れ、コンタクト
不良がしばしば発生し、またチップ占有面積の増大の原
因となっていた。
However, the mask ROM having the above configuration has transistors T, , T2 . Contact holes 10 and 11 are required to connect T4, which often causes breakage of the output line 010 made of aluminum and contact failure, and also causes an increase in the area occupied by the chip.

ところで現在は、ROMの大容量化が進んでおり、歩留
等の向上を目ざすためには、上記コンタクト孔10.1
1をなくして配線の段切れ、コンタクト不良をなくすと
共に、チップ面積の縮小化を(まかる必要があり、従っ
て第1図ないし第3図の構成を根本的に変える必要があ
る。
By the way, at present, the capacity of ROM is increasing, and in order to improve the yield etc., the contact hole 10.1 is
1 to eliminate wiring breaks and contact failures, as well as to reduce the chip area. Therefore, it is necessary to fundamentally change the configurations shown in FIGS. 1 to 3.

本発明は上記実情に鑑みてなされたもので、一対のデプ
レッション型MO8)ランジスタのチャネル領域ヲエン
ハンスメント型MOSトランジスタのソース及びドレイ
ンとして兼用することにより、チップ占有面積が縮小化
できると共に、前記各デプレッション型MOSトランジ
スタとエンハンスメント型MO8)ランジスタとの間の
コンタクト孔を省略でき、しかも前記ROM等に組込ん
だ場合には該ROM等のパターン構成を簡素化できて、
この点でもROM等のチップ面積の縮小化が可能な半導
体装置を提供しようとするものである。
The present invention has been made in view of the above circumstances, and by using the channel regions of a pair of depletion type MOS transistors as the source and drain of an enhancement type MOS transistor, the chip area can be reduced, and It is possible to omit the contact hole between the type MOS transistor and the enhancement type MO8) transistor, and when it is incorporated into the ROM etc., the pattern configuration of the ROM etc. can be simplified,
In this respect as well, the present invention aims to provide a semiconductor device in which the chip area of a ROM or the like can be reduced.

以下図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図は本発明の半導体装置を用いてマスクROMを構
成するMO8集積回路の一部をとり出して示すパターン
平面図、第5図は第4図のX−X線に沿う断面図、第6
図は第4図のY−Y線に沿う断面図である。
4 is a pattern plan view showing a part of an MO8 integrated circuit constituting a mask ROM using the semiconductor device of the present invention; FIG. 5 is a cross-sectional view taken along line X-X in FIG. 4; 6
The figure is a sectional view taken along the Y-Y line in FIG. 4.

図において21はP導電型のシリコン基板であり、この
基板21の一面側にはN+(N型高濃度)型層22,2
2.・・−・・・・・・がマトリクス状に配設されてい
る。
In the figure, 21 is a P conductivity type silicon substrate, and on one side of this substrate 21 is an N+ (N type high concentration) type layer 22, 2
2. . . . are arranged in a matrix.

これらN十型層22.22.・・・・・・・・・におけ
る行方向(横方向)相互間にはデプレッション型チャネ
ル領域23゜23、・・・・・・・・・が形成されてい
る。
These N-type layers 22.22. . . . depression type channel regions 23° 23, . . . are formed between the row direction (lateral direction).

これらチャネル領域23,23.・・・・−・・・・は
イオンインプランテーションにより形成されたものであ
り、チャネル領域23を挾んで行方向に隣接対向するN
土層22゜22の一方をソース、他方をドレインとして
デプレッション型トランジスタをそれぞれ行方向に形成
するためのものである。
These channel regions 23, 23 . . . . are formed by ion implantation, and are adjacent and opposing N in the row direction with the channel region 23 in between.
This is for forming depletion type transistors in the row direction, with one of the soil layers 22 and 22 serving as a source and the other as a drain.

上記デプレッション型チャネル領域23,23.・・・
・・・・・・上にはそれぞれ薄いゲート絶縁膜24□が
設けられ、また前記チャネル領域23,23.・・・・
・・・・・において列方向に隣接対向する該チャネル領
域相互間の基板21上には薄いゲート絶縁膜241 ま
たは厚い絶縁膜24□が設けられている。
The depression type channel regions 23, 23. ...
. . . A thin gate insulating film 24□ is provided on each of the channel regions 23, 23 .・・・・・・
. . ., a thin gate insulating film 241 or a thick insulating film 24□ is provided on the substrate 21 between the channel regions adjacent to each other in the column direction.

そして上記絶縁膜24、。24□上には該膜上を列方向
に通る多結晶シリコンよりなるゲート電極配線層25□
、252,253゜・・・・・・・・・が設けられてい
る。
and the insulating film 24. On 24□ is a gate electrode wiring layer 25□ made of polycrystalline silicon that passes over the film in the column direction.
, 252, 253°...... are provided.

これら配線層下において列方向に隣接対向するデプレッ
ション型チャネル領域23,230相互間は該領域の一
方をソース、他方をドレイン、これらの中間部に位置し
た個所の基板21をゲート領域とするエン−・ンスメン
ト型MO8)ランジスタを形成する。
Under these wiring layers, between the depression type channel regions 23 and 230 adjacent to each other in the column direction, one of the regions is a source, the other is a drain, and the substrate 21 located between these regions is a gate region.・Form an MO8) transistor.

ただし厚い絶縁膜242が形成された部分では、閾値電
圧が高くなるので、エンハンスメント型トランジスタと
しては動作しない。
However, since the threshold voltage becomes high in the portion where the thick insulating film 242 is formed, it does not operate as an enhancement type transistor.

なお図において26゜26、・・・・・・・・・は厚い
フィールド絶縁膜形成部、27はPSGよりなる絶縁膜
である。
In the figure, 26.degree.26, . . . is a thick field insulating film forming portion, and 27 is an insulating film made of PSG.

第7図は上記の如き構造を用いて形成したROMの1出
カラインについての回路図である。
FIG. 7 is a circuit diagram of one output line of a ROM formed using the above structure.

即ち第4図ないし第7図に示される如く行方向に形成さ
れるデプレッション型MOSトランジスタT2□〜T2
nの直列回路28はゲートにクロック信号が供給される
エンハンスメント型Nチャネルトランジスタ(負荷MO
8)29を介して電源VDD に接続され、デプレッシ
ョン型MO8)ランジスタT3□〜T3n の直列回路
30はアースされる。
That is, depletion type MOS transistors T2□ to T2 formed in the row direction as shown in FIGS. 4 to 7
The n series circuit 28 is an enhancement type N-channel transistor (load MO) whose gate is supplied with a clock signal.
8) It is connected to the power supply VDD via 29, and the series circuit 30 of depletion type MO8) transistors T3□ to T3n is grounded.

そしてエンハンスメント型MOSトランジスタT41〜
T4nは上記直列回路28,30間を橋渡しする如き構
成である。
And enhancement type MOS transistor T41~
T4n is configured to bridge between the series circuits 28 and 30.

また直列回路28はインバータ31を介して読出し出力
を送出するようになっている。
Further, the series circuit 28 is configured to send out a readout output via an inverter 31.

なお第4図においてデプレッション型MO8)ランジス
タT51 、T52 s・・・・・・・・・の直列回路
32は隣りの出力ラインについての回路となり、その次
のデプレッション型MOSトランジスタT61 j T
a2 j・・・・・・・・・の直列回路33は更に隣り
の出力ラインとして、アースとなる直列回路30を直列
回路28,32の共用回路としてもよいが、直列回路3
3をアースラインに用いて、直列回路28.30を一対
に用い、直列回路32゜33を一対に用いてもよい。
In FIG. 4, the series circuit 32 of depletion type MO8) transistors T51, T52s... is a circuit for the adjacent output line, and the next depletion type MOS transistor T61 j T
The series circuit 33 of a2 j...... may be used as an adjacent output line, and the series circuit 30 serving as the ground may be shared by the series circuits 28 and 32, but the series circuit 3
3 may be used as the ground line, the series circuits 28 and 30 may be used as a pair, and the series circuits 32 and 33 may be used as a pair.

この場合直列回路30.32間の配線層25..25□
、・・・・・・・・・の下部にはエンハンスメント型M
O8)ランジスタを形成する必要がないので、その部分
のゲート絶縁膜は厚くしておけばよい。
In this case, the wiring layer 25. between the series circuits 30.32. .. 25□
At the bottom of ,...... is the enhancement type M.
O8) Since there is no need to form a transistor, the gate insulating film in that portion can be made thicker.

またトランジスタT43は第7図で点線で示されている
如くゲート絶縁膜が厚く形成されているので、実際はエ
ン−・ンスメント型MO8)ランジスタを形成しておら
ず、動作不能である。
Furthermore, since the gate insulating film of the transistor T43 is formed thickly as shown by the dotted line in FIG. 7, it does not actually form an enhancement type MO8) transistor and is inoperable.

本回路はROMを構成するものであるから、第7図に示
される回路は複数並設され、これら各回路間で相対応す
るエン−・ンスメント型トランジスタのゲート電極どう
しは共通接続されることは第4図からも分ることである
Since this circuit constitutes a ROM, a plurality of the circuits shown in FIG. 7 are arranged in parallel, and the gate electrodes of the corresponding enhancement type transistors between these circuits are not commonly connected. This can also be seen from Figure 4.

なお第7図においてはCはMO8回路の出力端に寄生的
に生じる容量である。
Note that in FIG. 7, C is a capacitance parasitically generated at the output end of the MO8 circuit.

次に上記構成よりなるROMを、Nチャネル倶シリコン
デー)E/D MO8集積回路として得不場合の製造法
を第8図により説明する。
Next, a method of manufacturing the ROM having the above structure as an N-channel E/D MO8 integrated circuit will be described with reference to FIG.

まずPWシリコン基板21上に熱酸化または低温気相成
長により絶縁膜(例えば5102)24を8000人〜
15000人設ける(第8図a)。
First, an insulating film (for example, 5102) 24 is formed on a PW silicon substrate 21 by thermal oxidation or low-temperature vapor phase growth.
There will be 15,000 people (Figure 8a).

次にROIVI中の配線及びトランジスタとなる領域の
絶縁膜をフォトレジストをマスクとして除去する(第8
図b)。
Next, the wiring in the ROIVI and the insulating film in the region that will become the transistor are removed using the photoresist as a mask (8th
Figure b).

次にゲート絶縁膜24□ とするために熱酸化膜を50
0〜1200A設けて後(第8図C)デプレッション型
MO8)ランジスタを得るために、エン−・ンスメント
型MO8)ランジスタとなる予定の領域をフォトレジス
ト41をマスクとして覆い、N型不純物(例えばp 十
3 tイオン)のイオンインプランテーションを行なう
(第8図d)次にレジスト41を除去し、アドレス入力
(駆動線)となる配線及びエンハンスメント型、デプレ
ッション型MO8)ランジスタのゲート電極形成のため
、例えば多結晶シリコン25を気相成長させた後、必要
なパターニングを行なう(第8図e:この多結晶シリコ
ンパターンをマスクとして不必要な個所のゲート絶縁膜
24□ を除去してN型不純物による拡散領域の形成を
行なう。
Next, a thermal oxide film with a thickness of 50% is applied to form a gate insulating film 24□.
After providing 0 to 1200 A (FIG. 8C), in order to obtain a depletion type MO8) transistor, the area that is to become an enhancement type MO8) transistor is covered with a photoresist 41 as a mask, and an N-type impurity (for example, p Perform ion implantation of 13t ions (Fig. 8d). Next, remove the resist 41, and form wiring for address input (drive line) and gate electrodes of enhancement type and depletion type MO8) transistors. For example, after vapor-phase growth of polycrystalline silicon 25, necessary patterning is performed (Fig. 8e: Using this polycrystalline silicon pattern as a mask, unnecessary portions of the gate insulating film 24□ are removed and N-type impurities are formed. A diffusion region is formed.

そして基板及び配線領域の保護膜(例えばPSG)27
を気相成長法により設けて(第8図f)ROMマトリク
ス部の形成を終了するものである。
and a protective film (for example, PSG) 27 for the substrate and wiring area.
is formed by vapor phase growth (FIG. 8f) to complete the formation of the ROM matrix section.

次に第7図の回路動作は、クロック入力によってトラン
ジスタ29をオン状態にしておいて寄生容量Cをプリチ
ャージしておき、ここでアドレス入力例えば254が選
択された場合、該入力がオンレベルになると同時にクロ
ック入力をオフレ々ルにする。
Next, in the circuit operation of FIG. 7, the transistor 29 is turned on by a clock input, and the parasitic capacitance C is precharged. When an address input, for example 254, is selected, the input becomes on level. At the same time, the clock input is turned off.

この詩仙のアドレス入力は全てオフレベルであるが、ト
ランジスタT44がオンしたことによって、寄生容量C
に蓄えられている電荷はトランジスタT21 T22
T23 T24 T44 Ta2−T3 n
の糸路を通って放電される。
All of the address inputs of this Shisen are off level, but due to transistor T44 being turned on, the parasitic capacitance C
The charges stored in transistors T21 and T22
T23 T24 T44 Ta2-T3 n
is discharged through the thread path.

第9図はこの時の動作を示すタイミング波形図である。FIG. 9 is a timing waveform diagram showing the operation at this time.

一方。アドレス人力253が選択された場合には、トラ
ンジスタT43のゲート絶縁膜は厚いので、トランジス
タT43はオンレベルとはならず、寄生容量Cに蓄えら
れている電荷は放電されることなく、電源電圧VDDの
レベルに保持されるものである。
on the other hand. When address input 253 is selected, the gate insulating film of the transistor T43 is thick, so the transistor T43 does not turn on level, and the charge stored in the parasitic capacitance C is not discharged and the power supply voltage VDD level.

なお上記実施例では、本発明装置のゲート配線層を構成
するアドレス入力線251〜25n を多結晶のシリコ
ンで形成したが、アルミニウム等の金属を用いてもよい
In the above embodiment, the address input lines 251 to 25n constituting the gate wiring layer of the device of the present invention are made of polycrystalline silicon, but a metal such as aluminum may also be used.

また実施例ではデプレッション型MOSトランジスタの
チャネル領域形成のためのイオンイソプランテーション
は、多結晶シリコン層25の形成前に行なったが、該層
25の形成後に行っても、イオンの加速電圧を上げれば
可能である。
Furthermore, in the embodiment, the ion isoplantation for forming the channel region of the depletion type MOS transistor was performed before the formation of the polycrystalline silicon layer 25, but even if the ion isoplantation is performed after the formation of the layer 25, if the ion acceleration voltage is increased. It is possible.

また実施例では上記デプレッション型MO8)ランジス
タ及びエン−・ンスメント型MO8)ランジスタをNチ
ャネル型としたが、Pチャネル型としてもよい。
Further, in the embodiment, the depression type MO8) transistor and the enhancement type MO8) transistor are N-channel type, but they may be P-channel type.

以上説明した如く本発明によれば、一対のデプレッショ
ン型MO8)ランジスタのチャネル領域をエンハンスメ
ント型MO8)ランジスタのソース及びドレインとして
兼用したので、その分だけチップ占有面積を縮小化でき
ると共に、上記各デプレッション型トランジスタとエン
ハンスメンドル型トランジスタとを接続するためのコン
タクト孔が省略できて配線の段切れ、コンタクト不良、
面積増大化を防止でき、しカーも本発明装置を実施例の
如きROM等に組込んだ場合には、第4図の如き簡素化
されたパターンが簡素化できてこの点でも面積縮小化が
可能となるものである。
As explained above, according to the present invention, the channel region of the pair of depletion type MO8) transistors is also used as the source and drain of the enhancement type MO8) transistor. This eliminates the need for a contact hole to connect the Enhanced Mendl type transistor and the Enhanced Mendl type transistor, which eliminates disconnections in the wiring, contact failures, and
In addition, when the device of the present invention is incorporated into a ROM, etc. as in the embodiment, a simplified pattern as shown in FIG. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のマスクROMを示すパターン平面図、第
2図は第1図の■−■線に沿う断面図、第3図は第1図
の等価回路図、第4図は本発明の一実施例を示すパター
ン平面図、第5図は第4図のX−X線に沿う断面図、第
6図は第4図のY−Y線に沿う断面図、第7図は第4図
より得られるROMの一部を示す回路図、第8図は同R
OMの製造工程説明図、第9図はタイミングチャートで
ある。 21・・・・・・P型基板、22・・・・・・N十型拡
散層、23・・・・・・デプレッション型チャネル領域
、24、・・・・・・ゲート絶縁膜、25□、253・
・・・・・・・・ゲート配線層、T2□〜T2 n 、
T3□〜T3n・・・・・・・・・デプレッション型M
O8)ランジスタ、T41〜T4n・−・・・・・・・
エンハンスメント型MO8)ランジスタ。
FIG. 1 is a pattern plan view showing a conventional mask ROM, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is an equivalent circuit diagram of FIG. A pattern plan view showing one embodiment, FIG. 5 is a sectional view taken along line X-X in FIG. 4, FIG. 6 is a sectional view taken along line Y-Y in FIG. 4, and FIG. 7 is a sectional view taken along line Y-Y in FIG. 4. Figure 8 is a circuit diagram showing a part of the ROM obtained from the same R.
FIG. 9, which is an explanatory diagram of the manufacturing process of the OM, is a timing chart. 21...P-type substrate, 22...N-type diffusion layer, 23...depression type channel region, 24,...gate insulating film, 25□ , 253・
......Gate wiring layer, T2□~T2n,
T3□~T3n・・・・・・Depression type M
O8) Transistor, T41~T4n------
Enhancement type MO8) transistor.

Claims (1)

【特許請求の範囲】 1 第1及び第2のデプレッション型MO8)ランジス
タと、前記第1のデプレッション型MOSトランジスタ
のチャネル領域ソースとし前記第2のデプレッション型
MO8)ランジスタのチャネル領域をドレインとしたエ
ンハンスメント型MO8)ランジスタとを具備したこと
を特徴とする半導体装置。 2−第1導電型半導体層と、該層の一面側に互いに対向
して設けられた第2導電型の第1、第2の半導体層と、
該第1、第2の半導体層とならんで前記第1導電型半導
体層に互いに対向して設けられた第2導電型の第3、第
4の半導体層と、前記第1、第2の半導体層間に設けら
れこれら各層の一方をソース、他方をドレインとするデ
プレッション型チャネル領域と、前記第3、第4の半導
体層間に設けられこれら各層の一方をソース、他方をド
レインとするデプレッション型チャネル領域と、前記各
チャネル領域上及びこれらチャネル領域間の第1導電型
半導体層上に設けられたゲート絶縁膜と、該絶縁膜上な
通るように設けられた導電体層とを具備したことを特徴
とする半導体装置。
[Scope of Claims] 1. Enhancement comprising first and second depletion type MO8) transistors, with the channel region of the first depletion type MOS transistor as the source and the channel region of the second depletion type MO8) transistor as the drain. A semiconductor device characterized by comprising a type MO8) transistor. 2- a first conductivity type semiconductor layer, and first and second semiconductor layers of a second conductivity type provided opposite to each other on one side of the layer;
third and fourth semiconductor layers of a second conductivity type provided opposite to each other in the first conductivity type semiconductor layer along with the first and second semiconductor layers; and the first and second semiconductor layers. a depression type channel region provided between the layers, with one of these layers serving as a source and the other serving as a drain; and a depression type channel region provided between the third and fourth semiconductor layers, having one of these layers serving as a source and the other serving as a drain. and a gate insulating film provided on each of the channel regions and the first conductivity type semiconductor layer between these channel regions, and a conductor layer provided to pass over the insulating film. semiconductor device.
JP51150205A 1976-12-14 1976-12-14 semiconductor equipment Expired JPS5816342B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51150205A JPS5816342B2 (en) 1976-12-14 1976-12-14 semiconductor equipment
US05/859,872 US4143390A (en) 1976-12-14 1977-12-12 Semiconductor device and a logical circuit formed of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51150205A JPS5816342B2 (en) 1976-12-14 1976-12-14 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5373982A JPS5373982A (en) 1978-06-30
JPS5816342B2 true JPS5816342B2 (en) 1983-03-30

Family

ID=15491812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51150205A Expired JPS5816342B2 (en) 1976-12-14 1976-12-14 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5816342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452861B2 (en) * 1986-10-31 1992-08-25 Mazda Motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452861B2 (en) * 1986-10-31 1992-08-25 Mazda Motor

Also Published As

Publication number Publication date
JPS5373982A (en) 1978-06-30

Similar Documents

Publication Publication Date Title
JP2001352077A (en) Soi field effect transistor
JPH0936252A (en) Semiconductor integrated circuit device and its manufacture
US4380863A (en) Method of making double level polysilicon series transistor devices
US4319263A (en) Double level polysilicon series transistor devices
US6009010A (en) Static semiconductor memory device having data lines in parallel with power supply lines
JP3940495B2 (en) SRAM cell structure and manufacturing method thereof
JPS5816342B2 (en) semiconductor equipment
JP3237346B2 (en) Semiconductor storage device
US6407463B2 (en) Semiconductor memory device having gate electrode, drain-drain contact, and drain-gate contact layers
JP2833291B2 (en) CMOS type semiconductor integrated circuit device
JP2840239B2 (en) Master slice type semiconductor device
JPH06232372A (en) Semiconductor storage device
JP3064957B2 (en) Semiconductor device and manufacturing method thereof
JP2003017593A (en) Semiconductor memory
JPS60167360A (en) Semiconductor memory device
JPS5943828B2 (en) Manufacturing method of MOS type integrated circuit
JP3059607B2 (en) Semiconductor memory device and method of manufacturing the same
KR100464941B1 (en) Full CMOS SRAM Cell Manufacturing Method
JP2905583B2 (en) Semiconductor integrated circuit device
KR100238644B1 (en) Soi device and manufacturing process thereof
JPH056967A (en) Gate array
JP2985796B2 (en) Semiconductor device
JP3065672B2 (en) Gate array type semiconductor integrated circuit device
JP2003031697A (en) Static random access memory and its manufacturing method
JP3118302B2 (en) Analog switch